Radiation Shielding

Download Radiation Shielding

Post on 04-Jan-2016

35 views

Category:

Documents

0 download

Embed Size (px)

DESCRIPTION

Radiation Shielding. A Practical Approach to an Engineering Physics Problem in Engineer 1P03. Introduction. Geoff Gudgeon Tony Machado Aliraza Murji Evie Sararas. Outline. Problem & Constraints Background Lab Results Material Selection Proposed Design Recommendations Conclusion. - PowerPoint PPT Presentation

TRANSCRIPT

<ul><li><p>Radiation ShieldingA Practical Approach to an Engineering Physics Problem in Engineer 1P03.</p></li><li><p>IntroductionGeoff GudgeonTony MachadoAliraza MurjiEvie Sararas</p></li><li><p>OutlineProblem &amp; ConstraintsBackgroundLab ResultsMaterial SelectionProposed DesignRecommendationsConclusion</p></li><li><p>Problem &amp; ConstraintsDesign an object that will shield the gamma rays given off by a radioactive source.</p><p>Maximum radiation emitted after shield limited to 50 mSv per year.</p><p>Design must be economically and practically feasible.</p></li><li><p>BackgroundTypes of Radiation Alpha () Beta () Gamma () Neutron</p></li><li><p>BackgroundNuclear DecayAtoms with greater than 83 Protons are unstable and will break down (known as Radioactivity).Gamma Ray AbsorptionPhotoelectric AbsorptionCompton ScatteringPair ProductionAbsorbing Powers of MaterialsGamma radiation is attenuated exponentially when passing through a shielding material.</p></li><li><p>Lab ResultsLab #1Verify 1/r2 law experimentally using Cesium source.Determine background radiation (0.2 Sv).</p><p>Chart5</p><p>13.8</p><p>10.1</p><p>8</p><p>6.8</p><p>5.7</p><p>4.5</p><p>3.6</p><p>3.1</p><p>3</p><p>2.2</p><p>A graph of radius against activity</p><p>Radius (mm)</p><p>Activity N (uSv)</p><p>Sheet2</p><p>Sheet2</p><p>13.8</p><p>10.1</p><p>8</p><p>6.8</p><p>5.7</p><p>4.5</p><p>3.6</p><p>3.1</p><p>3</p><p>2.2</p><p>A graph of radius against activity</p><p>Radius (mm)</p><p>Activity N (uSv)</p><p>Sheet3</p><p>Sheet3</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>X (Thickness)</p><p>ln(N)</p><p>Lead</p><p>Sheet1</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>(X) Thickness</p><p>ln(N)</p><p>Plastic</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>X (Thickness)</p><p>ln(N)</p><p>Copper</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>0</p><p>X (Thickness)</p><p>ln(N)</p><p>Aluminium</p><p>Gamma Attenuation</p><p>PlasticLead</p><p>ThicknessN(x) (Sv)ln(N)ThicknessN(x) (Sv)ln(N)</p><p>0.08.42.12823170580.08.12.0918640617</p><p>3.28.22.10413415433.25.51.7047480922</p><p>6.47.92.06686275956.43.91.3609765531</p><p>9.68.42.12823170589.63.21.1631508098</p><p>12.87.72.041220328912.81.70.5306282511</p><p>16.07.52.014903020516.01.20.1823215568</p><p>AlumininumCopper</p><p>ThicknessN(x) (Sv)ln(N)ThicknessN(x) (Sv)ln(N)</p><p>0.08.62.15176220330.08.72.1633230257</p><p>3.28.62.15176220333.28.52.1400661635</p><p>6.48.22.10413415436.47.11.960094784</p><p>9.67.31.98787434829.66.11.8082887712</p><p>12.87.31.987874348212.85.61.7227665977</p><p>16.07.21.97408102616.04.91.5892352051</p><p>No = 0.2 Sv</p><p>Distance r (mm)Activity N (Sv)Background Subtracted N (Sv)</p><p>1014.012.0</p><p>1510.38.3</p><p>208.26.2</p><p>257.05.0</p><p>305.93.9</p><p>354.72.7</p><p>403.81.8</p><p>453.31.3</p><p>503.21.2</p><p>552.40.4</p><p>Expected 1/r^2 Graph</p><p>Expected 1/r^2 Graph</p><p>Graph Generated in Maple 9.5</p></li><li><p>Lab ResultsLab #2Experimentally calculate Gamma Attenuation of Plastic, Lead, Aluminum, and Copper.</p></li><li><p>Material Selection (CES)</p></li><li><p>Proposed DesignThree Assumptions:Source emits 1mSv/s.Density of lead is 11,340 kg/m3. Price of lead is $1.50/kg.</p></li><li><p>Proposed DesignThree UnknownsThickness of lead.Volume of lead.Price of lead.</p><p>Solution ???Create C++ Program!</p><p>Why ???Allows us to vary parameters to maximize design attenuation and minimize cost!</p></li><li><p>Proposed DesignFinal Design:Distance from source to inner wall of lead is 5cm.Thickness of lead is 13.7cm.Amount of lead used would total 111.055 kg.Total cost of lead would be $172.58</p></li><li><p>RecommendationDesign can be easily altered using the C++ program to accommodate changes in input variables.If not used on bottom floor, a lead plate with equal thickness to radius of dome should be implemented to protect people below.Cover lead with plastic to prevent handling of toxic lead.</p></li><li><p>ConclusionOur design offers the best choice of material to provide highest attenuation.Low-cost due to small volume of design.By using a dome, our design becomes geometrically efficient by absorbing radiation evenly.Health and Safety regulation limiting 50mSv/year of radiation is met.</p></li><li><p>ConclusionThank you for your attention.At this time, we would invite questions from the audience.</p></li></ul>

Recommended

View more >