quasi-resonant flyback converter simulations with saber - apec 2016

49
Alan Courtay March 22, 2016 Quasi-resonant Flyback Converter Simulation Saber Tutorial

Upload: alan-courtay

Post on 15-Apr-2017

857 views

Category:

Engineering


14 download

TRANSCRIPT

Page 1: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

Alan Courtay

March 22, 2016

Quasi-resonant Flyback Converter Simulation

Saber Tutorial

Page 2: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 2

Agenda

• Quasi-Resonant Flyback Converter (AN1326)

–Principles of Operation

–Simulation vs. Measurement

• Accurate Datasheet-Driven Modeling

–Controller Chip

–MOSFET

–Transformer

• Automated Verification

–EMI

– Loss / Efficiency

Page 3: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 3

Vin: 50/60Hz, 88 to 264 Vac

Vout1: 105 V ± 5%

Iout1: 0.1 to 0.35 A

Vripple1: 1%

Vout2: 14 V ± 10%

Iout2: 0.1 to 1 A

Vripple2: 1%

L6565-Based 50W QR ZVS Flyback

Vout3: 5 V ± 5%

Iout3: 50 mA

Vripple3: <1%

Page 4: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 4

Vin: 50/60Hz, 88 to 264 Vac

L6565-Based 50W QR ZVS Flyback

Power Stage

Vds

t Currents

t

Vr

Vr

Llk&Cd

Lp&Cd

Ipeak

Secondary

Vin

Primary Demagnetization

Ton

Llk+Lp

Cd

Llk+Lp

Vout1: 105 V ± 5%

Iout1: 0.1 to 0.35 A

Vripple1: 1%

Vout2: 14 V ± 10%

Iout2: 0.1 to 1 A

Vripple2: 1%

Discontinuous Conduction Mode

Peak Current Mode Control

Vout3: 5 V ± 5%

Iout3: 50 mA

Vripple3: <1%

Page 5: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 5

Vin: 50/60Hz, 88 to 264 Vac

L6565-Based 50W QR ZVS Flyback

Power Stage

Vds

t Currents

t

Ipeak

Vin

Ton Toff

Valley

Switching

Vout1: 105 V ± 5%

Iout1: 0.1 to 0.35 A

Vripple1: 1%

Vout2: 14 V ± 10%

Iout2: 0.1 to 1 A

Vripple2: 1% Vr

Vr

Vout3: 5 V ± 5%

Iout3: 50 mA

Vripple3: <1%

Page 6: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 6

Vin: 50/60Hz, 88 to 264 Vac

L6565-Based 50W QR ZVS Flyback

Power Stage

Vds

t Currents

t

Ipeak

Vin

Ton Toff

ZVS

Vr

Vin < Vr

Vout1: 105 V ± 5%

Iout1: 0.1 to 0.35 A

Vripple1: 1%

Vout2: 14 V ± 10%

Iout2: 0.1 to 1 A

Vripple2: 1%

Vout3: 5 V ± 5%

Iout3: 50 mA

Vripple3: <1%

Page 7: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 7

Vin: 50/60Hz, 88 to 264 Vac

L6565-Based 50W QR ZVS Flyback

Power Stage

Vds

t Currents

t

Ipeak

Vin

Ton Toff

Skip Cycle

Vout1: 105 V ± 5%

Iout1: 0.1 to 0.35 A

Vripple1: 1%

Vout2: 14 V ± 10%

Iout2: 0.1 to 1 A

Vripple2: 1%

Vout3: 5 V ± 5%

Iout3: 50 mA

Vripple3: <1%

Page 8: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 8

RCD

Clamp

Output Voltage Regulation Feedback

Vin: 50/60Hz, 88 to 264 Vac

Vout1: 105 V ± 5%

Iout1: 0.1 to 0.35 A

Vripple1: 1%

Vout2: 14 V ± 10%

Iout2: 0.1 to 1 A

Vripple2: 1%

L6565-Based 50W QR ZVS Flyback

Power Stage

Vcc

start-up

self-supply

Vout3: 5 V ± 5%

Iout3: 50 mA

Vripple3: <1%

Page 9: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 9

L6565-Based 50W QR ZVS Flyback

Page 10: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 10

Agenda

• Quasi-Resonant Flyback Converter (AN1326)

–Principles of Operation

–Simulation vs. Measurement

• Accurate Datasheet-Driven Modeling

–Controller Chip

–MOSFET

–Transformer

• Automated Verification

–EMI

– Loss / Efficiency

Page 11: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 11

Current Sense and Primary Voltage

Full Load, Vin = 100 V

4µs 4µs

1V

100V

Page 12: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 12

Current Sense and Primary Voltage

Full Load, Vin = 380 V

2µs 2µs

1V

100V

Page 13: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 13

Current Sense and Primary Voltage

Half Load, Vin = 100 V

4µs 4µs

1V

100V

Page 14: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 14

Current Sense and Primary Voltage

Half Load, Vin = 380 V

2µs 2µs

0.5V

100V

Page 15: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 15

Cycle Skipping / Frequency Foldback

Light Load, Vin = 300 V

5µs 5µs

0.5V

100V

Page 16: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 16

Current Sense and Primary Voltage

Standby, Vin = 380 V Burst Mode

100µs 100µs

0.5V

100V

Page 17: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 17

Agenda

• Quasi-Resonant Flyback Converter (AN1326)

–Principles of Operation

–Simulation vs. Measurement

• Accurate Datasheet-Driven Modeling

–Controller Chip

–MOSFET

–Transformer

• Automated Verification

–EMI

– Loss / Efficiency

Page 18: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 18

Modeling

Controller IC

Page 19: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 19

Modeling

Controller IC

Page 20: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 20

Modeling

Controller IC

Turn-on

Valley detection model

with StateAMS tool Blanking time

model with TLU tool

Frequency foldback

Page 21: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 21

Modeling

Controller IC

Turn-on

Turn-off

Line voltage feedforward

function implemented in MAST

Limits power capability

at high line voltage

Page 22: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 22

Modeling

Power MOSFET

Page 23: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 23

Modeling

Power MOSFET

• DC Characteristics

Characterized

Temperatures

Page 24: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 24

Modeling

Power MOSFET

• DC Characteristics

• Interelectrode Capacitances

Page 25: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 25

Modeling

Power MOSFET

• DC Characteristics

• Interelectrode Capacitances

• Gate Charge Characteristic

Page 26: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 26

Modeling

Transformer

Page 27: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 27

Modeling

Transformer

• Ferrite Core 3C85

–Hysteresis (major and minor BH loops)

–Frequency dependent losses (hysteresis

and eddy currents)

Page 28: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 28

Modeling

Transformer

• Ferrite Core 3C85

–Hysteresis (major and minor BH loops)

–Frequency dependent losses (hysteresis

and eddy currents)

Page 29: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 29

Modeling

Transformer

• Ferrite Core 3C85

–Hysteresis (major and minor BH loops)

–Frequency dependent losses (hysteresis

and eddy currents)

Page 30: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 30

Modeling

Transformer

• Ferrite Core 3C85

–Hysteresis (major and minor BH loops)

–Frequency dependent losses (hysteresis

and eddy currents)

• Core geometry

–Air gap

– Lamination

Page 31: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 31

Modeling

Transformer

• Ferrite Core 3C85

–Hysteresis (major and minor BH loops)

–Frequency dependent losses (hysteresis

and eddy currents)

• Core geometry

–Air gap

– Lamination

• Windings (Cauer - 1D Model)

–Flux leakage

–Frequency dependent loss (skin and

proximity effects)

–Winding capacitances

Page 32: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 32

Modeling

Transformer

• Ferrite Core 3C85

–Hysteresis (major and minor BH loops)

–Frequency dependent losses (hysteresis

and eddy currents)

• Core geometry

–Air gap

– Lamination

• Windings (Cauer - 1D Model)

–Flux leakage

–Frequency dependent loss (skin and

proximity effects)

–Winding capacitances

Page 33: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 33

Agenda

• Quasi-Resonant Flyback Converter (AN1326)

–Principles of Operation

–Simulation vs. Measurement

• Accurate Datasheet-Driven Modeling

–Controller Chip

–MOSFET

–Transformer

• Automated Verification

–EMI

– Loss / Efficiency

Page 34: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 34

Page 35: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 35

LISN

Page 36: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 36

Page 37: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 37

Page 38: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 38

Page 39: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 39

Experiment Editor Basic Tasks

Page 40: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 40

Page 41: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 41

Parallel

Computing

Page 42: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 42

Loss breakdown

report

Page 43: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 43

Converter

efficiency

Page 44: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 44

Most dissipative

components

Page 45: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 45

Conduction Losses Switching Losses

Page 46: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 46

Conduction Losses Switching Losses

Rac = 50kΩ added across primary

to account for air gap fringing field

losses

NTC thermistor

adjusted to 2.5Ω

Page 47: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 47

Rac = 50kΩ added across primary

to account for air gap fringing field

losses

NTC thermistor

adjusted to 2.5Ω

Page 48: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 48

Conclusion

• High fidelity models characterized from datasheets

• Automated design verification / regression testing over broad

operating conditions

–Experiment Analyzer

–Fault Injection

–Worst Case Analysis / Extreme Value Analysis

–Statistical variations (Monte Carlo)

• Scalable solution

–Capacity for large designs (network of power converters)

–User or site (company wide) model library management

–Distributed/grid iterative analysis (parametric Vary, Monte-Carlo,

Worst-Case Analysis, Fault)

Page 49: Quasi-resonant Flyback Converter Simulations with Saber - APEC 2016

© 2016 Synopsys, Inc. 49

Thank You

• Flyback design available on Synopsys Forum

• Improved IGBT Tool in 2016.03

Thank you to Sophia LI, Min ZHANG and Balaji EMANDI for their contributions.

Special thanks to Claudio ADRAGNA and Giovanni GRITTI from ST for their valuable feedback.