quasi maximum likelihood blind deconvolution quasi maximum likelihood blind deconvolution alexander...

36
QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

Post on 22-Dec-2015

236 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

QUASI MAXIMUM LIKELIHOOD

BLIND DECONVOLUTION

QUASI MAXIMUM LIKELIHOOD

BLIND DECONVOLUTION

Alexander BronsteinAlexander Bronstein

Page 2: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

BIBLIOGRAPHYBIBLIOGRAPHY 22

A. Bronstein, M. Bronstein, and M. Zibulevsky, "Quasi maximum likelihood blind deconvolution: super- ans sub-Gaussianity vs. asymptotic stability", submitted to IEEE Trans. Sig. Proc.

A. Bronstein, M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi, "Quasi maximum likelihood blind deconvolution: asymptotic performance analysis", submitted to IEEE Trans. Information Theory.

A. Bronstein, M. Bronstein, and M. Zibulevsky, "Relative optimization for blind deconvolution", submitted to IEEE Trans. Sig. Proc.

A. Bronstein, M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi, "Quasi maximum likelihood blind deconvolution of images acquired through scattering media", Submitted to ISBI04.

A. Bronstein, M. Bronstein, M. Zibulevsky, and Y. Y. Zeevi, "Quasi maximum likelihood blind deconvolution of images using optimal sparse representations", CCIT Report No. 455 (EE No. 1399), Dept. of Electrical Engineering, Technion, Israel, December 2003.

A. Bronstein, M. Bronstein, and M. Zibulevsky, "Blind deconvolution with relative Newton method", CCIT Report No. 444 (EE No. 1385), Dept. of Electrical Engineering, Technion, Israel, October 2003.

Page 3: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

AGENDAAGENDA 33

Introduction

QML blind deconvolution

Asymptotic analysis

Relative Newton

Generalizations

Problem formulation

Applications

Page 4: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

BLIND DECONVOLUTION PROBLEMBLIND DECONVOLUTION PROBLEM 44

n nk n kk

x w s

ns

n

nwsource signal

convolution kernel

observed signal

sensor noise signal

W H

s x y

CONVOLUTION MODEL DECONVOLUTION

n nk n kk

cy h x s

nx

nh

nyrestoration kernel

source estimate

arbitrary scaling factor

arbitrary delay

c

Page 5: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

APPLICATIONSAPPLICATIONS 55

Acoustics, speech processing DEREVERBERATION

Optics, image processing, biomedical imaging DEBLURRING

Communications CHANNEL EQUALIZATION

Control SYSTEM IDENTIFICATION

Statistics, finances ARMA ESTIMATION

Page 6: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

AGENDAAGENDA 66

Introduction

QML blind deconvolution

Asymptotic analysis

Relative Newton

Generalizations

ML vs. QML

The choice of φ(s)

Equivariance

Gradient and Hessian

Page 7: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ML BLIND DECONVOLUTIONML BLIND DECONVOLUTION 77

1

1 1 20

; log log minT

inT h

nx h H e d f y

1 is i.i.d. with probability density functionns f s

2 has no zeros on the unit circle, i.e. nh 0iH e

ASSUMPTIONS

MAXIMUM-LIKELIHOOD BLIND DECONVOLUTION:

3 No noise (precisely: no noise model)

4 is zero-mean ns

Page 8: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

QUASI ML BLIND DECONVOLUTIONQUASI ML BLIND DECONVOLUTION 88

The true source PDF in usually unknown

log f s

f s

Many times is non-log-concave and not well-suited for

optimization

log f sSubstitute with some model function s

1

1 1 20

; log T

inT

nx h H e d y

PROBLEMS OF MAXIMUM LIKELIHOOD

QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION

Page 9: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

THE CHOICE OF (s) THE CHOICE OF (s) 99

log 1s

s s

SUPER-GAUSSIAN SUB-GAUSSIAN

s s

0

0.1 0.01

4

10

Page 10: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

EQUIVARIANCE EQUIVARIANCE 1010

ˆ argmin ;h

h x x h

QML estimator of given the observation h x

Theorem: The QML estimator is equivariant, i.e., for every

invertible kernel , it holds

where stands for the impulse response of the inverse of .

1ˆ ˆ h a x a h x

h xa

1a a

ANALYSIS OF ANALYSIS OF ;x h ;h x

Page 11: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

GRADIENT & HESSIAN OF GRADIENT & HESSIAN OF 1111

GRADIENT

( ; )x h

11 1

0

; T

k n n kTnk

h y xh

x h

1 1 Th y x J J J

where is the mirror operator. J

HESSIAN

21

2 1

0

; T

n n k n lk l Tnk l

h y x xh h

x h

Page 12: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

AGENDAAGENDA 1212

Introduction

QML blind deconvolution

Asymptotic analysis

Relative Newton

Generalizations

Asymptotic Hessian structure

Asymptotic error covariance

Cramér-Rao bounds

Superefficiency

Examples

Page 13: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC HESSIAN AT THE SOLUTION POINT ASYMPTOTIC HESSIAN AT THE SOLUTION POINT 1313

For a sufficiently large sample size , the Hessian becomes

At the solution point, 1 h cw y x h cs

2

2

2

1

1

1

;cs

2 22 E cs E cs cs E cs where

T

Page 14: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC ERROR COVARIANCE ASYMPTOTIC ERROR COVARIANCE 1414

Estimation kernel from the data

Exact restoration kernel

1 argmin ;xh

h E x h cw

ˆ argmin ;h

h x x h

0ˆ;x h x

0;x h 0;E x h

0

;k n n k

k

E E cs csh

cs

1E cs cs The scaling factor has to obey c

Page 15: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC ERROR COVARIANCE ASYMPTOTIC ERROR COVARIANCE 1515

Estimation error

ˆh h h x

From second-order Taylor expansion,

2; ;x h x h h 2; ;cs cs h equivariance

12 ; ;h cs cs

Page 16: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC ERROR COVARIANCE ASYMPTOTIC ERROR COVARIANCE 1616

Asymptotically ( ),

Separable structure:

1

2

002

1

1

1

NN

NN

g

g

g

h

h

h

T

12

2

1

1

1,2,...,

kk

kk

g

g

k N

hh

0 01 gh

Page 17: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC ERROR COVARIANCE ASYMPTOTIC ERROR COVARIANCE 1717

The estimation error covariance matrix

1 1Cov Covh H g H

asymptotically separates to

( )

2 2

2 2 22 4

(0) 202

1 11

1 11

1,2,...,

1

1

k k k kkh

k k k k

k k k k

k k k k

h

E h h E h h

E h h E h h

E g g E g g

E g g E g g

k N

E g

Page 18: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC ERROR COVARIANCE ASYMPTOTIC ERROR COVARIANCE 1818

Asymptotic gradient covariance matrices

2

2

11

1k k k k

k k k k

E g g E g g

E g g E g g T

20

1E g

T

where 2E cs cs 2E cs

Page 19: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC ERROR COVARIANCE ASYMPTOTIC ERROR COVARIANCE 1919

2 2 4 2 2 2 2

( )2 2 2 2 2 2 4 22 4

(0)2

1 2 2 11

2 1 1 21

1

1

kh

h

T

T

Asymptotic signal-to-interference ratio (SIR) estimate:

2 22 42

2 2 2 4 2

2

1

2 1 2

E cs TSIR

NE h x cs

Asymptotic estimation error covariance:

Page 20: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

CRAMER-RAO LOWER BOUNDS CRAMER-RAO LOWER BOUNDS 2020

True ML estimator: logs f s

The distribution-dependent parameters simplify to

2

1

1

c

2

( ) (0) 1

1

kh h TT

2

LSL

Asymptotic error covariance simplifies to

2 2log

Cum log , log , , 1

E s E f s

f s f s s s

L

S L

where

Page 21: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

CRAMER-RAO LOWER BOUNDS CRAMER-RAO LOWER BOUNDS 2121

1

2 2

T TSIR

N N

2L LL

Asymptotic SIR estimate simplifies to

Page 22: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

SUPEREFFICIENCY SUPEREFFICIENCY 2222

0 0P s Let the source be sparse, i.e.,

sLet be the smoothed absolute value with smoothing parameter

sign 2s s s s s s

0 In the limit

1( ) ( )

c

c

cs f s ds f s ds

22 2

p lim Var constkT

T h

0

lim p lim Var 0kT

T h

Page 23: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

SUPEREFFICIENCY SUPEREFFICIENCY 2323

Similar results are obtained for uniformly-distributed source

with s s

Can be extended for sources with PDF vanishing outside some

interval.

Page 24: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

ASYMPTOTIC STABILITYASYMPTOTIC STABILITY 2424

The QML estimator is said to be asymptotically stable if is a

local minimizer of in the limit .

h x h

;x h T

Theorem: The QML estimator is asymptotically stable if the

following conditions hold:

and is asymptotically unstable if one of the following conditions hold:

2

(1) 0(2) 1(3) 1 0

h x

2

(1 ) 0(2 ) 1(3 ) 1 0

Page 25: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

EXAMPLEEXAMPLE 2525

Generalized Laplace distribution

112 1

asb

aba

ef s

1 (Laplacian)a

5 (Gaussian)a

5a

0.5a

Page 26: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

STABILITY OF THE SUPER-GAUSSIAN ESTIMATORSTABILITY OF THE SUPER-GAUSSIAN ESTIMATOR 2626

logs f s

2 1

a

210

0 410

SUPER-GAUSSIAN SUB-GAUSSIAN

log 1s

s s

Page 27: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

STABILITY OF THE SUB-GAUSSIAN ESTIMATORSTABILITY OF THE SUB-GAUSSIAN ESTIMATOR 2727

logs f s

2 1

a

3

SUPER-GAUSSIAN SUB-GAUSSIAN

s s

5

10

Page 28: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

PERFORMANCE OF THE SUPER-GAUSSIAN ESTIMATORPERFORMANCE OF THE SUPER-GAUSSIAN ESTIMATOR 2828

logs f s

1Var hT

a

210

0

410

SUPER-GAUSSIAN

log 1s

s s

Page 29: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

PERFORMANCE OF THE SUB-GAUSSIAN ESTIMATORPERFORMANCE OF THE SUB-GAUSSIAN ESTIMATOR 2929

logs f s

1Var hT

aSUB-GAUSSIAN

s s

3

5

10

Page 30: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

AGENDAAGENDA 3030

Introduction

QML blind deconvolution

Asymptotic analysis

Relative Newton

GeneralizationsRelative optimization

Relative Newton

Fast Relative Newton

Page 31: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

RELATIVE OPTIMIZATION (RO) RELATIVE OPTIMIZATION (RO) 3131

0 Start with and (0)x x(0)h

1 For until convergence0,1,2,...k

4 Update source estimate

2 Start with

( 1) ( 1) ( )k k kx h x

( 1)kh

3 Find such that ( 1)kh ( ) ( 1) ( 1); ;k k kx h x

5 End For

Restoration kernel estimate: (0) (1) ( )...ˆ Kh x h h h

Source estimate: ( )ˆ Ks x x

Page 32: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

RELATIVE OPTIMIZATION (RO) RELATIVE OPTIMIZATION (RO) 3232

Observation: The k-th step of the relative optimization algorithm

depends only on ( 1)kw h

Proposition: The sequence of target function values produced by the

relative optimization algorithm is monotonically decreasing, i.e.,

(0) (1) ( 1) ( ) (0) (1) ( 1)... ...; ;k k kx h h h h x h h h

Page 33: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

RELATIVE NEWTON RELATIVE NEWTON 3333

Relative Newton = use one Newton step in the RO algorithm

Near the solution point( )kx cs

2

2 ( )

2

1

1

1

;kx

Hd g

Newton system separates to

, ,

, ,

k k k k k k

k k k k k k

H H d g

H H d g

0 0 0H d g

Page 34: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

FAST RELATIVE NEWTON FAST RELATIVE NEWTON 3434

Fast relative Newton = use one Newton step with approximate Hessian

in the RO algorithm + regularized approximate Newton system solution.

Approximate Hessian evaluation = order of gradient evaluation

Page 35: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

AGENDAAGENDA 3535

Introduction

QML blind deconvolution

Asymptotic analysis

Relative Newton

Generalizations

Page 36: QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION QUASI MAXIMUM LIKELIHOOD BLIND DECONVOLUTION Alexander Bronstein

GENERALIZATIONSGENERALIZATIONS 3636

IIR KERNELS

1 11 1

...

... 1 ...1

N NN N

M LM L

b z b zH zc z c z a z a z

BLOCK PROCESSING ONLINE DECONVOLUTION

MULTI-CHANNEL DECONVOLUTION BSS+BD

DECONVOLUTION OF IMAGES + USE OF SPARSE

REPRESENTATIONS