quantum mechanical operator equivalents used in the theory ... · quantum mechanical operator...

97
General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from orbit.dtu.dk on: Jul 05, 2020 Quantum mechanical operator equivalents used in the theory of magnetism Danielsen, O.; Lindgård, Per-Anker Publication date: 1972 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Danielsen, O., & Lindgård, P-A. (1972). Quantum mechanical operator equivalents used in the theory of magnetism. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R, No. 259

Upload: others

Post on 24-Jun-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from orbit.dtu.dk on: Jul 05, 2020

Quantum mechanical operator equivalents used in the theory of magnetism

Danielsen, O.; Lindgård, Per-Anker

Publication date:1972

Document VersionPublisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):Danielsen, O., & Lindgård, P-A. (1972). Quantum mechanical operator equivalents used in the theory ofmagnetism. Risø National Laboratory. Denmark. Forskningscenter Risoe. Risoe-R, No. 259

Page 2: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

"8

Riso Report No. 259

9 £ Danish Atomic Energy Commission

Research Establishment Riso

Quantum Mechanical Operator

Equivalents Used in the Theory of

Magnetism

by O. Danielsen and P.-A. Lindgård

Match 1972

Uu *n*mam Jll. OJlllmy, t7, UhfM* DfeUOT CnftilMPB K, Dnmifc JhdUbk M cwlMff« fl9mt LUnry, DanUi Atoalc BMfnr Conhrim, KJ«, DK40M KMUM4 Dmwark

Page 3: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish
Page 4: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

U . D . C 530.145.6:531

Page 5: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

March 1972 Risø Report No. 259

Quantum Mechanical Operator Equivalents

Used in

the Theory of Magnetism

by

O. Danielsen

and

P . - A . Lindgård

Danish Atomic Energy Commission

Research Establishment Risø

Physics Department

Abstract

Two sets of operator equivalents, the Kacah operators and the Stevens

operators are treated. Their definitions as angular momentum operators,

the transformation properties under rotations, the approximate Bose op­

erator expansions, and the mutual connection of the two sets of operators

are treated in detail. The information i s presented in a number of detailed

tables to enable direct use in hand calculations.

Page 6: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

ISBN 87 550 0135 I

Page 7: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

CONTENTS

Page

1. Introduction 7

1 .1 . Expansion in Spherical Harmonics 7

1.2. Angular Momentum Operator Equivalence 7

1 .3 . Bose Operator Equivalence 9

2. Racah Operator Equivalents, 3 , m 9

3. Racah Operator Equivalents Expanded in Bose Operators . . . . 11

3 . 1 . Crystal Field Calculations 11

3 .2 . Spin Wave Calculations 12

4 . Transformations under Rotations of Spherical Harmonics

and Racah Operatoi* 14

4 . 1 . Description of the Result of a Rotation 14

4 . 1 . 1 . Transformation of Cartesian Coordinates 15

4 . 1 . 2 . General Transformations 17

4 . 1 . 3 . Rotation of Racah Operators 21

4 . 2 . Calculations of the Rotation Matrices d (p) 21

4 . 3 . Rotation of the Angular Momentum Vectors 22

4 . 4 . »-Transformation of Racah Operators 24

5. Stevens Operator Equivalents, of 1 24

5 . 1 . Transformation of the Stevens Operators under

Rotation of the Frame of Coordinates 25

6. Crystal Potential Energy in Cubic and Hexagonal Symmetry . . 26

7. Definitions and Relations for Spherical Harmonics and

Racah Operators 28

7 .1 . Spherical Harmonics 28

7 .2 . Racah Operators 29

7 . 2 . 1 . Non-commuting Racah Operators 31

7 . 2 . 2 . Commuting Racah Operators 33

7 .3 . 3j -and 6j-Symbols 34

References 37

Tables 39

Page 8: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish
Page 9: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

LIST OF TABLES

Table No. Page

1. Racah Operator Equivalents 39

2. Racah Operator Equivalents Expanded in Bose Operators . . . . 41

3 . Rotation Matrices d (p) 44

4. Rotation Matrices Ol[a, -3, -£)_1 48

5. Coefficients Relating Stevens Operators to Racah Operators . . 52

6. Stevens Operator Equivalents 53

7. Stevens Operator Equivalents Expanded in Bose Operators . . . 54

8. Transformation of Stevens Operators by D (a, -x, -K )" 55

9. Crystal Potential Energy Expressed in Racah Operators 56

10. Crystal Potential Energy Expressed in Stevens Operators . . . . 57

11. 3 j-Symbols, Integer Values up to 6 58

12. 63-Symbols, Integer Values up to 6 78

Page 10: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish
Page 11: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

1. INTRODUCTION

1 .1 . Expansion in Spherical Harmonics

In physics it i s in many cases convenient to perform an expansion of a

function in spherical harmonics or linear combinations thereof. It i s then

possible to utilize the extensive work done on the transformation and com­

bination properties of +he spherical harmonics (angular momenta). We shall

throughout use definitions and conventions as used by Edmonds '.

The function to be expanded may be a potential energy function, a wave

function, or any other function which in general is subject to some symmetry

constraints. The spherical harmonics Y, form a natural ortho-normal

set of basis functions for rotations and are therefore particularly useful in

an expansion of a function with a number of rotation invariances. If, in ad­

dition, the function has inversion and reflection invariances, it i s often

more convenient to use the tesseral harmonics, being a ortho-normal set

of functions defined in terms of the spherical harmonics as

c h » " 7 j « * I . . « + « - , > m TJ . » > m > ° <'•"

Clo " Yl„: Slo * ° m = °

Thus we may expand a function V(r) as

l , m 1, m

1.2. Angular Momentum Operator Equivalence

Angular momentum operators ' operate in the following way on spherical

harmonics ';

' We use, as did Edmonds, J to denote a generalized angular raompitum;

L is restricted to denote an orbital momentum.

Page 12: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

J z Y lm - m Y lm

0 . 2 ) J + Y lm * <Jx + U J Y lm * Vl( l+1)-m(m+1) Y l m + ,

J~ Y lm • < J x - U y » Y t o * V l ( l + 1 ) - m ( m - 1 ) Y l m . . ,

With these properties it is possible to transform a function into a func­

tion of angular momentum operators, the so-called operator equivalents.

The operator equivalents transforming a s y ^ * Yj m are called Rrcah

operators and denoted 3 , . Oj i s a function of angular momenta

8, • O, mt^rfiv"^)- Functions transforming a s J jpr^-Cj m and

j raT S l .m a r e d e f i n e d a s

^m = ^ro,-mM-.ro1>m, ^

Stevens ' was the first to invent the operator equivalence method in crystal field calculations. Stevens introduced a different set of operator equivalents which have later been widely used in the literature. These "Stevens operators" denoted by 6 ? have the disadvantage of not having the same systematic transformation properties as the Racah operators, how­ever, they are convenient in "hand calculations" because they are defined such that a number of square-root factors disappear. They are therefore included in this report. Thus we can write the exact operator equivalent of V(r) considered as an operator as

V(r) = v(r) I \m\m^.lylz) l ,m

*« I< B U°U + BU°U> (K4) 1, m

v(r, I B»0j». l ,m

Page 13: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- g -

1.3. Bose Operator Equivalence

The commutator relation for angular momenta is

[J-»» J«] * &_ and cyclic permutations. (1.5) jr y z

It is inconvenient that the commutator is a new operator. In approxi­mate calculations it is often advantageous to use Bose operators having the following commutator relation:

[». * + ] = 1 • 0.6)

It is then possible to utilize the extensive theory in the literature for non-interacting and interacting Bose systems. In spinwavc calculations this was first utilized by Holstein and Primakofi ' who found the Bose oper­ator expansion of single angular momentum operators. Here we shall go further and include all the O, operators. In crystal field calculations a transformation to approximate Bose operators was first done by Trammel

41 and Grover '. For this purpose it is necessary to calculate matrix elements of the Racah operators. These have been tabulated by B. Birgeneau '.

2. RACAH OPERATOR EQUIVALENTS Oj m

A set of angular momentum operators O, , which transform under rotations of the frame of coordinates in the same way as u -mrr times the spherical harmonics*'.

\ m transform as f ^ - Y ^ . (2.1)

has been tabulated in terms of angular momentum operators J , J J by 6) x y- z

Buckmaster '. The angular momentum operators can be obtained by the Stevens operator equivalence method in which the spherical harmonics Y, expressed in 2, 2 2L are translated into functions O, _ of J , J , J. i" r r 1, m x' y* z with due respect to the non-commutativity of the angular momentum com­ponents. It is, however, convenient to use this method only for the simplest case, Y, j - 3 , ,, where no commutation problems occur, and generate O, by successive commutations with J". This is essentially the method described by Racah '.

*' Operators with these transformation properties are per definition tensor operators.

Page 14: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

The commutator between J* * Jx - U and a Racah operator O, is according to Racah

[J". <\m] • Vl(l+1)-m(m-l) O j ^ , . (2.2)

As a starting point the operator with the maximum m-value, namely m = 1, is calculated. The operators with lower m-values then are generated by a straight-forward, but lengthy calculation using (2.2). According to the definition of the spherical harmonics (7.1) we have

^ • » M - n ' f ^ - r f c o s e j e " '

and from the associated Legendre functions Pf^cose) we have according to 81 Jahnke and Emde '

pJ(cose) = iSili- (sine)1

I 2*1!

When we introduce Cartesian coordinates, we find from these two rela­tions

It is clearly convenient to multiply by V ^prr and by the operator equivalence method, whereby 7 is replaced by J + iJ = J ; we have r x y

then in accordance with (2.1)

or

a,- kp-fim: (J*)1 (2.3) II 2 i l !

The operators O, are obtained by means of the relation

In table I the Racah operator equivalents for all 1 up to 1 » 8 are tabulated.

Page 15: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

As an example we shall explicitly perform the calculations of the Racah operator equivalents for 1=2 . From (2.3) we find

°2.2 |fg(J >

and by Hermitian conjugation we obtain from (2.4)

•6. - i f * » - » 2 2 . - 2 " y g < J > .

Using the commutator relation (2.2) we find the following operators

[J". 0 2 2 ] =V2-3 -2-1 0 2 > )

\ i • i l l fJ". <J+>2]

and with (2.4)

\ . i i i ^ ^ v ' )

With one additional commutation we obtain OQ -s, o

[J", 0 2 ) ] = f ^ 3 0 2 o

1 I i / I r , - r,- ,T+.2I ° 2 . o = v V ^ t l " * t j " ' ( J , ] ]

5 2 o = ! < 3 J ! - J ( J + l l l

3. RACAH OPERATOR EQUIVALENTS EXPANDED IN BOSE OPERATORS

In approximate calculations it is useful to expand the operator equiv­

alents O, in Bose operators.

3 . 1 . Crystal Field Calculations

In crystal field calculations it is possible to express approximately an

excitation operatur between the ground state and an excited state as a matrix

Page 16: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

element of the operator between the states times a Bose operator. In this theory it is necessary to know the matrix element of the 6, m operators between various crystal field states. These have been calculated by Bir-geneau ', and we shall refer to that article for the numerical values.

3 .2 . Spin Wave Calculations

Suppose a system with total angular momentum J has a sequence of

states beginning with the ground state as follows:

| j ) , | j - l ) , . . . . | j - n ) , . . . | - j ) angular momentum states

|0>, |1> |n>, . . . |2J+1> deviation states (3.1)

EQ < E, < . . . <En < . . . < E 2 J + , energies

Let us introduce Bose operators a( a+ as the spin deviation operators

acting on a state | p )with p deviations: annihilation operator, a |p) =Vp[p-1) and creationoperator, a |p )= Vp+1 |p+1). This i s to be compared with the action of the operators O, on the state | J-p) .

The idea of expanding an angular momentum operator in a power series of Bose operators was first used by Holstein and Primakofr' for a single angular momentum operator. This method was used by Goodings et al. ' i n finding the Bose operator expansion for a number of ft operators. Each angular momentum in the expression for O, (table 1) was replaced by its, Holstein-Primakoff-expansion, and finally all a* operators were commuted to the left of the expression (well ordering). This i s a very cumbersome method, and only a few Oj m operators were expanded. We shall use a different method which is physically cleaer and easier to perform. We ex­pand the O. formally in a well-ordered series of Bose operators and require the matrix elements between corresponding states to be identical. If we only require correct matrix elements between the ground and the first excited state, it can be shown that the result of the expansion is identical to

al.9>. the well-ordered Holstein Primakoff transformation as done by Goodings et

The well-ordered expansion of 8 , is

^ . m ' < < o + * m . 1 « * * + < 2 » + " + " + • • •>a m (3-2)

Page 17: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

We find the coefficients of O, using (2.4). The coefficients are real and determined by matching the matrix el­

ements in the following way:

<J-Pl°l m l J -<P f I n >> = <P | < A m.o + A m,l a + a + A ^ 2a + a + a a > a m | P + m >

(3.3)

nence according to (7.9)

H,J"PCp l /p > ' ^ > J > ^ < o + P < , + P < P - ' > -J+p m J-p-m' * *

A m ^ - )

where we have used the standard formula for the matrix elements of the angular momentum and Bose operators. From (3.3) we find the coefficients.

* -J m J-m

^ 1 =(-D J - 1 < J | | o l | | J >{( J l J ) + « ( J l ' jj ^ m » l l t N - J m J-m'' Vm+1 N-j+l m J-1-nf J

Am2 = i 4 i J < J „ o 1 , i J > j ( J x J ) + » (J x J ) ^ n ' 2 2 X ' ^ - J m J - m ' VmTi S . J + l m J - 1 - n f

( J l J )! V (m+1)(m+2) ^-J+2 m J-2-m'

(3.4)

The reduced matrix element is

Page 18: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

and the 3j symbols can be found either in tables or by means of recursive formulae. In the latter way we find the first coefficients in (3.2)

AL = (-i)m -L,f>m> ! -pl V« l ' m ! ' 2m(l-m)! V£

where Sj = 4(27^7 = ' C J - 2 - ) t M M J - | ) - " ^ T 1 >

By means of these formulae the Racah operator equivalents are tabu­

lated for odd 1 as well as even 1 up to 1 - 8 - table 2.

It should be added that the operators O, Q> O2 0 , • . . Og„ are finite ex­pansions, whereas all other operators are infinite expansions in Bose oper­ators. In all operators only terms with up to five Bose operators are written out because of the limited validity of the spin deviation represen­tation.

4. TRANSFORMATIONS UNDER ROTATIONS OF SPHERICAL HARMONICS AND RACAH OPERATORS

We shall in this section summarize the transformation properties of the spherical harmonics and of the Racah operators under rotations. Al­though this transformation theory has been well developed (Edmonds ', R o s e , 0 \ Tinkham11', Judd12', and Rothenberg'3'), it often causes confu­sion that the term rotation in the literature sometimes refers to the physi­cal body, sometimes to the axes of the coordinate system. This point will therefore be discussed in some detail.

4 . 1 . Description of the Result of a Rotation

An arbitrary rotation of the frame of coordinates is most conveniently expressed by the three Euler angles a, B, Y. The definitions of the Euler angles are shown in fig. 4 . 1 .

Page 19: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- »5 -

Fig. A.I.

The Euler angles

1. A rotation a(0 * a * 2«) about the z-axis, bringing the frame of axes from the initial position S into the position S'. The axis of this rota­tion is commonly called the verti­cal axis.

2. A rotation p(0 * p * *) about the y-axis of the frame S', called the line of nodes. Note that its posi­tion is in general different from the initial position of the y-axis of the frame S. The resulting position of the frame of axes is symbolized by "S".

3. A rotation Y(0 * Y * 2«) about the z-axis of the frame of axes S", called the figure axis; the position of this axis depends on the previous rotations a and p. The final posi­tion of the frame is symbolized by

It should be noted that the polar coordinates • and 6 with respect to the original frame S of the z-axis in its final position are identical with the Euler angles o and p respectively.

4 .1.1. Transformation of Cartesian Coordinates

Before dealing with the general transformation theory we shall set up the much Bimpler formalism of transformation of Cartesian coordinates which may serve as a guideline for the more complex general transforma­tions.

If the coordinate system is rotated through the Euler angles a, p, Y, the Cartesian coordinates x, y, z of a point P which is stationary under the rotation will be changed to x:, y', z'. Let the two sets of Cartesian coordinates be written as column vectors r and r'

x'

y

Page 20: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 1 6 -

and let tue matrix PC, P, a) be the 3 x 3 matrix which connects them, then

£ - P r (4.1)

and

P(Y.p.a) = P .OO • Py. (p) • Pz(o)

where first P (a) performs a rotation about the original s-axis, then P-jfP) sZ -J

a rotation about the y-axis in S'ry', and finally j tiOO a rotation about the z-axis in S":z". The three rotation matrices are given by

(4.2)

r>> =

Py.(P) -

f>(Y) =

cosa

-s in a

0

cosp

0

sinp

cosY

-sinY

0

sina

coso

0

0

1

0

sinY

COBY

0

0

0

1

-sinp

a cosp

0

0

1

The resulting transformation matrix is therefore

(4.3)

W.P .e ) • (cosa cosp cosY-sina sinY) (sina cosp cosY+cosasinY)-8inpcoa (-cosa cosp sinY-sina cosY) (-sinacospsinY-)- cosacosY) sinp sin

cosa sinp sine sinp cosp

If one wants to rotate the physical body (the point P) instead of rotating the frame of coordinates, this is simply done by using the inverse rotation matrix, constructed in the following way

PCY.P.a)-' * (PZ„(Y) Py,(p) Pz(a))-' » P^af' Py,(pr' P^OO"'

-&<->£.<-« &»<-*> ?(-<•» -P. -V) (4.4)

P(Y, p, a)" is the transposed of P(Y, p. a).

Page 21: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 17 -

4.1.2. General Transformations

Conventionally, there are four equivalent ways of describing the result of a rotation depending on the choice of the object to be rotated and on the choice of the frame of reference.

Either (1) the function (the body) or (2) the axes of frame are rotated. The rotations may be performed either (a) with respect to a rotated co­ordinate system (local system) or (b) with respect to a fixed coordinate system (global system).

It should be mentioned that the rotated functions are considered to be represented in terms of basis functions set up with respect to the global system irrespective of how the rotations are performed (cases 1 a and 1 b). The various cases are described in the following, and a summary presented in fig. 4.2.

(a) Rotated Coordinate System

In fig. 4.1 the successive rotations are made about the rotated axes (local system). Starting with the x, y, z coordinate system (S) we rotate by a about the z-axis, and denote the new axes x', y*, z' (S'). Then we rotate by p about the y'-axis, and denote the resulting axes x", y", z" (S"). Finally we rotate by Y about the z"-axis, and label the final axes x'", y'", z>" (S,M). In operator form we express these rotations as

P^C) Py.(P) Pz(») •

(b) Fixed Coordinate System

The rotations can also be described with respect to a permanent set of space-fixed axes (global system). It can be shown, Tinkham ', that the same final axes x'", y"', z"' might have been obtained by carrying out the rotations in reverse order about fixed axes. That is, we might have rotated by Y about z, then by p about y, and finally by a about z again. In oper­ator form we have for these rotations which define the combined rotation operator D(o, p, Y)

D(o.p.Y) s Pz(o) Py(p) PZ(Y) . (4.5)

(1) Rotation of a Function with Respect to a Fixed (Global) Coordinate System

A finite rotation of a function with respect to a fixed coordinate system can be looked upon as a succession of infinitesimal rotations.

Page 22: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- IB -

A rotation through an angle • about a fixed i -az i s of a one-particle

wave function ?{x, y, z) can be described by

P z(?)*(x.y,z) • Y(xcose + ysine, - xsin» + ycos«, z).

In order to find the operator F z ( •) we first consider an infinitesimal

rotation d?

Pz(dT)»(x,y.»i)~J'(x»-yd». y-xde, z)

- 1 (x, y. z) * d,(y " ^ '> -* " fr? . ')

hence the infinitesimal rotation operator is

When rotating about a direction specified by u, the infinitesimal rotation

operator is

P„(°» - O - Q » f l " u)

If £ is the total angular momentum of a many-body system, then its

component along any axis u i s related to the operator of infinitesimal rota­

tion about the axis by the relation, Messiah '

Pu(d>) = 1 - d e | J . u (4.6)

Considering a finite rotation P (•) about the axis in the u-direction, and putting J • u » J ~

P„l*+ dt) = PH(dT) • P„(,) = <L - d 4 J„» PJJ(»)

which is equivalent with the equation

aP„(f)

Page 23: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 1 9 -

This equation has the following solution under the condition P (o) = 1

l'r P„(.) - e h (4.7) u

This is the rotation operator for the rotation around the axes u. From (4.7) we immediately find for the combined rotation operator D(o, p, Y)

J J J -ia-f -ip-r* -iY-£

D(o.p,Y) = Pz(o)Py(p)Pz(Y)=e h e h e h (4.8)

Now we want to find the matrices D (a, p, Y) which describe how the angular momentum eigenfunctions Y1_( % •) transform under the general rotation operator D(o, p, Y). Because of the choice of the z-axis as quanti­zation axis, J is a diagonal operator and the effect of the rotations by a and Y is easily written by using the exponential form of the rotation operator. The rotation P (p) will hare a non-diagonal representation, which is denoted

The transformed spherical harmonic function Y l m(8 l , f') (analogue to the vector r' in (4.1)) is then expressed by

1

*lnS». *') = »(«• M) "We.,) • I Y^.t«, f) DJ»m (a, P, Y) m'=-l (4.9)

The matrix elements of the rotation operator D(o, p, Y) is

Dm,,m(o,p,Y)= <ta ' |D(o .p .Y) | lm)=e- l m , »d m ) m ( -p)e- i m Y <4-,0>

where

,si4)21-2- ( 4 - n )

(the summation is over all positive • such that the factorial term? are non-negative).

For d_'. (P) we have the following symmetry relations

Page 24: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 30 -

Cm'-W 'Cn. 'W <*-,2> ni ni mm

« £ [ » < » = ( - ^ ' - " - » . . „ W (4.14)

The matrix elements D*/. (Q, p, Y) are therefore m ro

D 2 L U . M ) =e" im,'>d<'> ( p j e - ^ (4.15)

(2) Permanent Function and Rotated Axes

Consider the case where the function i s held fixed in space, and the

coordinate frame is rotated. We note that if the same rotation was applied

to both the axes and the function, the relative position would be unchanged,

which can be expressed by the relation

P a x e s f c - f ^ a c t i o n *•** " F » • " >

hence

Junction«0'?-1" • H L . f c M ) " 1 • Paxes«"*'"!»'-«>

That is , we can use the same D (a, p, Y) to represent rotation of axes by -a, -p, -Y in the reverse order to that used if the functions were being rotated.

The discussion of this section can be summarized in the following figure 4 .2 .

Page 25: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 21 -

Cos«

lo

lb

2a

2b

Rotated

function

function

axes

axes

With respect to

rotated axes

fixed axes

rotated axes

fixed axes

Operator

IVtørøftM 3(a)5(f»g(Y) 3-ta)l>.tø)l|W £tY)5t$?M

Fig. 4.2. The alternative possibilities in transformation theory-

4.1.3. Rotation of Racah Operators

The Racah operators transform per definition under the unitary trans­formation comprising the rotation with respect to a fixed frame in the same way as the spherical harmonics, and thus according to fig. 4. 2: case 1 b we have

1 = y d^m l(JT .Jy .Jz)<lm'|D(o.a.V)|lm> (4.17)

The same relation can in a short hand matrix notation be written as

Oj = Oj • D^o.p.Y) (4.18)

(The primed operators are angular momentum components in the triple-primed coordinate system, fig. 4.1).

4.2. Calculations of the Rotation Matrices dX(p)

In table 3 the d (p) matrices for all values of 1 - 1, 2 , . . . 8 are given in the form

4«m<M • C • <.in§)2 1{A0 +A,cotf+A2(co4)V . .+ A 2 1 (cot | ) 2 1 L, m

(4.19)

Page 26: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

. 22 -

where C and A_ are numerical constants. As an example of the use of table 3 the d (ft) - matrix is constructed

dj,(p) « 1 • (sinf)2 (cotf)2 •= (1 + cosp)

d]0(P> ' V5(sin§)2cotf s - ^ B i n P

d]_,(p) - I • (sinf)2 - 1 *^1 -cosp)

djjp) .- 1 • (sinf)2 [-1 + (cot f ) 2 ]= cosp

(4. 20)

The rest of the matrix is obtained using the symmetry relations (4.13) and (4.14)

1

d'(p): 0

-1

3<1 + cosp)

Y2 -T^sinp

^(1 - cos?)

^ s i n p

cosp

V2 . . -- j-sinp

5<1 - cosp)

V5 ™ B lnp

^(1 + cosp)

(4.21)

4. 3. Rotation of the Angular Momentum Vectors

As an example of the transformation of the Racah operators we shall express the relations between J' • (J , J . J ) in the rotated coordinate

— x* j r Z

system - the local coordinate system - and J = (J,, J , J.) in the stationary or global coordinate system. This transformation gives a check on the formalism as it can easily be calculated directly.

From table 1 we have

tflf °10- 51-l ] ' [J* . J y J * ]

0 1 0

or in shorthand notation

°i • i • y

[J*', . '«1 '?

(4. 22)

Page 27: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

23-

and the opposite

— -1 ~ + J = O, • U = O, • U

(4.23)

The corresponding relations of course hold for J' and 8".. The relation between Oj and O. is for a rotation through the Euler

angles a and p:

Oj • 6, • D'(O.P.O)

By use of (4.22) we find the relation between J' and J

J' • U = J • U • DVO, p. 0) or

ji = j • y • D V , p, o) • y"1

From (4.15) and (4.21) we find for D'(O, P. 0)

e-ia 1+cosp -ia flinp 2 ' If

D^a.p.O)

-io 1-coBp

sing Y2

cosp

Bio 1 -cosp io sinp ia 1 + cosP

VT

(4.24)

so the final relation between J and J' is

[ j * J y J z ] • [ J 5 . ^ . J C ]

cosa cosp - sina cosa sinp

sina cosp cosa sina sinp

-sinp Q cosp

(4. 25)

which is in accordance with the direct calculation using P(-a, -p, 0) in equation (4.4) and the result (4.16).

Page 28: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 2 4 -

4.4. K/2 - Transformation of Racah Operators

In practice it is often convenient to transform a set of operators given in an axially symmetric system with the z-axis along the symmetry axis into a coordinate system with the z'-axis in the perpendicular plane xy so that zf makes an angle wim x, and y1 is parallel to z.

The transformation relating the operators in the new (rotated) frame of reference is

Si-a-sH-i- i)- ' , (4. 26)

where

er'vAi-i v-> For 1 - 1 the expression gives

C O H . O , * 3 ! . - ! 3 - [ O J j . O ^ O j . , ]

(old) (new)

hu

-rV V

t

0

i

n

i -ia

1 -la

i -ia "7e

(4.27)

1 B • -1 In table 4 the matrices D (a. j , ^ ) are calculated for 1 - 1,2,3. . . , 8,

5. STEVEMS OPERATOR EQUIVALENTS, OJ*

The operator equivalents defined by Stevens ' are closely related to the tensor operators defined by Racah '. The Stevens operators do not have the systematic transformation properties of the tensor operators; however, they are convenient in hand calculations as a number of numerical factors are in­cluded in the definition.

The Stevens operators are in terms of the Racah operators defined as follows

Page 29: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 25 -

r 21+1 1

»F« - ^ m l P ^ i ^ - m - H r ^ J (5..)

oo(c) . i.ywL ^

OJtø = 0

where K™ are the normalizing coefficients in the tesseral harmonics. These coefficients and —— V - y j - are given in table 5 for 1 up to 8. In table 6 the

Stevens operators for all even values of 1 up to 8 are given explicitly in terms of angular momentum operators. In table 7 the same Stevens operators are expanded in Bose operators.

We shall give an example of the method of finding the Stevens operators in terms of the angular-momentum operators using tables 5 and 6:

°2<C> * ^" f n °2. o " 2 °2. o - 3 4 - J<J+' > <5- 2>

°2<C> " ^ 6 ^ S 2 , - 2 + 5 2 , 2 ) = T | ^ < 5 2 , - 2 + 5 2 . 2 , = 7(<J+)2+«J")2)

°2<"> " ^ - f i l ^ < 5 2 . - 2 - S 2 . 2 ) ' " | ^ \ . 2 - 5 2 . 2 > a - | ( < J + ) 2 - ( J " ) 2 )

5.1. Transformation of the Stevens Operators under Rotation of the Frame of Coordinates

The transformation properties of the Stevens operators are found by using their relations to the Racah operators. Table 8 gives the transforma­tions of the Stevens operators unUer the frequently occurring rotation of frame where the new z-axis is perpendicular to the old one and makes an angle a with the old x-axis. This transformation is generated by D(a,£, £)" as described In section 4.

We shall give a few examples using tables 4 and 5

Page 30: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

2 6 -

Ojtc) - operator

i o » ( c ) > - ^ ^ O g ( c ) ) - f ^ 0 ^ ( c ) or (5.3,

0°<c) - - i 0 S « c > - | 0 2 « c '

2 02(c) - operator

<32,-2+32.2' - ( ? ^ . o - f ø . ^ O ^ ) leo' ta,-l :«%.-1-\l* , taW'

^ og(c) - ( ^ i 0°<c) - ^^c))t »2« - - ^ oJ(c)2sto2o

°2<c> "* ( i ° 2 ( c ) " 7 oi<c))cos2a - 2 oJ(c) sin2a

6. CRYSTAL POTENTIAL ENERGY IN CUBIC AND HEXAGONAL SYMMETRY

An electron in a crystal is under the influence of the Burrounding electric charges constituting the so-called crystal field. The crystal field is re­stricted by the crystal symmetry and i s commonly expressed with respect to some principal or high-symmetry direction in the crystal. Using the operator equivalence method we find tor the crystal potential energy from the crystal field potential either by means of Stevens operators

Hcf- I » r ° r (6.D l ,m

or Bacah operators

*<*• l*?\m (6-2) 1, m

Page 31: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 2 7 -

The potential functions in (6.1) and (6.2) are phenomenological and quite general. The actual calculation of the parameters is very difficult, and one is forced to use simplifying models such as the effective point charge model or ligand field theory. In this section we shall tabulate the crystal potential energy for the cubic and the hexagonal symmetries in the principal direc­tions in terms of both Stevens and Racah operators, using the tables for their rotation properties.

Cubic Symmetry

In fig. 6.1 the principal directions in the cubic symmetry are shown, namely the (001 )-direction which is a 4-fold axis, the (110)-direction which is a 2-fold axis, and the (111 )-direction which is a 3-fold axis. The crystal potential energy expressed with respect to the 4-fold axis is given by Hut-dungs ' and by means of table 8 the expressions for the energy with respect to the (110)- and (111 )-directions are calculated. The expressions are given in tables 9 and 10.

font

FiJ. i l . Th» principal dTucliow of lh> cubic lattice

Hexagonal Symmetry

The crystal potential energy is in the hexagonal symmetry expressed with respect to the principal directions (0001), (1000), and (1200), see fig. 6.2. The (0001 {-direction is a 6-fold axis, and the (1000)- and (1200)-di-rections are 2-fold axis. The expressions are given in tables 9 and 10.

Page 32: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 2 8 .

Ftg-S.1. Hm priftciprt i tmSgin «• th

7. DEFINITIONS AND RELATIONS FOR SPHEBICAL HARMONIC FWNCTIOMS AND RACAH OPERATORS

In this section we shall Bummarize the definitions and conventions for the spherical harmonics and the Racah operators.

7.1. Spherical Harmonics

The spherical harmonics are defined by Edmonds 1)

*«.«« - ^ [ ^ | ^ J / 2 l - r C ^ r " (We-(7.1)

•(-uPfHSU^J7'-?!—I.*"' where Pj(cos6) are the generalized (including negative-valnes of m)as-

eociated Legendre functions of the first kind. The spherical harmonic« satisfy the ortho-normality relation

/ d » / « « ^to<8 ' •> *i.m.t"-»>sln« 3 - hi- », mm1 (7.2)

Page 33: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

and furthermore

Yl.-m<9' , )'(- , )mVi.m<9-'> <7-3>

The product of two spherical harmonics which have the same arguments is given in terms of the 3j-symbols by

Y L m ( e ' f ) Y l m <e'f> =

h ' 2 2 (7.4)

11 Tn J L m. J l o 0 (>)1We•f,

i, m i £

By use of (7.4) and the orthogonality properties of the Sj-symbols we obtain the reverse formula

(7.5)

^"V-WiP" l C 'o DC, mJ W W ' m. m« 1 ^

7.2. Racah 'Operators

Definition of the Operators

The Racah operators are Irreducible tensor operators, which means that the set of 21+1 operators ^>lm (m = 1, 1-1, l-2r . . . . . -1) transforms under rotations of the frame of coordinates as U « m ^im'8, *)» namely

D( . .P .v)6 l m P(o.p .Y)- 1 = V tthn,Dm»m(..P.v) (7.6) mni.l

Page 34: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- S O -

An Equivalent Definition

Since the operators of total angular momentum of the system are mul­tiples of the infinitesimal rotation operators, we may replace the unitary transformation on the left by a commutator, giving for any component of angular momentum J

X t v 3 ^ ] * I aL.<»»,i*.ii»> PV

In that way we find the equivalent definition of the irreducible tensor operators given by Racah ', namely the commutator relations

(7.8)

fJz- ° h » l = m 5 l m

The matrix element of a Racah operator i s given by

< j m | 5 . | j -m.> - ( - I ) J - m ( J k J ' ) <J I I S J U ' ) (7.9) * ^. -m a var

It should be noted that a tensor operator is characterized by its reduced matrix element, here ( J II < \ || J ' ) for the Racah operators.

When dealing with the Racah operators one has to distinguish between operators that commute and operators that do not commute. If the operators are acting on different parts of the system, say spin and orbit, they commute. This can also be described by saying that the operators act on part i and j in the system. If the operators are acting on the same dynamical variable, part 1 in the system, the commutator relation is not in general zero.

In magnetic systems the interactions may be expressed as tensor products of Racah operators. General expressions for tensor products of Racah operators and matrix elements of tensor products of both commuting-and non-commuting Racah operators are therefore given.

Page 35: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

3t

7.2.1. Non-commuting Racah Operators

The product of two non-commuting Racah operators O, (i) and 6, (i)

by Judd ' for tensor operators of order zero. This result is here ralized to tensor operators of order k.

Av^ J J , 5 V % W

< r | | a L » I U X J | l ^ » l | J >

\iiVU)2 ^

Using the symmetry relation for 3j-symbols, namely

1l <*2 V <>2 "Jl V

we find the commutator relation

[ 6 ^ ( 1 , . o ^ i , ] -

ki+k 2 7 TlH^^l^nl^^^H

< j | | & W l l J X J l l ^ W U J> 2 y L_^ St (i) (7.11) <*iie^«ii'> w

Page 36: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

The reduced matrix element is

wi^no-iV^S5- (7.12)

It should be pointed out that the commutator relation does not depend on the magnitude of J. This can be seen directly by using the angular momentum expressions for the O ^ operators (table 1) and the commutator relations for J^ J ^ J z .

The tensor product of two non-commuting Racah operators is defined by

(K) / „ ( k , ) ^ ( k , ) N (O O ) -

Q

(7.13)

r 1 v 2 - k i + k 2- Q „ /k i k2 K \ ~

q,»-k, q^-k j »I "a "*

and for the scalar product of two non-commuting Racah operators we have

( 3 « • o/K»)= (-1 ) K Y2RM (S<K> 5<K> ) < 0 ) (7.14)

The matrix element of the tensor product of two non-commuting Racah operators is

(K) <Jm|(S , k 1 ) 5 ( k 2 , ) | j m . )

Q

•'•" ,"nC^.)w|K,sriC?*j<' | |\»i | |'><j"3'»m«'>

Q (7.15)

Page 37: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

from which we have for the reduced matrix element

N(K)„ „ , ( k . k , K, <j||^<Wk2>) »j^M) 1 5 *^)' 2 }<J||afeW||J><*||?SkW||J>

(7.16)

7 .2 .2 . Commuting Racah Operators

As the two operators O t (i) and (V (j) commute, we immediately *!*1 *2 l2

have

t6k,q,W- ^ q ^ = ° < 7 - , 7 >

The tensor product of two commuting Racah operators is defined by

k, k,

I I V l q2="k2

(7.18)

and for the scalar product of two commuting Racah operators we have

( o f • 3 W ) • (-1 ) K 15<K> S<K> I ( 0 > (7.1 9)

The matrix element of the tensor product of two commuting Racah operators i s

<JlJ2Jm|J5^>0<k2>j(K)|i.j.J.m>

H)J-m( )V(2j+i)(2JM-i)<2K+j)k v2 *tø,||«L nm\) ^\Pk.om> -m Q m ' l

k i k j K

H ) J - m ( J K J ' ) <i,j2J || {5<ki >3<k2> | ( K , | | n t y > <7-2")

Page 38: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

So the reduced matrix element i s

uvii^'a^iiw') (7.2!)

, , c »1 h J , = V(3J+1)(2J'+1)(2K+1) J jj j'3 J'j<j,1|OtI0)l|ji><j2l|O^U)l|J ,

2>

7. 3. 3j- and 6j-Symbols

The 3]- and 6j-symbols occur in many of the preceding expressions.

Rothenberg et al. , whose definition is equivalent to that of Edmonds '. Their definitions and symmetry properties are therefore given following

13) henberg et al. ', whose defil

The 3j-symbol is defined as

' ) - ( - i / 1 v m, m_ m,' " I "*2 *"3

' 0l+3^3>!«l-J2+J3>!<Jl+J2+J3>,-0l+m1 )!0|^°l )!02Hn2>:02-m2»!03+m3>!(J8-ln3»!

a, + i,+ i,+ m

* 1 «(Jj+Jj-Jj-k)! 0,-«,-*)! U24^2-k)! (ij-lj+n^+kjl Uri,-m2+k)! k

(7.22)

Under an even permutation of the columns the symmetry properties of the 3j-symbols are given by

rh h h\ fh h H\fh h i j \ ( 7 2 3 )

S m2 H K m2 "»3 »S S "l "5

and under an odd permutation by

Page 39: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 35 -

V , m2 m^ ^m2 m, m£ ^m, m3 m^ Sn3 m2 m^'

(7.24)

When changing the signs of the m's we have

A h h\ = H ) W i 3 (h h h\ (725)

The 3j-symbol automatically equals zero unless both m. + m2 + m~ - 0 and j , . j 2 > and j 3 satisfy the triangle conditions

h + h-h ' °' h-h+h' °> ">i + ^ + i3 ? « <7-26>

Besides the sum jj + j , + iq must be an integer. The 6j-symbol is defined as

Y ( - i ) k a ,+ i 2 +i 1+ i 2

+ ' - k ) ! ^ kMj1+j^3^)!(lI%J3^!U,+l2V)!(l1+J2434)!(-j,4,+J3+k)!(.J2-l2+J3+l3+kJ!

where r i + h v /-_ M-MI i-e+ht-^v ~\ ' ' 2 ! A/ K-i - T (a-t-b-c): (a-b+c)! (-a+b+c): 1 * ( a b c> = L (a+b+c*1)\ L J (7.27)

The 6j-symbol stands invariant under interchange of columns. It is also invariant at interchange of any two numbers in the bottom row with the corresponding two numbers in the top row. The 6j-symbol is automatically zero unless each of the four triads (Jj, j 2 , J3). (lj, 12. J3). Oj. *2« V« a n d

(If, J2, 13) satisfy the triangle conditions (7.26). The elements of each triad also must sum to an integer. The four triangle conditions for the non-vanishing of the 6j-symbol might be given in a diagram form easier to remember

Page 40: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 86-

{'/Sl\: I " j ; £y.b 1X4 «•• • •

In tables 11 and 12 the 3]- and 6j-symbols are calculated by means of the Borroughs 6700 computer for all integers up to 6. A more extensive table including all integers and half-integers up to 8 bas been given by Rothenberg et aL'3'.

Page 41: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 37 -

REFERENCES

1) A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press , Princeton, 1957). 146 pp.

2) K. W. H. Stevens, Proc. Phys. Soc. A65 (1 952) 209-21 5.

3) T. Holstein and H. Primakoff, Phys. Rev. 58(1940)1098-1113.

4) G. T. Trammell, J. Appl. Phys. 31_ (1 960) 362S-363S.

G. T. TrammeU. Phys. Rev. 131^(1963) 932-948.

B. Grover, Phys. Rev. A140 (1 965) 1 944-1 951.

5) R. J. Birgeneau, Can. J. Phys. 45_ (1 967) 3761 -3771.

6) H. A. Buckmaster, Can. J. Phys. 40 (1 962) 1670-1676.

7) G. Racah, Phys. Rev. 6£ (1 942) 438-462.

8) E. Jahnke and F. Emde, Tables of Functions with Formulae and

Curves (Dover, New York, 1945). 380 pp.

9) D. A. Goodings and B. W. Southern, Can. J. Phys. 49 (1 971) 11 37-1161.

10) M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New

York, 1 957). 248 pp.

11) M. Tinkham, Group Theory and Quantum Mechanics (Mc-Graw-Hill,

New York, 1964). 340 pp.

12) B. R. Judd, Operator Techniques in Atomic Spectroscopy (Mc-Graw-

Hill, New York, 1 963). 242 pp.

13) M. Rothenberg, R. Bivins, N. Metropolis and J. K. Wooten, The 3-j

and 6-j-symbols (Massachusetts Institute of Technology, Cambridge,

Mass . , 1 959). 498 pp.

14) A. Messiah, Quantum Mechanics 2 (North Holland Publishing Co.

Amsterdam, 1962).

15) M. T. Hutchings, Sol. State Phys. 1_6 (1 964) 227-273.

Page 42: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish
Page 43: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 39 -

Table 1

Racah operator equivalents X = J(J + 1)

°4 0 = {f[35 J^- 130X- Z5l J^+3X2- 6xJ

54,±i • ; H ( r e T [ i , J ' - l 3 x * " JI

; j * * ^'• — •\

°4.t2 - Ull^'l-X-S*'*? r |J*)J,—ij

5«... •»fftiC'.f*)' • n*>''J

54,t4 -iRIr«1'4

Page 44: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

0 6 0 « Tffl231 Jl ~ l 3 1 5 X - 73»}j4 + (105X 2 - 525X+ 294 !J2 - 3 X 3 + 40X 2 - 6 0 x 1

°» I I " ' ' / r a J l l ' 3 3 J i - ( 3 » X - 1 5 ( J 3 + (5X2 - 1»X + U H / j * + J - v ! - - ) ]

\ ± 1 'fimCTl 3 3 J * - d » X + I 2 3 ) j 2 t X 2 4 1 0 X * 103!(J+)2 * M*" I* • - - -} J

5 7 0 = ^ 1 429 J^- 1693 X - 231 Olj* + J 3 I 3 X 2 - 2205 X - 2121 f J^ - .35 X3 - 385 X2 + 882 X - I80}j a j

*V+1 B *1WTZB? p ] 7 1 6 J 8 - ( 1 9 8 0 X - 2310)J4 + (54flXa- I8O0X+ 2I84)J2-(20 X 3 -130X 2 +270 X + 2 2 5 } / +• J* i

S 7 ±2 " / A i j j 1 4 3 J ! - < n ° X + 8 2 5 ) J 3 + t ' 5 X 2 + I 7 0 X * 2092U2I(J*)2 + ( J* ) ! ! • • • ! ]

°7 ±3 " * •'ITS! 2 " [ t 2 M J * - < 1 3 2 X * 2992)J2 + 6 X2 * 222 X + 54811 | J + ) 3 + <J*)3 " . . . > J

%ti •^in2-[l'3J'-(3x+133)J,l(J*)4 * w+i4 I---']

\±. - ' l & i D ' " ! - * - 1 4 1 ^ ) 5 • (,*)5 •;•••;]

°a o " T J I I M ' 5 J S " ' , 2 " 1 2 X " 5 4 I > S 4 ' J ' + ' ' 6 9 , ( , X 2 " 6 4 , 8 I , X + 9 3 5 5 5 ' 4 "

9 260 X3 - 18270 X2 + 58388 X - 21390} J 2 + 35 X4 - 709 X3 1- 3780 X2 - 5040 X I

° 8 , ± l " * T 3 J I B " 2 " I ' " 5 J B " ( " " " X-2002)J^+(385X2-1925X+2695)J3 -(35X3-3l5 X2+854 X+STaU^O*) + ( J * ) \ " -

°S,±2 ' I ^ T O j l ll43j5-(143X+H44W*t(S3X2+407X+595)Wf -B3+l3X2*372Xt4B06))(J*) i l + (J*)2 ) • • • ) ]

°8,±S " : f | f f i i L l 3 8 J ! - < 2 8 X + M 3 ' J ' t (3XStl28X+3648Mz:(J*)3 + <J*)3(---lJ

°8,±4 * | / S i | * " J * - ( 2 8 X ' ' T3'3M2* X2+ 86X+4284!(J*)4 + (J*)4 l"-lJ

\ ± . -^æi i i^f - ix^ 3 ^)«^ • w*)5i--}j 58,t. •|Ki[ii5a*-x-"3>B*)« + (j*)8|-)J

5.,±, • *flBHv>»' *(^)''J

Page 45: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

T»bla 2

Btcah operator »quivalente expanded in Bone opa-rntora

0 = 1 oo

V ^f1-^"* Sj •*•*«••:•]

vti[~gfr.|=.5|i*-.-.]

Vq-^.'.^.v ]

, i

Page 46: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

Pi

V -i i5«r5—.....

°«= -

V |B5 i—....

V- ies^

V -

Page 47: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

4 3 •

V «i [i - i* • ' • • I* •*•*—...]

V ^ p s s ^ — . . . .

V -

v- -V -

^

Page 48: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

Table X The Rotation Matrktt df(f)

I « 1

RI M

1 1 1 o

1 - 1

• 0

p

1*0000 i . t i a z i.oooo

1*0000

HI 01 Ht 11 HI «

ft ft 1 0 1 0 1 ft »

- 1 - ft »

Vf_

HI

• f 1 ? 1

1 1 1

0

*_ H

1 .; . *_

r-

1*0000 >*O0AO 2**4*5 2.0000 1.0000

1.0000 1.2247 l.Oftno

(•0000

-Ht 01 Ht 1 | Ht SI Ht 31 Ht 41

o o - i i i

1 0 -« 9 1

I - J

• 1 H

!

ii

N ! - ? a o

r

1*0000 i > « m 3.0730 4.4721 3.0710 2*4499 1*0000

1*0000 1*5011 * * i 2 s r 1*5011 l.OOOfl

1IOODO i . i 5 « r

I t0000

l * 9 4 »

HI 01 HI 11 HI 21 H| 3} H| « ) A| 51 HI é]

0 0 0 * 0 1 1 0 0 0 4 6 1 1 o o o o i o o 0 0 0 I 0 ft 1 0 0 1 1 « 0 0 0 1 0 1 0 ft 0 1 0 ° II « 0 ft

0 0 0 0 - 5 0 1 0 0 0 - 4 0 3 0 0 0 - 3 0 3 O S 0 - 2 0 4 0 0 0

• 1 0 5 0 0 0 0

0 0 0 0 • • 0 1 0 3 0 - 0 0 1 0 1 0 - 1 0 * 0 0

- I 0 * 0 -"» 0 1

I' 1

H] H

* 4 « 3 4 2 4 1 * • * -1 * -a * -3

i J . 3 2 a i I « 1 • ! J -2

. 1 -3

3 . 2 2 1 t a • - l • - 2

1 I 1 ft 1 - 1

0 0

p

1*0000 2.0214 5.2*15 7 .4*31 » . a i t * Fi4*33 5.2*15 2(0214

1*0000 1.0700

2**500 •%*«» i . o r o * 1.0000

1*0000 1*4142 1.5*11 1*4142 1*0*00

1.0000 l . U M 1*0000

I.OOOO

Ht ot *t 11 HI 21 HI

0 0 0 0 0 0 0 0 1

0 0

« 0 0 0

- 1 0 0 0 0 1-

0

- 1

1

0 0 0 0 0 0 0 « 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 ft - 1 t ft o' r

0 0 0 0 0 * 3 0 V -12

o - i n * 0 0 15

0 -10

_ 31 HI 41 HI 51 HI 01 Nt f l HI ft!

0 - 5 0 1 0 0

-0 5 0 0 0 0

0 1 * 0 - 1 3 0 1 10 0 - 1 5 0 J 0

"15 0 10 ft 0 0 0 15 0 0 0 ft

0 10 0 - I S 0 1 3 * * - 0 * 0 * *

0 - > * '0 10 0 0

. 0 1 * • - U 0 1

Page 49: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

M

1 " ••

i i • S

i i : i . 3

ii l 3

ii :.: 0 Q

t.ro-t?

1».*9I«

I * . M H

o . r o «

».?«?*

«.*«'.•• 3.*ftil 2.HM 1.0'j'in

2.1602 t.3M* X.\tnf 1.63H

1.0DO«

I . M I I t . l?» .

I.0*00

L O M *

l.vnnn

U ,1 . . 11 -1 / I - l ,1 Hl . , HI bl »1 1) Ml M H( .1 Hl Ml •.[101

i l i ! i i i i ! i i ' ! ! ! ! ! ! ! ! ! ! ! : i : : • i -° "i 1 i i : £ : r. .; -. ; i s s J ; i .; - ? s ; : : s : . ; • • : : : : : : : : ; :

1 • i: s i 'S 2 -l "s S s ;: :; ; •; -,: - 3 , ! ' : : : : i' i -,'•: •'.'. =.; 'i a s s s s

i • . , ; H "» ••.;* •» i ; • .; •; ,; \ -.i -s , ; ' : : : :

, , n . - •» o »o o • » o i

; \ .,: -». 4 ••: ... -^ .: i :

« .

i

I : i -

• * • i

: ! • •

1 J

; ; • • i - i 1 • ! I - I 1 i 1 1 1 1

5 :j l l » •>

1 - 1

a o

l.oono i . * t» i a.lata

30.3»?« JH.lt?-* >?.?*) I t |f>.*3»<

».•Sti

1.0000 r».JM? ».»11'

i . iarn i .«?t-t . M i r ».Ml?

itOont [ . M i r ?.Tl*t

•».ri«* • ••»47 1.10W

1,0011

i!«!*«)

.>..>•»( i .atr« l *» f t l l>t»D«

l.POau I • » • » I . ) »M I.1M«*

I . O T ,

i.ao-'if

1.4WI>

"l •' "' "

i i 1 i

i i ; s 3 I i i 0 0

i i •1 0

; s 1 0

, i I 0 •1 f> 1 •<

-J t

•i o ,•> 0 • 0

•; i J i>

-1 0

l *1

\

i it

i)

<>

: « • 1 0 o

rr

0 I

U

•å • r i

o 11

»1 ,1

I i i : ; 0 6

0

0 1

:

4 :

•ro

« • • o

o

» 0

'! « *t> 0

"* •' s

l

I S

i -1

.: i) n 0 o

i l

i -.s • » 1

•isa

ro

• - I M

,.! I M

•> -«•

HI bl

i

i

i ** !

D

0 0

,;

1 i

-: •• • -112 S

0 • m

• "! "» -wo 0

f l »1

i „

4 3 7

i 0 0

2ft 0

-Jft

» ••• ,.;

o -101

• 1«

-w« o

at

•«'.

- « o 1)

» 0

«l ri

0

: i

l ..

o

» -,',

i 0

••: - . 0

o

» 0

0 f i t

0

""3 8

no 0

A, „ .

S

i i i s j "i

0 n

0

*5 0

-', 11

1 IOH

,; • » • 0

100 o

•120

>: 210

U - l »

l V)

0

1 0

-.:

|

u

0 •ti

0 10 0

i 0

-: :o o o 0

0 - r j

o

t 0

- * i fi

5

1 11

•20

« 6 o 1)

i -ar

,o 0 n o o

- i ? o

i i

•*•»

* m

U l | l "

0

9 0 1) 0 l>

Q

a

0

a

0 a a

a

A

0 ] a a a 0 3

a

a 9 9 a 0

, « •) c

* '

1 ! a

!

j

j

i a

i t

« a

i

Page 50: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

1.0000 1.7*17 9 . 9 » 4

i v . o r w 31.63M

S*.7996 SO.5833 54.7196

31.6316

_ i.oru 9 . M M 1.7417 1.0000 1.0DOU £.5495 1.0940 1 . W B

11.95*3 : i . 6 « a i s . 6%ro

I.6»*>1» 11.9503 A.05S9 5*0990 2.MOS i.oooo

1.000B 2.0000 1.3166 4.6904 5.7*06 6.141? 5 . 7 M » 4.690« J . I I 66 z.ouov I.cono

t . i U I rf.345? Z.872J i.oroa 2 (n77] ?iJ*9? 1.6301 1,0010

1 .t>000 I .4142 i .n?i 1.B51* »•UH. !*«!•{ I.0000

1.0000 <*22«r 1.1001 i>»or 1.00« 1.0000 1.0090 1.0000

l[ 01 H[ 11 H[ 21 Hl 3] Hl «] H[ M M[ 61 Hl 71 ril 61 Hl 91 HllOl H| 111 rt[»] HH3 l H l | | l

Page 51: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

•1 H( 51 Hi bl M[ fi H[ m Kl < I H I l H K l l j l H[1J] Kl 1*1 Xl lb] HU«

i.ooto 4,0000 lO.*S« ?3.6643, 42.661S ftt.ofoa »4.407* Ib«. »79 IIJ.4*6(1 10«.957* fL».4»74

10. »S« 4.0000 i.QOno

l.OOOU 2.7JH* *.«1«1 10.461*

31.1719

26.361S ».73«$ F7.37I* 16.9277 10.664* S.»1*1 2.73H* l.ØODO

1.0000 Z.1602 i.avi« 4.0332 S.1690 «.761«

10.35*! * . 7 M 9 O.UOtl * .0JJi l . B M * 2.1AOJ

1.0000 i.aoi>e

1.7015 4.51*6 4.79.0 4.M9« 3.70IJ ?t'»2fi i.oo?e 1.001*0

I .OOOu l .5*»2 *,t>*Tt 2 . 9 o ' l

S . M f l 2.0*74 1.9*92 t.noog

l . o o o j 1.3**0 l . M " 3

i.rm 1.61«) 1.39*0 1.0010 1.0000 I i l 9 » 1.2*77 1 .1 *V i.nooo I.0060 i.oaor i.ouno

o -ooo o * * *

D -4»2 0 1650 -2*3 O 1260 0 •

0 *•? 0 -176* 960 C "1*6* 0

0 -12*0 • 1764 -900 0 HO* 0 '

0 1090 0 -1090

0 -151? 0 3190 • I « 0 2646 0 '

0 1**0 0 -3136 12*0 O -2*«0 0

0 -2400 C 3190

O - « • » O 4410 - I960 O >*?• 0 '

O 2MO O -4411)

402 0

0 -2400 0 •2*40 0 Oi't'O

0 i960 0 E6(* D '»al

0 -IS12 0

0 -2940 0

-J

Page 52: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

. 4 8 -

Tablet The rotation-matrices

£r«,t,tr

*.* f

£f<4,9)"

-W" - • i ~ %JT

ix" -w

-it*' -it*

0

-if

w

0 1

0

-fi* if

0

it" ir-

fx-"" T-t

- f l -

Jf<*,S,?f •u1* f x "

i f x « - fx* i f « * fx* * 1 «

-ifx* *x°*

i l t1" 0

&" - t i " 4*"

-fx" fx-

- * x *

Ix" #• V

;&*

-4 0

-4 0

A 0

-*§£" -fx« -**" -fr« ^

-fx" i f f

-ifx~ - fc -i f * -

0

* -ur

- i f**

"IF 1

-£x~« xf*«

+x

* " -Ik** fc*

i*f-.«r £ i *

i f / * -fx* -if**

fcx* i f t * - V

- i f /" ***

f-i" <i<" -» / •

-;£x" 0

- i f x -

f/" i K - f i *

£x* i f - i " - f T ifx* - * • / "

- i f i -• ^

- i f f * * "

fx-i£x" fx*

i f 0

' K 4<* i V - V

« 0

f 0

* 0

f 0

% •

f x -- i * x ~

|x- -- i f

•fl

-ifx-- f t*

- i f /* -fx"«

£/-"< - i fx« -±r" -ifi-M

.f<m if/** - f i -if/"'* fx~

f i * - i * i J "

-f/" i f x *

0

if/** f x *

" i i x * -fx~

i^ -*f/~ - f i * 'fr* f<* - 4 * -fr* i f i * £ i *

Page 53: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

^w.

iW«-1

'iilt -§t

• < &

ft ift

-ft -iW f t

i$r -ft -^t

* * -it' - # * -ft

iV-0

ift -fx* *ft *t

i i t

iW -ft ^ t

i f / -f t

•ifr

• * t

, # i * ;#«~

«V -r -4*--K* -#<*

• 0

*?t i t

-4t 4t

ift

^s -& & .f/ ** -®/1 «*

- ^

- f < * * - f

i f 0

0

0

0

•;f 0 3(T

' i r

« * " %t

* f i " fc*

<K fx*

- - •+*•"

^ * - . f i "

««--#;*

« f " ?x*

-*£i* f f

4/« 0

*fc" -fx~ « # " -£x~

&

$ t

* " - J M *

* * " # * -l^,-» «* * f i 3 '

iT-o«

«*W" »#x~

< 3 J t

<fi* * i "

S 2 *

- f i " «S^

0 • iST-M

f i * •Jff-*

•Hi**

^ ^

• ^ - f i * i f i" f t

•Gt -ft ^f & • <ét

• w* nz

-*wt "*£** g t fx*

i f t t § r

iff i * l g « l é4-* ~ 31*

ffi"-ff

f/* o ;f^ -if/" -f/• fx*

ft-ft i&t-i&t =it %t

$t-i<%t åt f i " f/H<kt

-ft lxw

1 -#'*

37X

- f i

- W 0 *32X

f/" o

it -ft iirt ft

0

<fx- -i f x * ifx11 -^x~-fx « S.-4* -£/•

4t

i t

ft 'Tf JL

-^t

31

0

• r -K 'IS*

tf* ,-*• & * «,-<*<

« M * - ;fi*-

o

fx-

^

«J -ja* X '

•x—-i^i

I? • fx * -fx*

1 ^ "i

32X

0 Ii¥,-iK 32X

I?* •fe-"*

I •|E7i*<

__X

Page 54: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

i i i«, », %, t, t < < £ -i % v £

?„ t , &* ? s ?„ fc« .?« .4« i , ?v ? s ?., ?«t '. I§ ||N f £ tfi -fe t* • fet 4 $ $ M I I •*' •? ^ •? T 1 M J< ? * » * * * V

T T r r "r •? T r \ , \ -^ \ V *•» ^ 3 V V ^ V ^ ^ 3M

/ S, il JL L ^ s' £ K *H ^ 4U 4, i ,

^ K h K K & K» £ *« i, K £ £ £

•i *, i, •<, vv*» ' £ £ £ K £ *, £

£ ** K 4, 3« *, £ K. £ U £ V*. £ *C

„ £ 4, 4,£ £ 4, £ £ sL £X, 4, 3S £

Page 55: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

i . % %\%t S % M* *•» K % i 1. *, 1 • *• 9 d * i» ?' * ? * ? å" * x" ¥ å" ¥

* % 4 L * • ? ?r $ * s * *r ? 1 a

i i i % i ?«t i s, i i *„ i £ t, i i

&#&$*? <$$# ° M élH\?m^ l i é ° Ste^f f ^^ fe - f #i$lf§ °l§ll$ • t i a a a * S 3 $ -T * •* •* * -? * I^^l8$l||$^||il£|9 xg ° «ISlSlsllll^l|||il5^S

• j * *;» y -f J* ' 'V * " ' J* i

tyi °$*o®? ° fel* ° * °i l* ° f r o * «?|i * , * , V -C *v ^ ^ <, ^ ^, S .\, JL * , *«, ^

w ^ f e i ^ f e ° ^^i|iii^|sé#^ ^ *C _ "C *, »I % *» *s ^ K K K C ' K K n* ° m ®é t $ "W ifjs & f ° i| i ?.. ^ v * X 3i v ^ ^ ^ ^ i ^ *« *C *.

«L, ,«C >u *C "C ^»«-. C- *!*,*, <C«C'CiC*.. * * * * * * S S * 3 £ 3 * S 3C

Page 56: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

TTST

Table 5

Coefficients relating Stevens operators to Racah operators

6

6

6

6

e

6

6

8

a

e

8

6

8

8

S

J-.

m

0

I

2

3

4

5

8

0

1

2

3

4

5

8

7

0

1

2

3

4

S

6

7

-1-

«T

i fir 1 ,j27f

1 12730

1 .'2730 3 I | n

3 Æ

3 12002 52 | T -

] /60D6

1 ,(15 33 f T

1 ffoF 3 3 5 1 ~

3 (76

3 (35 TZBPT

3 ,(35 355 pi"

3 /770 T J l f T

3 iPTplO

21 !7iT

JSB" fir s AT ST,'—

T3gy~3

1 118.935

3 (T309 TSli r 3 117.0(7 W / ~ ! —

1 114.588 TS»/—ir-3 112.155

1 lh3.t5!

/ I 1

Kf

18

8

32 "5TTT

18 75TTF

18 377

16 37T5T

32 7TOI

IS

128

32 715

64 73T

128 TIT

84

32 TTOBI

32 7V13S

128

32 T G4 j

37TO| 32 i

JTTSJ; 84 I

5777!

•JYToTJf

84 7T5F

32 8T7TS1

138 1 17713)

i

l

1

l

2

2

2

3

3

3

5

5

5

5

5

5

m

0

1

0

1

2

0

1

2

3

0

1

2

3

4

0

1

2

3

4

5

K? T

'é iff US i./iT 3 |—

1,/TT

1</7 T j l t

1'J« 3 1 —

1;|T05 4" I T

1l(70

H I f I f 3'E» 3 f T

* 3 #

1 T3

rrr -

1 i(l85

if 1155

1 ifTTO 3SJ-S-

3 -/S85 TBI n 3 l / l M

m * 1

1

1

2

1 73

2 73

2

4

2 7T5

4

8

4 7T5

4

4 TT07

8 735"

8

8

4 TTBT

16 7W

8 37ST

16

3rn

Page 57: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

mm

5t»v»PB operator enuivfclanta

X . J(J . l j

<£(c>. 2 B M . J ^ - x

ojlcl- 8 »,,„ • ! 5 J * - t 3 0 x - 2 5 l j f . » 3I2-<I

o j c j . ^ f l ^ + ' y , ) - i [ ( 7 » i - I - 5 } [ ( j V . U - ) ! ] . [ o V . O - ) s ] t - ) ]

•tf"- (= yf <%-* * V > - C«*1" ' "">'']

Og(c)= 16 06 0 = 231 J* - {315 X -735 }J* + {105 X2 -525 X + 29*1 J 2 -5 x3 v *to x2 - 60 x

> | ( c ) y J | i ( » j ^ » S ( i 2) = $_! 331^ - (18 X . 123) J^ * X2 +10 X +102 l [ (J*)2-«")" ] . [ (J*)2 .U")2j (— > I

"J'"'- -ff <*(,.+ * V " if1 lul - * -* (>••'>*' "'>"} ' W^ ' ( J " ) * ] f — ']

•!<.)-J 4 ^ * V -i[«*>'*«-»6]

jg(c). 126 8^, . «35J* - (12M2 X -5405*) j | « (6930 X2 -64680 X . « 555) J*

+ {-1260 X3 +18270 X2 -59368 X * 21 39o) J2

+35 X4 -700 x3 +3780 X2 -5CW0 X

of <c>. - j S ^ i ( ^ _ z + ffBa) . ^ { U y ' - f U } X + 1 1 « J* • (33 X2 +M>? X +5S51) j j

- (X3 +13 X2 »372 I « W06I [ u * l 2 » <J-)2] • [ (J*)2 - ( J - ) 2 I t — l ]

O j M - - ^ f T ( O ^ j , * 3^ u ) ' . j [ t ø l * - (26 X .13131 jf. + I 2 +«X » « * ) [ tJ*)*»W)*J + [ (»* )* .0 - )* ] ( • • • ) ]

* " - 3 » , * <»>.-. * v -ir"*'8*«-'8]

Page 58: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

54

8 4 I T W tewatar ••alT»l««ti u m i l d t» 1»— m u t i n

S„" J " - jXJ-1) . . . (J-^i )

<?(.=>- « - sst [ i- jB .*. • ^ .V-» ». j

# 0 - ia ~cfc . ua s, j i . 2 . * . . ^ . v - • - |

oJ(„). ...

Page 59: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 55 -

Traaaforaatioa af Stnaaa eparatot* aa tttatiaa of tb* t-axia

Into tao paipaaaltular IbH xy aø taat s ' « M aa *iajl» a

vita i t and j ' eaiaaiaaB with a.

ogto) — . . " i ^ W -|<|(0)

0§(o) —a- r | v j ( c ) - } t | l c ) " ] «oa3«-2o£<c>.i.aa.

oj(c) —a- [ - J o J < c ) - I ^ ( o ) . J o J ( , ] J c ™ s . ^ i o J ( c ) . | d J ( « ) J « n 2 .

oJ(c) «- r | o J (S) - | o J ( £ ) " | . i i . 3« . f - J o J ( S ) .J-C^ (S) 1 .o« 3a

o{(c) »- (^ Oj(c) - I cj(c> . I oj(o)1 oaa fa - pJCc) - oJ(c)l ali 4a

0j(.) — - l | «J<a)-^ •!<.!-g 0jw-^0«(.>

<£(«> — - [-go|ca>,|<£B> » j | c | (s)] .i.3« • [ § I | ( B ) - J | O | ( S ) - J 4 < 3 ! ] 00.3a

0*<c> — [ - ^ 0 | ( . ) - ^ ( | ( c ) . g 0»{o> - g ogCo>] o* . U t [ | 0><o> , I Ofte) - 1 | o | ( d ] a i . » a

".<•' -*• [ i * • > - S °o(e> * IS* «4 W - ST «J<«>]— 6« -j? <•<«> - i »»<«' • i <$•>] — ««

c|(., - ^ 1gc8<a,.^«i(o,.^oJ<.,.iga|,o).^c| (. )

<.<•> -*• [ -m * • > - 1 *•> - s «.<•> * S * « ' } - » + [ s #•> * i? *«> * T £ °O<C> * # •> ] •"*•

«.<•> — [ ^.*•»*if^<•»-^•«»*S4(e'*li4•»]~ ,H^^(° ,'fS°•<*)*S0i'''>-SD.(•>]•to,'•

og<.) — - [ - & < $ < « > • § <£<'> - i «S<«> • j j j » { < • ) } " «»+[>i »J«.) . g oJ(«) - * g o|(.) . g <gto)]tf. 6«

Page 60: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

5».

c -S

Si tf

I

§

i

1 ?3 C J

# l _ l

*CQ-

+ -3-

é 10

+

+

«*

«r T s

• »

f £ &

i

fe*

=*

+

c?

Sk

+

*?

ty

=?

1 1 3 å

So*

I hf +

•I i

as & < + 2 u-t? §

i* «** • i

3 S fcr "BS-

i? +

al«

•or +

t f +

»I« •

8

¥

Tb"

+

i

Page 61: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

Table 1C Crystal potential entrgy expressed in Aacah operators

Symmetry

Cubic

Hexagonal

Direction

5,

S

£

(0001)

(1000)

(1200)

Form of crystal potential energy

Page 62: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 5 8 -

7bble 11. 3J - symbols

| J, J* J> \ \mtmtms J

S, A J,

0 0

1 1 1 1 1 1

1 1 1 1 I 1 1 1 1 t 1 1

2 t 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 I

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0

0 0 0

I 1 1 1 1 1

1 1 1 1 1 1 1 1

> 0 0 0 0 0

> 1 t 1 1 1 1 1 1 1 1 1

m, m*ms

0

1 0

• 1

1 1 0 0

" I - I

2 1 1 0 0 0

- 1 - 1 - 2

2 1 0

- I - 2

2 2 1 1 t 0 0

- 1 - 1 • 1 - 2 • 2

0

- 1 0 1

- I 0

- 1 1 0 t

- 1 - 1

0 - 1

0 1 0 1 1

- 2 - 1

0 1 2

• 2 - 1 • 2 - 1

0 • 1

1 0 1 2 1 2

0

0 0 0

0

«x 1

- 1 1 0

- 1 0

- I 1 0

- 1 1 0 1

0 0 0 0 0

0 - I

1 0

- 1 1

- 1 1 0

- 1 1 0

1,00000

0.57735 -0.57735

0.57715

0.40825 • -0.40825 • -0.40825 *

0.40825 • 0.«0«25 •

-0.»0(125 •

0.44721 -0.31623 -0.31623

0.1*237 0.36515 0.18257

-0.31623 -0.31623

0.44721

0.4*721 -0.44721

0.44721 -0.44721

0.44721

0.36515 • •0.25620 • -0.25820 • -0.1*257 •

0.31623 • 0.31623 •

•0.31623 • -0.31623 •

0.16257 * 0.25820 • 0.25520 •

•0.36515 •

J, ÅJy

2 2 2 2 2 2 2 2 2 2 2

- 2 2 2 2 2 2 2

; 2

i

3 3 3

' 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 i

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

//>»/74/77j

2 -2 2 -1 2 0 1 -2 1 -1 1 0 1 1 0 -2 0 -1 0 0 0 1 0 2

-1 • ! -1 0 •1 1 -1 2 -2 0 -2 1 -2 2

3 -2 2 -2 2 -1 1 -2 1 -1 1 0 0 -1 0 0 0 1

-1 0 -1 1 -1 2 -2 1 -2 2 •3 2

3 -2 3 -1 2 -2 2 -1 2 0 I -2 1 -1 t 0

0 • 1 - 2

1 0

- 1 - 2

2 1 0

• 1 - 2

2 1 0

- I 2

1 0

- I 0

- 1 1 0

- 1 1 0

- I 1 0

- 1 I 0 1

- 1 - 2

0 - 1 - 2

1 0

• 1

0.21905 -0.29277 0.23905

-0.29277 0.11952 0.1195?

-0.29277 0.23905 0.11952

-0.23905 0.11952 0.23905

-0.29277 0.11952 0.11952

-0.29277 0.23905

-0.29277 0.23905

0.37796 •0.21622 -0.30661 0.09759 0.27603 0.23905

-0.16903 "0.29277 -0.16903

0.23905 0.27603 0.09759

•0.30661 -0.21622 0.37796

0.26726 * •0.26726 • •0.26726 • -0.00000 • 0.26726 * 0.20702 • 0.1*903 *

•0.16903 •

Page 63: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

T I

3 3

3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3' 3 3 1 3 3 3 3

» 3

2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Å 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

/Tfy/7fc/7Jj

1 0 0 0 0

- 1 • l - 1 - 1 - 2 • 2 - 2 - 3 • 3

3 2 1 0

- 1 - 2 - 3

3 3 2 2 2 1 1 1 0 0

• l - 1 * 1 - 2 - 2 • 2 - 3 - 3

3 3 3 2 2 2 2 1 1 1 1 1 0 0 0

1 - 2 - 1

1 2

- 1 0 1 2 0 1 2 1 2

• 3 - 2 - 1

0 1 2 3

• 3 - 2 - 3 - 2 - 1 - 2 - 1

0 • 1

1 0 1 2 1 2 3 2 3

- 3 - 2 • 1 • 3 • 2 - 1

0 • 3 - 2 • J

0 1

• 2 - 1

0

- 2 2 1

- 1 - 2

2 1 0

- 1 2 1 0 2 1

0 0 0 0 0 0 0

0 - 1

1 0

- 1 1 0

• 1 l

- 1 1 0

- I 1 0

"1 1 0

0 • 1 - 2

1 0

- I - 2

2 1 0

• 1 • 2

2 1 0

•O.2O702 -0.11952 •0.23905 0.2390« 0.11952 0.20702 0.16903

•0.16903 -0.20702 -0.26726 0.00000 0.26726 0.26726

-0.26726

0.37796 -0.37796 0.37796

-0.37796 0.37796

-0.37796 0.37796

0.32733 -0.1689a -0.1069a -0.2162? 0.2439a 0.2439« 0.10911

-0.26726 -0.26726 0.26726 0.26726

-0.10911 -0.24396 -0.24398 0.21822 0.18898 0.1889a

-0.32733

0.24398 -0.24398 0.15430

-0.2439a 0.00000 0.1889a

-0.21622 0.154)0 0.18898

-0.14639 •0.06901 0.23905

•0.21822 •0.06901 0.1951«

• • • 9

• • . * * * * * * •

* * . • * * * . * * • . * * • * * *

J.ÅÅ 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2

4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2

m, 0

- 2 - 2 - 2 - 2 - 3 - 3 - 3

3 3 3 3 2 2 2 2 2

0 0 0 0 0 0

- 1 • l • 1 - 1 - 1

- 2 - 2 - 2 - 2 - 2 - 3 - 3 - 3 - 3

4 3 3 2 2 2

/Ttiirtt

1 2

- 1 0 1 2 3 0 1 2 3 1 2 3

- 3 - 2 - 1

0 - 3 • 2 •1 0 1

- 3 • 2 - 1

0 1 2

- 3 - 2 - 1

1 2 3

- 2 - 1

0 1 2 3

-1 0 1 2 3 0 1 2 3

- 2 • 2 - 1 • 2 • 1

0

- 1 - 2

8 1 0

- 1 - 2

2 1 0

- 1 2 l 0

0 " 1 • 2 • 3

1 0

• 1

2 1 0

- 1 - 2 - 3

3 2 1

- 1 - 2 - 3

3 2 1 0

- 1 -2

3 2 1 0

- 1 3 2 1 0

- 2 - 1 - 2

0 • 1 - 2

-0.06901 -0.21822

0.23905 -0.06901 -0.14639 0.16898 0.15430

-0.21822 0.16898 0.00000

-0.2439« 0.15430

•0.24398 0.24398

0.15430 * -0.21822 • 0.21422 •

-0.15430 • -0.21822 • 0.15430 • 0.00000 *

-0.15430 * 0.21822 • 0.21822 • 0.00000 •

-0.15430 • 0.15430 * 0.00000 •

-0.21822 • -0.15430 * -0.13430 * 0.15430 •

-0.15430 • 0.15430 • 0.15430 • 0.21822 • 0.00000 •

-0.15430 • 0.15430 •

•0.00000 • -0.21822 • -0.21822 *

0.15430 * -0.00000 • -0.15430 • 0.21822 • 0.15430 •

•0.21822 * 0.21822 *

-0.15430 •

0.33333 -0.23570 -0.23570

0.15430 0.25196 0.15430

Page 64: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 6 0 •

J, ÅJ3 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2

4 3 1 4 3 1 4 3 1 4 3 I 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1 4 3 1

4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2

/Tfy/TTj/TTj

1 - 2 1 1 - 1 0 1 0 - 1 1 1 - 2 0 - 2 2 0 - 1 t 0 0 0 0 1 - 1 0 2 - 2

- 1 - 1 2 - 1 0 1 • 1 I 0 • 1 2 - 1 - 2 0 2 - 2 1 1 - 2 2 0 • 3 t 2 - 3 2 1 - 4 2 2

4 - 3 - 1 3 - 3 0 3 - 2 - 1 2 - 3 1 2 - 2 0 2 - I - l 1 - 2 1 1 - 1 0 t 0 - t 0 - 1 1 0 0 0 0 J - 1

- I 0 1 - 1 1 0 - 1 2 - 1 •2 1 1 - 2 2 0 »2 3 - 1 •3 2 1 - 3 3 0 - 4 3 1

4 - 3 - 1 4 - 2 - 2 3 - 3 0 3 - 2 - 1 3 - 1 - 2 2 - 3 1 2 - 2 0 2 - l - 1 2 0 - 2 1 - 3 2 1 - 2 I J - 1 0 i o - i 1 J - 2 0 - 2 2 0 -J I

-0.011909 - 0 . 2 1 * 2 2 - 0 . 2 1 8 2 2 -0 .08909 0.03984 0.15936 0.23905 0.15936 0.03984

-0 .06909 -0 .21822 -0 .21622 -0 .06909

0.15430 0.25198 0.15430

-0 .23570 -0 .23570

0.33333

0.33333 -0 .16667 •0 .26668

0.06299 0.2162? 0.2439«

-0 .10911 -0 .24398 -0 .19920

0.15430 0.25198 0.15430

-0 .19920 -0 .24398 -0 .10911

0.24398 0.21622 0.06299

-0 .26668 -0 .16667

0.33333

0.25620 * -0 .21062 * - 0 . 2 2 3 6 1 * -0 .07454 *

0.23570 * 0 .1463* * 0.1951« *

• 0 .0629« * -0 .21622 * -0 .06901 * "0.19720 • • 0 . 1 0 9 1 1 •

0 .15430 * 0.17617 • 0.12599 * 0.19920 •

J, AM 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2 4 3 2

4 3 3

/J7y/7Ji/77j

0 1 - 1 0 2 »2

- 1 - 1 2 - 1 0 1 - 1 1 0 - 1 2 - 1 - 1 3 "2 - 2 0 2 - 2 1 1 • 2 2 0 - 2 3 - 1 - 3 1 2 - 3 2 1 • 3 3 0 - 4 2 2 - 4 3 1

4 - 3 - 1 4 - 2 - 2 4 - 1 - 3 3 - 3 0 3 - 2 - 1 3 - 1 - 2 3 0 - 3 2 - 3 1 2 - 2 0 2 - 1 - 1 2 0 - 2 2 1 - 3 1 - 3 2 1 - 2 1 1 - I 0 1 0 - 1 1 1 - 2 1 2 - 3 0 - 3 3 0 - 2 2 0 - 1 1 0 0 0 0 1 - 1 0 2 - 2 0 3 - 3

- 1 - 2 3 • I - 1 2 - 1 0 1 - I 1 0 - I 2 - 1 - 1 3 - 2 • 2 - 1 3 - 2 0 2 • 2 1 1 • 2 2 0 - 2 3 -J - 3 0 3 • 3 1 2 - 3 2 1 • 3 3 0 • 4 1 3 - 4 2 2 - 4 3 1

- 0 . 1 9 9 2 0 • • 0 . 1 2 5 9 9 • • 0 . 1 M 1 7 • - 0 . 1 5 * 3 0 •

0 .10*11 • 0 . 1 * 7 2 0 » 0 .06901 » 0 .21622 » 0 .06299 •

• 0 . 1 * 5 1 6 • - 0 . 1 4 6 3 9 • - 0 . 2 3 5 7 0 •

0 .07454 • 0 .22361 < 0 .2106? «

• 0 . 2 5 8 2 0 »

0.17408 - 0 . 2 2 4 7 3

0 .17408 • 0 . 2 1 3 2 0

0.10050 0.10050

• 0 . 2 1 3 2 0 0 .19739 0 .04652

-0 .16988 0.04652 0.19739

" 0 . 1 * 7 1 2 -0 .15195

0.10403 0.1O403

-0 .15195 - 0 . 1 * 7 1 2

0.06058 0 .18803 0.02666

-0 .16116 0.02666 0 .16603 0.06058

- 0 . 1 * 7 1 2 - 0 . 1 5 1 9 5

0.10403 0 .10403

-0 .15195 - 0 . 1 4 7 1 2

0 .19739 0 .04*52

- 0 . 1 6 9 6 « 0.04652 0.19739

- 0 . 2 1 3 2 0 0 .10050 0 .10050

- 0 . 2 1 3 2 0 0 .17*08

- 0 . 2 2 4 7 3 0 . 1 7 * 0 «

Page 65: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 61 -

J, A Ji

* « 4 4 * 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 * 4 4 4 4 4 4 4 4 ' 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 « 4 4 4 4 4 «

* *

0 0 0 0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

/TT,/??j(/7Jj

4 - 4 0 3 - 3 B 2 - 2 0 1 - 1 0 0 0 0

- 1 1 0 - 2 2 0 • 3 3 0 - 4 4 0

* - 4 0 * - 3 -J 3 - 4 1 3 - 3 0 3 - 2 - 1 2 - 3 1 2 - 2 0 2 - 1 -1 t - 2 1 1 - 1 0 l 0 - 1 0 - 1 1 0 1 - 1

- l 0 1 - 1 1 0 - t 2 - 1 - 2 1 1 - 2 2 0 - 2 3 - 1 - 3 2 1 • 3 3 0 - 3 4 -1 - 4 3 l - 4 4 0

4 - 4 0 4 - 3 - 1 4 - 2 - 2 3 - 4 I 3 - 3 0 3 - 2 - 1 3 - I - 2 2 - 4 2 2 - 3 1 2 - 2 0 ? - 1 - 1 2 0 - 2 1 - 3 2 1 - 2 1 1 - l 0 1 0 - 1 1 1 - 2 0 - 2 2 0 - I J 0 0 0 0 1 -» 0 2 - 2

0 . 3 3 3 3 3 - 0 . 3 3 3 3 3

0<33333 - 0 . 3 3 3 3 3

0 . 3 3 3 3 3 - 0 . 3 3 3 3 3

0 . 3 3 3 3 3 - 0 . 3 3 3 3 3

0 . 3 3 3 3 3

0 . 2 9 B I 4 * - 0 . 1 4 9 0 7 * - 0 . 1 4 9 0 7 • - 0 . 2 2 3 6 1 *

0 . 1 * 7 2 0 * 0 . 1 * 7 2 0 • 0 . 1 4 9 0 7 *

- 0 . 2 2 3 6 1 • - 0 . 2 2 3 4 1 • • 0 . 0 7 4 5 4 *

0 . 2 3 5 7 0 • 0 . 7 3 5 7 0 •

- 0 . 2 3 5 7 0 * • 0 . 2 3 5 7 0 «

0 . 0 7 4 5 4 • 0 . 2 2 3 6 1 • 0 . 2 2 3 6 1 •

- 0 . 1 4 9 0 7 * - 0 . 1 9 7 2 0 * - 0 . 1 9 7 2 0 *

0 . 2 2 3 6 1 • 0 . 1 4 9 0 7 • 0 . 1 4 9 0 7 *

- 0 . 2 9 8 1 4 •

0 . 2 3 7 4 4 - 0 . 2 0 5 9 7

o.i io-io - 0 . 2 0 5 9 7 - 0 . 0 5 9 4 6

0 . 1 9 4 6 ? - 0 . 1 6 5 1 4

0 . 1 1 0 1 0 0 . 1 9 4 6 2

- 0 . 0 6 7 9 5 " 0 . 1 3 2 4 1

0 . 1 9 7 3 9 - 0 . 1 6 5 1 4 - 0 . 1 3 2 4 1

0 . 1 4 4 4 0 0 . 0 4 6 5 2

' 0 . 2 0 6 0 6 0 . 1 9 7 3 9 0 . 0 4 6 5 2

- 0 . 1 6 9 6 « 0 . 0 4 6 5 2 0 . 1 9 7 3 9

Jl Jl Js 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2

4 4 3

mtmxm3

- 1 -1 2 - 1 0 1 •1 » 0 - 1 2 - 1 - 1 3 - 2 - 2 0 2 - 2 1 1 - 2 2 0 - ? 3 - 1 - 2 4 - 2 - 3 1 2 - 3 2 1 - 3 3 0 - 3 4 - 1 - 4 2 2 - 4 3 1 - 4 4 0

4 - 4 0 4 - 3 - 1 4 - 2 - 2 4 -1 - 3 3 - 4 1 3 - 3 r. 3 - 2 -1 3 -1 - 2 3 0 - 3 2 -« 2 2 - 3 1 2 - 2 0 2 -1 -1 2 0 - 2 2 1 - 3 1 -4 3 1 - 3 2 1 -2 1 1 -1 0 1 0 - 1 1 1 - 2 1 2 - 3 0 - 3 3 0 - 2 2 0 -1 1 0 1 - 1 0 2 - 2 0 3 - 3

- 1 - 2 3 -1 -1 2 -1 0 1 -1 1 0 - 1 2 - 1 -1 3 - 2 -1 4 - 3 - 2 -1 3 - 2 0 2 - 2 1 1 • 2 2 0 • 2 3 - 1 • 2 4 •?

• 0 . 2 0 8 0 6 0 . 0 4 6 5 2 0 . 1 4 4 4 0

- 0 . 1 3 2 4 1 - 0 . 1 6 5 1 4

0 . 1 9 7 3 9 - 0 . 1 3 2 4 1 - 0 . 0 6 7 9 5

0 . 1 » » 6 ? 0 . 1 1 0 1 0

- 0 . ! 6 5 1 4 0 . 1 9 4 6 2

- 0 . 0 5 9 4 6 - 0 . 2 0 5 9 7

0 . 1 1 0 1 0 - 0 . 2 0 5 9 7

0 . 2 3 7 8 «

0 . 1 6 8 1 8 * - 0 . 2 0 5 9 7 *

0 . 1 7 4 0 4 * - 0 . 1 0 0 5 0 * - 0 . 2 0 5 9 7 •

0 . 0 6 4 0 9 * 0 . 0 7 7 8 5 •

- 0 . 1 7 4 0 4 • 0 .15891 * 0 . 1 7 4 0 8 * 0 .077B5 *

- 0 . 1 5 6 1 6 * 0 . 0 5 8 8 5 • 0 . 1 0 4 0 3 •

- 0 . 1 0 9 9 3 * - 0 . 1 0 0 5 0 » - 0 . 1 7 4 0 8 *

0 . 0 5 8 8 5 • 0 . 1 0 6 1 1 •

- 0 . 1 3 9 5 7 * 0 . 0 0 0 0 0 * 0 . 1 8 9 9 3 * 0 . 1 5 8 9 1 * 0 . 1 0 4 0 3 •

- 0 . 1 3 9 5 7 * 0 . 1 3 9 5 7 •

- 0 . 1 0 4 0 3 * - 0 . 1 5 8 9 1 • - 0 . 1 8 9 9 3 *

0 . 0 0 0 0 0 * 0 . 1 3 9 5 7 •

- 0 . 1 0 6 1 1 * • 0 . 0 5 8 8 5 *

0 . 1 7 4 0 8 * 0 . 1 0 0 5 0 « 0 . 1 8 9 9 3 *

- 0 . 1 0 4 0 3 • • 0 . 0 5 8 8 5 •

0 . 1 5 6 1 6 * • 0 . 0 7 7 8 5 « • 0 . 1 7 4 0 « •

Page 66: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 1)2 -

Page 67: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

S3 .

/ / — * ~r_ -

S 3 3 5 3 3 5 3 3 S 3 3 S 3 3 5 3 3 5 3 3 S 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 3 3 3 5 3 3 3 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3 5 3 3

mtf'i./ri;

3 -l -2 3 0-3 2 -3 1 2-2 0 2 -l -1 2 0-2 2 1 -3 l -J 2 1-2 1 1 -1 0 1 0 -1 1 1 »2 1 2 -3 0-3 3 0-2 2 0 -l 1 0 1 -I 0 2-2 0 3-3 -1 -2 3 -1 -1 2 -1 0 I -1 1 0 -1 2 -1 -t 3 -2 -2 -1 3 -2 0 2 -2 1 1 -2 2 0 -2 3 -1 -3 0 3 -3 1 2 -3 2 1 -3 3 0 -• 1 3 - • 2 2 -4 3 t -5 2 3 -5 3 2

5 -4 -1 4-4 0 4 -3 -1 3 -4 1 3 -3 0 3 -2 -1 2 -3 1 2-2 0 2 -1 -1 1 -2 1 1 -1 0 1 0 -1 0 -l 1 0 0 0 0 1 -1 •1 0 1 •I 1 0 •1 2 -1

•0«12309 . •o«ir«ot * -0.12309 • •0.17408 • 0.00000 • 0i17*0« • 0.1230? . 0.07356 * 0.1709« • 0.10*03 • -0.10403 • -0.1709« . •0.07356 . -0.03290 * •0.13159 • -0.164*9 • 0.164*9 • 0.13159 • 0.03290 • 0.07356 • 0.1709* * 0.10*03 * •0.10403 • •0.17094 • -0.07356 * -0.12309 • -0.17400 » -0.00090 • 0.17*0« • 0.12309 • 0.17408 • 0.12309 • -0.12309 • •0.17401 * •0.21320 • 0.00000 • 0.21320 • 0.21320 * -0.21320 •

0.30151 -0.13*0* -0.269*8 0.04*95 0.17979 0.2378* -0.077*5 -0.20597 -0.20597 0.11010 0.22019 0.17*08 •0.1*213 -0.22*73 -0.1*213 Oi17408 0.22019 0.11010

5 5 5 S S 5 5 5 5

5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 S 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5

5 S 5 5 S

.

4 2 * 2 * 2 « 2 4 2 • 2 • 2 • 2 * 2 * 2 * 2 • 2 • 2 * 2 « 2 * 2 * 2 * 2 * 2 « 2 « 2 • 2 * 2 4 2 4 2 4 2 * 2 » 2 * 2 4 2 * 2 4 2 « 2 * 2 * 2 4 2 4 2 * 2 4 2 * 2 * 2 4 2

mirr))Lmi

-2 1 1 -7 2 0 -2 3 -1 -3 2 1 -3 3 0 -3 * -1 -» 3 1 - 4 * 0 -5 « 1

5 -« -1 5 -3 -2 « -* 0 4 -3 *1 » -2 -2 3 -* 1 3-3 0 3 -2 -1 3 -1 -2 2 -« 2 2 -3 1 2-2 0 2 -1 -l 2 0-2 1 -3 2 1 -2 1 1 *1 0 1 0 -1 1 1 -2 0-2 2 0 -1 1 0 1 -1 0 2-2 -1 -1 2 -1 0 1 -1 1 0 -1 2 -1 -1 3 -2 -2 0 2 -2 1 1 -2 2 0 -2 3 -1 -2 « -2 •3 1 2 -3 2 1 -3 3 0 •3 * -1 -4 2 2 -• 3 1 -» » 0 -5 3 2 "5 4 1

5 -» -1 5 -3 -2 5 -2 -3 4-4 0 4 -3 -1

•0.20597 •0.20597 -0.07765 0.2376* 0.17979 0.04493 •0.26968 •0.13484 0.30151

0.24618 • -0.17408 * -0.19069 • -0.11010 * 0.20597 * 0.11010 • 0.19069 • 0.00000 • -0.20597 • -0.04*93 • -0.15891 • -0.1*56« • 0.00*09 • 0.18803 • 0.08*09 » 0.17979 * 0.07785 • -0.1*213 • -0.15891 • •0.12309 • -0.17*08 • 0.17*08 • 0.12309 * 0.15891 • 0.14213 • -0.07765 • -0.17979 • •0.08409 • -0.18803 * -0.08409 • 0.1456« * 0.15891 • 0.04495 . 0.20597 • o.ooooo * -0.19069 • •0.11010 • •0.20597 • 0.11010 • 0.19069 < 0.17408 • -0.24618 •

0.18063 -0.20197 0.13222 •0.19769 0.04039

Page 68: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

iK!noniii£§8I!H!!iSs!»!S!£BHSKii£i£ii!iiiiSHS!§

• • I

I N N A I N M N A l « • O O O O O O O O - 4AlAtAltM(Vt(M(MC

in lAifli/iinininmiAinifliAiriniAiA m m mminini f l i r iAiniAiAirmiAinmmin^KMn^iniAuMi

< V C I A M f 9 i O i r 9 « i n o V H O . r i n 0 4 0 > M A l i A ( \ i A l » < O O I P * O i i n n i A 9 > « H g i n | N i A s n M M i n m 4 i a i M i « i \ i f 4 n H i \ i 4 g o k i i 4 n < i m k « » m m c o < o c \ i « ' O K . w m o o c < v > < v i O ' i o o « o ^ > 9 n < » i o o o y sistsHsl! ( O K K t t K M

i N n * « o - N n « o « o i n « *<Mm * ( \ i n *

^ » m m f n r t f t ^ ft» ft; <\i W fti • * o o o o o o o .

lAinninmiAiniA ini i^ui iAtrt ininininin^inintnininiAininiAinintnini />inininininininininiAiniAiA^tft iniAin<n w% ««tf\ w\ m «i

Page 69: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 65 -

Page 70: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 66 -

Page 71: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

fn,tr.tmi

5 5 5 5 5

S S S 5 5

4

« 4

« •

•5 •5 -5 -1 -5

1 2 3

• 5

« 3 2 1 0

0.06828 -0.1277« 0.16725

-0.16725 0.11826

S 5 5 5 5 5 5 5 i 5 5 5 5 5 5 5 5 S 5 5 5 S S 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 S 5

s 5 5 5 5 S 5 5 5 S

* S *

5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S S 5 5 5 5 S i S

5 5 S 5 5 S S 5 5 5 5 5 S 5 5 5 5 5 5 5 5 S 5 5 S 5 S 5 5 5 5 S & 5 5 5 5 5 5 S 5 5 5 S 5 5 S 5 5 5 3 i i

5 5 5 5 5 5

< • « * 4 4

« 3 3 3 3 3 3 3 3 ? ? 2 2 ? 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1) 0 0 0 0

-1 •1 •1

-5 -4 -3 -2 -1 0

-5 -4 -3 -2 -1 0 1

-S -4 -3 -2 -1 0 1 2

-S -4 -3 -2 -1 0 1 2 3

-5 -4 -3 -2 -1 0 1 2 3 4

-5 -4 •3 •2 -l 1 2 3 4 5

-4 •3 •2

0 -1 -2 •3 -4 -5 1 0

-1 -2 -3 -4 -5 2 1 0

-1 -2 -3 -4 -5 3 2 1 0

-1 -2 -3 -4 -5 4 3 2 1 0

-1 -2 -3 -4 -5 5 4 3 2 1

-1 -2 -3 -4 •S 5 4 3

o.or?«2 -0.12544 0.15645

-0.15645 0.12544

-0.072*2 •0.12514 0.14464

-0.09349 -0.00000 0.09349 -0.14484 0.12544 0.13645

-0.09349 -0.02414 0.10796

-0.10796 0.02414 0.09349

-0.15645 -0.156*5 -O.OOOOO 0.10796

-0.09656 0.00000 0.09656

-0.10796 0.00000 0.13645 0.12544 0.09349

-0.10796 O.OOOOO 0.09656

•0.09656 0.00000 0.10796 -0.09349 -0.12544 -0.07242 -0.1*484 0.02*14 0.09636

-0.09656 0.09656

-0.09636 •0.02414 0.1«»8* 0.072*2 0.1254* 0.09344

•0.10796

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

-1 • 1

-1 -1 -1 -1 -1 -2 -2 -2 -2 -2 •2 -2 -2 "2 -3 -3 •3 -3 -3 -3 -3 •3 -4 •4 -4 -4 •4

•4 -4 -5 -5 -5 -5 -5 -5

•1 0 1 2 3 4 5 -3 -2 -1 0 1 2 3 4 5

-2 • 1 0 1 2 3 4 5

-1 0 1 2 3 4 5 0 1 2 3

• 5

-1 -2 -3 -4

-1 -2 •3

-1 -2

-1

0.00000 0.09656

-0.09656 -0.00000 0.10796

-0.09349 -0.12544 -0.15645 0.00000 0.10796

-0.09656 0.00000 0.09656

•0.10796 O.OOOOO 0.15645 0.15645

-0.09349 •0.02414 0.10796

-0.10796 0.02414 0.09349

-0.15645 -0.12544 0.14404

-0.09349 0.00000 0.09349

-0.14484 0.12544 0.07242

•0.12544 0.15645

-0.15645 0.12544

-0.07242

-3 -3 -2 -3 -2 -1 -3 -2 •1 0

-3 -2 -1 0 1

-3 -2 -1 0 1 2

-3 -2 -3 -1 -2 -3

o -1 -2 -3 1 0

-1 -2 -3 2 1 0

•1 •2 •3

0.27735 -0.19612 -0.19612 0.13222 0.20404 0.13222

-0.08362 -0.177J9 -0.17739 -0.0636? 0.0482B 0 13656 0.18699 0.13656 0.04828

•0.02414 -0.09349 -0.17070 •0.17070 •0.09349 •0.02*1*

Page 72: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

"..r/trn,

3 3 0-3 3 0a00912 3 3 0-2 2 0.05474 3 3 0 - 1 1 0.13686 3 3 0 0 0 0.16248 3 3 0 1-1 0.13606 3 3 0 2 - 2 0.05474 3 3 0 3-3 0.0091? 3 3 -1-2 3 -0.0241« 3 3 - 1 - 1 2 -0.09349 3 3 - 1 0 1 -0.170/0 33 -lio -o.i/o/o 3 3 -l ? -1 -0.093«9 3 3 - 1 3 - 2 -0.02*14 3 3 -? -1 3 0.04828 3 3 -2 0 2 0.13656 3 3 -2 1 1 0.16699 3 3 -2 2 0 0.I36S6 3 3 -2 3-1 0.04828 3 3 -3 0 3 -0.08362 3 3 -3 1 2 -0.1/739 3 3 -3 2 1 -0.17739 3 3 -3 3 0 -0.08362 3 3 -4 1 3 0.13222 3 3 -4 2 2 0.20464 3 3 -4 3 1 0.13222 3 3 -5 2 3 -0.19612 3 3 -S 3 2 -0.1961? 3 3 -6 3 3 0.27735

2 2 2 2 2 2 2 2 2 2 2 i 2 2 2 2 ' 2 2 2 2 2 2 2 2 2 2 2 2

6 5 5 4 4 4 3 3 3 3 2 2 2 2 2 1 1 1 1 1 0 0 0 0 0

-1 -1 -1

•4

-* •3 -4 -3 •2 •4 -3 •2 -1 -4 •3 -2 -1 0 -3 •2 -1 0 1 -2 -1 0 1 2

-1 0 1

-2 -1 •2 0

-1 -2 1 0

-1 -2 2 1 0

-1 •2 2 1 0

-l -2 2 1 0

•t -2 2 1 0

0.27735 -0.16013 -0.22646 0.06362 0.1931? 0.18065

-0.03740 -0.12955 -0.19769 -0.13993 0.01247 0.07052 0.16158 0.16657 0.10430

-0.02767 •0.10430 -0.18065 -0.164»1 -0.07375 0.04826 0.13636 0.18699 0.13656 0.04626

-0.07375 -0.16491 -0.16069

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

4 4

a 4 4 4 4 4 4 4 4 4 4 4 4 4 4

i 2 2 2 2 2 2 2 2 2 ? 2 2 2 ? 2 2

-1 -1 -2 -2 -2 -2 -2 -3 -3 -3 -3 -4 -4 -4 -S -5 •6

2 3 0 1 2 3 4 1 2 3 4 2 3 4 3 4 4

-1 -2 2 1 0

-1 -2 2 1 0

-1 2 1 0 2 1 2

-0.10430 -0.02767 0.10*30 0.18657 0.16156 0.07052 0.01247

-0.13993 -0.19789 -0.12955 -0.03740 0.18065 0.19312 0.08362

-0.22646 -0.16013 0.27735

6 4 3 6 - 4 - 2 0.20966 6 4 3 6 - 3 - 3 -0.16157 6 4 1 5 - 4 - 1 -0.19U9 6 4 3 5 - 3 - 2 -0.04280 6 4 3 5 - 2 - 3 0.19612 6 4 3 4-4 0 0.14135 6 4 3 ' 4 - 3 - 1 0.14427 6 4 3 4 - 2 - 2 -0.06828-6 4 3 4 . 1 . 3 -0.17739 6 4 3 3-4 1 -0.06940 6 4 3 3-3 0 -0.16423 6 4 3 3 - 2 - 1 -0.05913 6 4 3 3 - 1 - 2 0.13222 6 4 3 3 0-3 0.14484 6 4 3 2 - 4 2 0.04712 6 4 3 2-3 1 0.13696 6 4 3 2 - 2 0 0.13656 6 4 3 2 - 1 - 1 -0.02787 6 4 3 ? O -2 -0.15766 6 4 3 2 1-3 -0.10796 6 4 3 1-4 3 -0.01825 6 6 3 1 -3 2 -0.08955 6 4 3 1-2 1 -0.1558? 6 4 3 1 - 1 0 -0.07634 6 4 3 1 0 - 1 0.09855 6 4 3 1 1 - 2 0.15311 6 4 3 i i -3 0.07242 6 4 3 0-3 3 0.04181 6 4 3 0-2 2 0.12774 6 4 3 0 - 1 1 0.1426? 6 4 3 0 1-1 -0.14282 6 4 3 0 2 - 2 -0.12774 6 4 3 o J -3 -0.04161 6 4 3 - 1 - 2 3 -0.07?4? 6 4 3 - 1 - 1 2 -0.15331 6 4 3 - 1 0 1 -0.09655 6 4 3 - 1 1 0 0.07634 6 4 3 -1 ? -1 0.1556? 6 4 3 -i i -i 0.06965 6 4 3 -i 4 .3 0.01625 6 4 3 - 2 - 1 3 0.10796

Page 73: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

I [ .4 m, n\ •< •:

3 - 2 0 2 3 - 2 1 1 3 - 2 2 0 3 - 2 3 - 1 3 - 2 » - 2 3 - 3 0 3 3 - 3 1 2 3 - 3 2 1 3 - 3 3 0 3 -3 » - 1 3 - 4 1 3 3 - 4 2 2 3 -« i 1 3 -« 4 0 3 - 5 2 3 3 - 5 3 2 3 - 5 4 1 3 - 6 3 3 3 - 6 0 ?

4 6 - 4 - 2 4 6 - 3 - 3

1 4 6 - 2 - * I 4 5 - » - 1 1 1 5 - 3 - 2 1 4 5 - 2 - 3 l 4 5 - 1 - 4 1 4 4 - 4 0 1 4 4 - 3 - 1 » 4 4 - 2 - 2 > 4 4 - 1 - 3 1 4 4 0 - 4 » 4 3 - 4 1 » 4 3 - 3 0 » 4 3 - 2 - 1 > 4 3 - 1 - 2 • 4 3 0 - 3 < 4 3 1 - 4 » 4 2 - 4 2 » 4 2 - 3 1 » 4 2 - 2 0 » 4 2 - 1 - 1 » 4 2 0 - 2 » 4 2 1 - 3 4 4 2 2 - 4 > 4 1 - 4 3 » 4 1 - 3 2 4 4 1 ••( 1 4 4 I - 1 0 4 4 1 0 - 1 4 4 1 1 - 2 4 4 1 2 - 3 4 4 1 J -4 4 4 0 - 4 4 4 4 0 - 3 3 4 4 0 "2 2 4 4 0 - 1 1 4 4 0 0 0 4 4 0 1 - 1

0 . !5768 • 0.02787 •

-0 .13656 • -0 .13696 * -0 .04712 • -01-.4484 • -0 .13222 •

0.05913 • 0.16423 < 0.08940 • 0.17739 • 0.06828 •

- 0 . 1 * * 2 7 • - 0 . 1 * 1 3 5 * -0 .19612 *

0 .0 *280 • 0.19139 • 0.16157 «

-0 .20966 •

0.14322 -0 .18947

0 .1*322 - 0 . 1 7 5 * 1

0.08771 0 .087 /1

-0 .17541 0.16725 0.02644

- 0 . 1 3 9 9 3 0.02644 0.16725

-0 .13656 -0 .10796

0.09032 0.09032

-0 .10796 -0 .13656

0.09656 0 . 1 * * 8 4

-0 .00000 -0 .12774

0.00000 0 .14*8« 0.09656

•0 .05713 -O.14035 •0 .08569

0.09032 0.09032

•0 .08569 -0 .14035 -0 .05713

0 .02*93 0.10596 0.13713

•0 .00623 • 0 . 1 2 4 * 6 -0 .00623

J. 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

J J'. 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4 4 4 4 4

* * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 * 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

5 1 5 I 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1

m, rrij^m^ 0 2 - ; 0 3 - 3 0 4 - «

- 1 2 -- 1 3 -- 1 4 -- 2 - 2 - 2 - 1 -? 0 - 2 1 - 2 2 - 2 3 -- 2 4 -

"3 4 -

-6 4

6 -5 -5 -5 5 -4 -4 -5 4 -4 4 -3 -3 -4 3 -3 3 - 2 -2 -3 2 -2 2 - 1 -1 - 2 1 - 1 1 0 -0 - 1 0 0 0 1 •

- 1 0 - 1 1

0.13713 0.10596 0.02493

•0 .05713 •0 .1 *035 -0 .06569

0.09032 0.09032

1 -0 .08569 I - 0 . 1 * 0 3 5 1 -0 .05713 1 0.09656 i 0 . 1 4 * 8 * > 0.00000 I -0 .1277« > 0.00000 1 0 .1* *84 I 0.09656 t -0 .13656 » -0 .10796 ? 0.09032

0.09032 » -0 .10796

-0 .13656 1 0.16725 ) 0.02644 ? -0 .13993

0.02644 ) 0.16725 1 -0 .17541 1 0.08771 J 0.06771

-0 .17541 1 0.1*322 ) - 0 . 1 8 9 * 7 I 0 .1*322

0.27735 > -0 .11323

-0 .25318 0.03414

J 0.15266 0.22901

-0 .05913 j -0 .177J9

- 0 . 2 0 4 8 * 1 0.09362 9 0.19312

0.18065 -0 .10796

) -0 .20197 - 0 . 1 5 6 * 5

0.13222 1 0.20*84

0.13222 -0.15645

) -0 .20197

Page 74: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 70 -

Page 75: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 71 -

Page 76: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 7 2 -

Page 77: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

-i Ji J'I r>l ii:,/n, 2 2 1 1 1 0 0

-1 -1 •1 -2 •2 -2 -3 -3 •3 -4 -4 -4 -5 •5 -5 -6 -6

•2 0 0.06559 -1 --2 •1 ( 0 -

-1 X -0 1 2 -1 2 3 -2 3 4 • 3 4 5 -4 5 6 -5 i

-0.19139 -0.19139 -0.0*280 0.19612 0.19612

-0.19612 -0.19612 0.04280 0.19139 0.19139

-0.08559 -0.18157 -0.1B157

l 0.12839 0.16575 0.165/5

l -O.miB -0.14194

1 -0.14194 1 0.21398 t 0.10483

0.10483 > -0.25676

2 2 2 2 2

•» ? 2 ? 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

6 6 6 5 5 5 5 4 4 4 4 4 3 3 3 3 3 2 ? 2 2 2

• 1 -1

-6 -5 -4 -6 -5 -4 -3 -6 -5 -4 -3 -2 -5 -4 -3 -2 -1 -4 -3 -2 -1 0

-3 -2 -l 0 1

-2 -1 0 l 2 -l 0

0 -1 -2 1 0

-| -2 2 1 0

-1 -2 2 1 0

-1 -2 2 1 0

-1 -2 2 1 0

-1 -2 2 1 0

-1 -2 2 1

0.21989 -0.15549 0.06630

-0.15549 -0.10995 0)17225

-0.10483 0.06630 0.17225 0.01999

-0.15645 0.13410

•0.10483 •0.15645 0.04996 0.12241 -0.15484 0.13410 0.12241 •0.09995 -0.07742 0.16T25 -0.15484 -0.07742 0.12994 0.02644 -0.17138 0*16725 0.02644

•0.13993 0.02644 0.16725 •0.17138 0.02644

U J2 Ji m,mimi 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

•1 -1 -1 •2 •2 -2 •2 -2 -3 •3 •3 -3 -3 •4 -4 -4 •4 -4 •5 •5 •5 •5 •6 -6 -6

1 2 3 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 4 5 6

0

-» -2 2 1 0 -l -2 2 1 0

-1 -2 2 1 0

-1 -2 2 1 0

-1 2 1 0

0.12994 -0.07742 -0.15464 0.16725 -0.07742 -0.09995 0.12241 0.13410

•0.15464 0.12241 0.04996 -0.15*45 -0.10463 0.13410 "0.15645 0.01999 0.17225 0.06630

-0.10483 0.17225 -0.10995 •0.15549 0.06630 -0.15549 0.21989

6 6 6 6 5 5 5 5 5 4 4 4 4 4 4 3 3 3 3 3 3 3 2 2 2 2 2 ? 2 1 1 1 1

-6 •5 -4 -3 -6 -5 •4 •3 -2 •6 -5 •4 •3 -2 -1 •6 -5 -4 -3 -2 -1 0 •5 •4 -3 •2 -1 0 1

•4 •3 •2 •1

0 -1 -2 -3 1 0

-1 -2 -3 2 1 0

-1 -2 -3 3 2 1 0

-1 -2 •3 3 2 1 0 •l •2 •3 3 2 1 0

0.17384 -0.17384 0.11720 •0.05241 -0.17384 0.00000 0.12839

-0.14825 0.09078 0.11720 0.12839 •0.09482 •0.04996 0.14223

-0.12241 •0.05241 -0.14625 -0.04996 0.12643

-0.02737 -0.10949 0.144B4 0.09078 0.14223

-0.02737 -0.11062 0.06656 0.05913

-0.15645 •0.12241 -0.10949 0.08656 0.06321

Page 78: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 74 -

Page 79: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 75 -

Page 80: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 7B -

Page 81: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

• • • • • i

liilliillillllililSIIiillll

I

Page 82: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

Table 12. 6j- symbols

U k k]

A 4 i i i i

i i i i

2 1 2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

J 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

x 0 0

1 1

_ _ « ,

_L 0 1

1

'

4 0 1

1 1

1 1 2 2 I

0 1 1 2

0 1 1 1 1 2 2

1 1 2 2 2

1 0 1 1 7 2 2 1

4 i 0

0 1

! 1 0 1 1

2 1 2 0

2 1 2 1 2 0 1

1 1 0 1 7

2 3 2 3 1 2 3 2

0.5773S 0.33333

-0 .33333 0.16667

0 .33331 0.16667 0.2582H

-0 .22361 0.03333

» . •4721 0.25B20

-0.2SB20 0.70000

-0 .25820 -0 .22361 0 . 0 7 * 5 1

-0 .10000 0.1527s

- 0 . 2000(1 0.16667

0.1527S 0.15275 0.20000

•0 .10000 -0 .047(1*

0.25820 0.21827 0.14907

- 0 . W B 1 7 0.20000

-0 .16330 0.1069s 0.0436«

J, A 3 ? 3 2 3 2 3 2 3 2 3 2

3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 7 3 2 3 7

3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3

Js

2 2 2 2 2 2 2 2 2 2 7 2 2 2

0 0 0 0 0 0

i

U 2 2 2 2 2 3

0 1 1 1 1 1 2 2 2 2 2 3 3 3

0 1 1 2 2 3

1 1 1 2 2 2 2 2 3 3 3 3

I

U 1 2 2 3 3 2

2 2 2 3 3 3 2 2 3 3 3 7 7 3

0 1 1 2 2 3

0 1 1 1 1 2 2 2 2 7 3 3

1

u 3 1 2 0 1 1

2 1 2 1 2 3 1 2 0 1 7 1 2 1

3 2 3 1 2 0

3 2 3 2 3 1 2 3 1 7 0 1

2

- 0 .09759 0.06667

-0 .10690 0 .16903

-0 .15936 0 .00957

-0 .20000 -0 .16330

0.00000 - 0 . 0 9 7 5 1

0.13093 •0 .11066 -0 .10690

0 . 1 U 2 O -0 .16903

0.1195? - 0 . 0 3 * 9 9 •0 .02857

0 .071*3 0.07H2«.

0 .37796 0.21B27

-0 .21B22 0.16903

-0 .16903 0 .14286

-0 .21827 - 0 . 1 7 8 1 7

0 . 0 * * 5 4 • 0 . 0 9 7 5 9

0.13363 -0 .15936

0.1195? •0 .05976 • 0 . 0 * 7 6 7 0.078?<;

•0 .14286 0.13094

0.10690

Page 83: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

J, Å 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 7

4 3 4 3 4 3 • 3 4 3 • 3 4 3 4 3 4 3 4 3 4 3

4 2 2 2 2 2 2 2 2

? 2 2 2 2 2 2

3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

0 1 1 1

A A. 0.13363 0.16903 0.13093

-0 .0597« 0.13997

-0 .03499 -0 .06415

0.05714 -0 .1010? o.ore?s

-0 .10000 0.07377 0.142B6

-0 .1071« 0.0*524

•0 .11066 »U.05533 -0 .1010?

0.07377 -0.142S6

0.07143 0.0231)1

-0 .07143

0.20000 0.13333 0.16903

-0 .12599 0.07063 0.05714 0.06901

-0 .10102 0.10594 0.14907

-0 .13604 O . t l l i R 0.0142« 0.0150ft

-0 .041?« - 0 . 0 5 1 4 1

0.00159

0.2162? 0.19245 0.13363

-0 .15211 0.16903

- 0 . 1 3 3 6 1 0.08129 0.0445«

-0 .09129 0.06901

-0.09961)

J, A A 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3

r 4 3 1 4 3

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 1 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3

4 3 4 3 4 3 4 3 4 3 4 3 4 3

2 2 2 2 ?. 2 2 2 2 2 2 2 2 2 2 2 2 2 ? i i 2

i 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 1 3 3 3 1 3

/, 2 2 2 2 3 3 3 3 3 3 a

0 1 1 1 1 1 1 1 1 7. ? 2 ? 2 0 2 •f.

?. ? ? 2 2

3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4

1)

I 1 1 1 1 I

4 2 3 3 3 2 t. 3 3 u 4 3

2 1 1 2 2 2 i 3 1 0 1 1 2 2 2 3 3 t .1 4

M

H

1 1 2 2 2 3 3 3 4 « 4 2 i 3 3 4

3 2 3 3 4

< 4

u 4 1 2 S 2 3 1 ? 0 1 1

3 3 4 2 3 4 2 3 4 4 3 4 2 3 4

i 3 4 1 2 3

3

4 2 3 4 1 2 1 0 1 2 2 3 1 2 1

3 ?. 2 3 2 3 4

0.11443 0.1426«

-0 .1J041 0.11164 11.0150«

-0 .03367 0.03571

-O.0595? 0.1259«

-0 .12199 0.00397

-0 .16901 -0 .13363 -0 .091?« - 0 . 1 * 5 9 « -0 .01999

0.11443 -0 .0952«

0 . U 1 6 R -0 .0«650 -0 .14407 -0 .09960

9.0952« -0 .10102

0.00744 -0 .01117 -0 .13041

0.07141 -O.OOOOO -0 .06117 -0 .05141

0.07597 -0 .09114 -0 .03367

0.07629 -0.0412«

0.07377 -0 .0651« -0.0595?

0.00333 -0 .07597 -0 .12599

0.1057? -0.061)34 -0 .0079«

0.02354 -0 .01190

0.03254 O.0467?

0.1424« 0.07061 0.1116«

-0 .02381 0.05537

' 0 .09221 0.01555

Page 84: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

AAA

4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0 4 4 0

4 4 1 4 4 1 * 4 1 4 4 t 4 4 1 4 4 1 4 4 1 4 4 1

4 4 1

4 4 1 » 4 1 • < 1 4 « 1

4 4 1 4 4 ' 1 4 4 | 4 4 1 4 4 1

» 4 2 4 4 2 4 4 2 • « 2

/« i ? 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4

0 1 t ? 2 2 3 3 4

1 1 ] 2 2 2 2 2

3 3 3 3 3 3 4 4 4 4

1 1 2 2

/< 2 3 3 3 4 4 4 4 2 3 3 3 4 4 4 4 2 3 3 3 4 4

0 1 1 ? 2 2 3 3 4

0 1 1 1 1 2 2 2

2

2 2 3 3 3 3 3 4 4

1 1 0 1

JL. 0.10591 0.1116«

-0.00091 -O.0M43 0.07629

-0.0851« 0.04303 0.02862 0.07063 0.07897

-0.07897 0.02381 0.12599

-0.08133 0.01243 0.04634 0.02354 0.02381

-0.05556 0.06999

-0.06299 0.07384

0.33333 0.19245

-0.1924"! 0.14907

-0.14907 0.14907 0.12599

-0.12594 0.11111

-0.t»24<S -0.15215 0.03043

-0.09129 0.11941

-0.1360« 0.0*52*

-0.04082

•0.05143 0.07629

-0.0»254 -0.12194 0.10572

-0.08133 -0.0277« 0.04679

-0.11111 0.10556

0.08529 0.11941 0.14907 0.11443

A A A 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 ? 4 4 2 4 4 2 4 4 ? 4 « 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2 4 4 2

4 4 3 4 4 '3 4 4 3 4 « 3 4 4 3 4 4 3 4 « 3 4 4 3 4 4 3 4 4 3 4 a 3 4 4 3 4 4 3 4 a 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3 4 4 3' 4 4 3 4 4 3 4 4 3 4 4 3 4 1 3 4 4 3

4 4 3

4 4 4 4 4 4 4 « 4 4 4 4 4 4 4

4 u 1 2 2 ? 1 1 2 2 2 3 3 3 3 2 2 2 3 3 3 4 4 4

1 1 2 2 2 0 1 1 2 2 2 3 3 3 3 1 1 2 2 2 3 3 3 3 4 4 4

4

2 1 3 3 3

/» 4 2 3 4 3 4 2 3 4 1 2 3 4 2 3 4 1 2 3 0 1 2

3 4 2 3 4 4 3 4 2 3 a 1 2 3 4 3 4 2 3 a l 2 3 4 (I

) 2

3

2 2 1 ? 3

-0.0408? 0.11168

-0.01117 -0.065»9 0.0583?

-0.0925« 0.07897

-0.08518 0.05164 0.1139«

-0.06839 0.01243 0.0389« 0.02381

-0.0476? 0.06945 0.0467?

-0.06905 0.07384 0.11111

-P.09444 P.06371

-0.08650 -0.0925« -('.07897 -0.06317 0.05169

-0.12599 -0.09221 P. 04880

-0.0V11« 0.04303 0.03896

-0.10195 0.02039 0.04634

-0.05746 -0.03968 0.07571

-U.0476? 1). 07143

-0.0578« -0.06299 0.0738«

-0.04545 -0.0078(1 -0.11111 0.0777«

-0.0241O

-0.02756

0.04244 P.08489 (1,05585 0.0286?

-O.0S913

Page 85: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

X

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5

5 5 5 5 5 5 5

l '

4 4 4

4 * 4 4 4 4 4

3 1 J 3 1 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

» 3 i

3 1 1 } 3 3 3

3

4 4 4 4

4 4 4 * *

2 ?

'*» 'j

? ? ? ? ? 2 ? ? ? ? ? 2 2 ? ? 2 ? ? ? ? 2 2 2 2 2 ? 2 2 2 2 2 2

? 2 2 ? 2 2 2

3

_£ ^^

0 3

_i_ T

3

U.06945 0.0757] -0.0578« -0.00780 0.11111

-11.0555« -0.01659 11.05267

-ll.L'259?

0.169.03 0.14407 0.1195?

-0.10541 n.l»?«6

-0.1010? 0.05470 0.13484 0.06667

-0.12060 0.05637

-0.0925(1 0.09489 0.07143

-0.09271 0.04971

-(1.06776 V.1Z599

-(1.10911 0.0B585

-0.058*4 0.0169«

-0.05O96 0.01D44

-0.04414 0.0750? 0.02381

-0.0476? 0.16945 0.03984

-S.06799 0.07674 •'.11394

-0.10811 0.09685 u."03?l

-0.01097 0.00476

-0.01436 O.OOf.91

-0.0197« -0.03174 (1.00043

-0.14786

4 4 J, 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 S 5 5 5 5 S 5 5

5 5 5

5 5 5

3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

* 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

4 4 4 4

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

/,

7 2 2 7 2 7 7 2 2 ? 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5

0

2 2 2 2 2 2 2

/* 3 3 4 6 4 3 3 4 4 4 4 5 5 5 5 3 3 4 4

* 4 5 S 5 5 3 3 4 4 4 5 5 i 3 4

1 0 1 1 2 2 2 1 1 2 ? 2 3 J 1 i ? 2

2 3 3 3

/j

2 3 7 3 4 7 3 1 2 3 4 1 2 3 4 2 3 1 2 3 4 0 1 7 3 2 3 1 ? 3 1 2 2 3 2

4 5 4 5 1 4 5 4 5 3 4 5 2 3

•> i 4

5 2 J 4

-0.1010? -0.03571 •0.GB909 0.09594

-0.06557 •C.D9721 0.0595?

-0.11769 0.04880 0.0192(1

-0.06557 -0.05096 0.0750?

-O.0B103 0.06844 -0.04767 0.07143 -0.G6006 0.07597 -0.0578« 0.0119?

-0.11396 0.09009

-0.0494? 0.00001

-0,01436 0.03680

-0.01551 9.03923

-0.05358 0.0444?

-0.06607 -0.00216 0.0497« 0.00923

0.1924S 0.17404 0.1217?

-0.13484 0.14907

-0.11547 0.07247 0.0434? -0.0')524 0.0'i667

-0.09211 0.IJ749 0.12599

-O.II»69 0.0*4/19

-0.172*7 0.01699

-0.1148?

0.04615 0.01944

-0.06006 0.0750?

Page 86: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

Ji Å S 4 5 4 S 4 5 4 5 4 S 4 5 4 5 4 5 4 5 4

S 4 % 4 5 4 S 4 5 4 5 4 5 4 5 4 S a 5 4 5 4 S 4 S 4 5 4 5 4 5 4 * 4 & 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 i « S 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 S 4 5 4 & 4 5 4 5 4 5 4 A 4 S 4 5 4 * 4 5 4

S 4 S 4 5 4

y3

2 2 2 2 2 2 2 2 ? 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

_£ ~

—.,

u 4

4 4

3 3 4

4 5 5 4

2 1 1 i 2 2 i 3 3 0 t 1 2 2 2 3 3 3 3 4

4 4

4 1 1 ? 2 2 3 3 3 3 4 4

4 4

!> S

!> 2 2 .2 3 3 3 4 4 4

X ^ ^ O.IIU'

-0.10541 0.09685 0.00694

-0.01551 0.0222?

-0.03761 0.1005(1

-0.094.47 0.0t>20>

-0.14907 -0.11547 -0.0052« -0.1054! -0.0272? 0.10244

•0.08909 0.09B11

-<l.07?47 -1.134*4 -0.09211 0.0B04O

-O.OK?1!« 0.07107 0.OOOOO

-0.10911 0.0488n 0.01370

-0.062/6 -0.05556 0.0/571

-O.O6101 0.07146

-0.0348? 0.07247

-0.0441« 0.07035

-0.073B5 -0.06294 0.07597

-0.06326 0.02659

-0.10541 0.07770 -0.040HJ

o.ounon -0.0317B 0.05125

-0.06464

-o.oiWr 0.02701

-0.04855 -0.01*74 0.03921

-0.05661 -0.03761 0.05758

-0.06607

J.AJ* 5 4 2 5 4 2 5 4 2 5 4 2

5 4 2

5 4 2 5 4 2 5 4 2

5 4 3 5 4 3

5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 « 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 4 3 5 » 3 5 4 3 5 4 3 5 4 3 5 4 3 •> 1 3 5 4 3 5 4 3 » 4 3 5 4 3 5 * 3

/, 4 4 4 5

5

5 5 5

0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 ? 2 ? 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 • 3 3

3 3 4 4

4

& i 5 5 3

3

4 4 5

3 2 2 2 3 3 3 4 4

4

1 1 2 2 2 3 3 3 3 4

4 4

4 h 5 5 5 0 1 1 2 2 2 3 3 3 ;i

4

'4 11

4

4 i> b 5 5 1 1

?

6 0 t 2 2

3

1

2 1

4 3 4 5 3 4 5 3 4 5 4 5 3 4 5 2 3 4

5 2 3 4 5 2 3 4

5 5 4 5 3 4 5 2 3 4

5 1 2 3 4

5 1 2 3 4 4 5 3

-0.10050 0(09027

-0.07081 -0.00303

0.00923

-O.OOiOf, 0.01717 0.03090

0.12594 0.05429 0.09811 0.05685 0.09594

-0.00813 -0.08404 0.05952

-0.00331 0.07107 0.094B4 0.07?47 0.0B92I 0.01370

-0.07385 0.0H5H5 0.01920 -0.0«>59n 0.0265« 0.07571

-0.06746 0.0212« 0.03746 0.02686 -0.05025 0.0665«

-0.06776 0.11396 0.07502

-0.06607 0.06945

-0.06126 -0.00221 0.07678

-0.05788 0.00185 0.04996 0.0V685

-0.04081 -0.01659 0.05154

-0.04551 0.04H4?

•0.06607 0.06061

-0.03306 0.02686

-0.0OI54 0.02989

Page 87: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 83 -

p ^

_ 1

A a

*

4 3 3 3 3 3 3 3 3 3 3 J 3 3 3

3 3 J 3 3 3 3 3 3 3 3

4 4 4 a 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4.

a a a a a a « a a a 4 a 4

/• 4

a a a a 4 a a a a a a 4

a s 5 5 5 5 5 5 5 5 5 5

0

2 2 2 2 2 2 2 ? 2 3 3 3 3 3 3 3 3 3 3 3 4 4

a 4 4 4

A ~

JL

.i_ 4 -0.056*3

0.06367 0.03627

-0.05858 0.05783

-0.0256« 0.0512*

-0.0*607 0.0532S

-0.01747 0.1005(1

-0.0779* 0.03429 U.00388

0.00649 -0.01956 0.03987 0.00923

-0.02»89 0.0435ft 0.0121?

-D.03131 0.04872

-0.0424? 0.05824

-0.11111 -0.06557 -0.08333 0.0277«

-0.04101 0.07107

-0.06998 -0.05864 -0.06557 -0.08103 0.02124 0.04798

-0.04855 0.064R7 -0.04009 -0.01750 -0.07908 t.0119?

-0.08541 0.00000 0.05154

-9.03535 -0.06155 0.0636?

-0. 0256ft -0.02521 0.0477«

-0.05331 0.05961

"0.06268 0.06O61

-0.01747 -0.03225

MAX s 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 S 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5

i

4 4 4 4 4 4 4 4 a a a a a a

5 5 5 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 5

i.

a 4 4 4 4 4 4 4 4 4 4 a a 4

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1

2 2

2_

A 4 4 4 a a 5 5 5 5 5 5 5 5 5

0 1 1 2 2 2 3 3 3 4 4 5

1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 a a 4 4 4 4 5 5 5 5

1 1 2

4 5 5 5 5 5 3 3 a 4 4 4 5 5 5

0 1 1 2 2 2 3 3 3 4 4 5

0 1 1 1

) ? 2 2 2 2 ? 3 3 3 3 3 3 3 4 a 4 a 4 5 b

1 1

-P..

4 0 l 2 3 a 2 3 1 2 3 4 1 2 3

5

a 5 3 4 5 2 3

a i 2 0

5 4 5 4 5 3 4 5 3 4 5 2 3 a 5 2 3 4 1 2 3 1 2 0 1

4 5 5

-0.1OO50 0.06155

-0.00454 -0.03HB? 0.04317 -0.01956 0.04356

-0.02020 0.0454S

-0.0*420 0.03283 0.05249

-0.05833 0.03163

0.30151 0.17408 -0.1/408 0.13484

•0.13484 0.1348a

0.11396 -0.1139* 0.1139* 0.1U050

-0.10050 U.09O91

-0.17408 -0.1348« 0.02247

-0.08528 0.10871 -0.12060 0.08040

-0.03015 -0.05094 0.07247

-0.08528 -0.10811 0.09009

-0.06607 0.03604

-0.03178 o.oasa?

-0.06155 •0.09847 0.09027

-0.07796 -0.01618 0.03090

-0.09091 0.01)78«

0.07247 0.10*71 0.13464

Page 88: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

AAA 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 S S 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2 5 5 2

5 5 2 5 5 2 5 5 2 5 5 2

5 5 5 5 S 5 5 5 5 5 5 5 5 5 5 5 5

J 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 i 5 5 5 5 4 5 5 5

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

ti k li 2 1 4 2 1 5 2 2 3 2 2 « 2 2 5 3 J « 3 l 5 3 2 3 3 2 « 3 2 5 3 3 2 3 3 3 3 3 « 3 3 5 4 2 3 « 2 4 « 2 5 4 3 2 4 3 3 4 3 4 4 3 5 4 4 1 4 4 2 4 4 3 4 4 a 5 3 2 5 3 3 5 i 4 5 4 1 5 4 ?

5 4 3 5 5 0 5 5 I 5 5 2

2 2 2 ? 7 3 3 3 3 3 3 3 3 3 3 4 4 4 4

« 4 4 4

1 1 2 2 2 0 1 1 2 2 2 3 3 3 3 1 1 2 2 2 3 3 3

4 5 3 4 5 5

« 5 3 4 5 2 3 4 5 4 5 3 4 5 2 3 4

0.10249 -0 .03015

0.09481) -O.OOOOO -0 .043«?

0.05665 -o.oasz«

O.0750? - 0 . 0 7 3 * 5

0.0386? O.096S5

-0 .0484? -0 .00223

0.04121 0 . 0 2 6 8 6

- 0 . 0 4 6 5 5 0.06596 0 . 0 5 1 2 5

- 0 . 0 6 6 0 7 0.0636?

-0 .04407 0.09441

-0 .0708 ] 0.03924

-0 .00454 0.0121?

-0 .0253S 0.03987 0.03090

-0 .04848 0.05824 0.09091

-0 .0418? U.06457

-0 .07247 -0.OB528 - 0 . 0 6 2 7 * -0 .06276

0.0386? -0 .1139« -0 .08409

0 . 0 3 6 0 « - 0 . 0 8 1 0 3

0.02654 0.04321

-0 .08103 0.00000 0.04986

-0 .04541 -0 .04103

O.OM07 -0 .05025

0.06467 -0 .0«407 - 0 . 0 6 * 6 «

0.06061 -0 .0256«

J, Jx A 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3 5 5 3

5 5 1 5 5 4 5 5 « 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 u 5 5 4 5 5 4 5 5 4

5 5 4 5 5 « 5 5 4 5 5 4 5 5 4 5 5 « 5 5 4 5 5 « 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4 5 5 4

Ij U h 4 4 4 4 4

« 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 4 4 4 4

4 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5

5 1 2 3 4 5 3

« 5 2 3

« 5

1 2 3 4 0 1 i 3

2 2 2 3 3 3 3 3 3

3 3 3 4 4 4

4

4 4 4 4 4 4 4 4 4 4 4

5 5

5 5 5 5 5 5 5 5

2 2 2 1 1 2 2 2 3 3 3 3 0 1 1

2

Z 2 3 3 3

i 1

« « 4 4 l 1 2 2 2 3 3 3 3 4

3 4 5 4

5 3 4 5 2 3 4 5 5 4 5

3

4 5 2 3 4

5 1 2 3 4 S 4 5 3 4 5 2 3 4 5 1

-6.0*665 -0 .08831

0 .04*16 0 . 0 0 3 « «

- 0 . 0 3 8 8 ? 0 . 0 4 6 1 0

- 0 . 0 1 5 1 5 0 . 0 3 3 4 8

- 0 . 0 5 3 1 « - 0 . 0 2 5 3 5

0 . 0 4 5 4 5 - 0 . 0 5 5 5 9

0 . 0 4 7 6 5 - 0 . 0 4 2 « ?

0.0582« - 0 . 0 5 * 3 1

0.03163 -0 .09091

0 . 0 7 2 7 3 - 0 . 0 4 1 0 3

O.00430

0.03063 0.07146 0.06596 0.07107 0.07107 0.06848 0.03746

-0 .04407 0.06194 0.04130

- 0 . 0 4 5 5 1 -0.02065 0.10050 0.07107 -0.04103 0.06654 -0.04009 -0.02723 0.07053 -O.D330« -0.02521 0.04610 0.08017

• 0 . 0 1 3 3 6 -0 .0J73O

0.04317 - 0 . 0 0 5 1 4

0 . 0 3 0 3 0 - 0 . 0 6 0 6 ]

0.03388 -0 .05556

0 .0*75« 0 .03*67

- 0 . 0 5 5 5 9 0 . 0 4 0 0 2 0 . 0 0 2 3 3 MKI,8

Page 89: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

J, A J, u /» i3 5 5

5 5 S 5 5

5

5

5 5

5

5 •S

S 5

S 5

4

4

4 4 4 4 4

4 4

S 5

•i

5 S S 5

5 5

4 4

4

4 5 S •>

•> 5

? 3 4

5 0 1

2

3 4

-0.05B31 0.03164 0.01049

-0.03901 0.09091 •0.06061 0.013*4 0.0Z6R1

-0.04157

4

5

5 5 5 5 5 5 5

5 5 5 5 5 5 5 5 5 5 5

S 5

5 5 5 5 5 5 5

5 5 5 5 5

5 5 5 5 5 5

5 5

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

5 r>

3 3 4

4 4 4 4 4

5

5 5 5 5 S 5 5 5 5 S 5

3 3

3 3

« 4 4 4

3

1 4 4 4 4

S 5 S S

i 5

2 3

2 1 1 2 3 4

2 3 1 2 3 4

0

1 2 1 4 5

-0.04130 -0.06194 -0.116776 -0.0079« -0.0699* -0.01750 0.0477«

-0.00740 -0.05316 0.04765

-0.06061 0.O475« 0.00231

-0.03903 -0.09091 0.04545 0.O12S?

-0.0419S 0.02331 0.01921

1 3 3

3 3

3 3 3

3 3 3 3 3 3 3 1 1 3

3 3

3 3

3 3

3 3 3 3 3

3 3 3

3 3 3 3 3 3 3 3 3

3 3 3

3 3 3 i

0 1 1

1 1 ? ? 2

2 2

2 p

2

3 3 4 II 4 3 4 4

4 5 5 S

5

5

3 4 4

4 5 5

5 5 6

6

3 3 2

3 4

3 2 3 4 1 2 3 4

5 3 2 3 4

1 2 3 4 0 1

0.14246 0.10714 0.12599

-0.08333 0.04066 0.05955 0.06901

-0.06331 0.0f319 0.11396

-0.09535 0.07107

-0.04495 0.02112 0.02361 0.02686

-0.05025 0.06654 0.04029

-0.06155 0.07107

-0.06776 0.10481

-0.09*06

JiÅÅ /, 4 4 t,

6 6 6

6 6

6 6 6 6 6 6 6 6

6 6

3

3 3 3 3 3

3 3 3 3 3 3 3 3

3 3

3

3 3 3 3 3 3 3

3

1 3

3 3 3

3 3

3

5 5 5

5 6

6

6

3 4 4 4 5

5 5 6 6

3 4 4

5 }

2 3

3 2 3 4

1 2 3 1

l 3 2 3

/. 3

0.08535 -0.06(12« 0.006*9 0.00694

-0.01956 0.03697 0.00833

-0.O2290 0.0*98'

-0.03269 0.05121 0.00104 0.O01OO

-0.00470 -0.00460 0.00008

6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6

6 6 6

6

6 6 6

6 6 6 6

6 6 6

6 6 6 6 6

6 6 6

6 6 6

4 4 4 4 4

4 4 4 4

4 4 4 4 4 4 4

4 4

4

4

4

4 4 4 4

4 4 4 4 4

4 4 4 4

4 4 4 4

4

4 4

2 2 2 2 2 2

2 2 2 ?

2 2 2 2 2 2

2 2

2

2

?

2 2

2 2

2 2

2 2 2 2 2 2 2 2

2 2 2

2 2 2

0 1 1 1

1 1 1 2 2 2

? 2 2 ? ? 2

2 2 2

2

2

2

2 1 2 ? 3 3

3 0 1 1 2 2

2 3 1

3

3 4 4

4

4 4

1

1 2 2 ? 3

3 3

3 4

'1 4 4

5 5 5

!> 2 2

4

5 4 5 3 4

5 6 5

6 4 5 6 3 4 5

6 2

3

4

5

6 5

6 4

5 fc

3 4 i h

2 3 4 S

1 2

) 1 4 5

0.14907 0.13484 0.10667

-0.09211 0.12599

-0.08607 0.04495 0.12403 0.06356

-0.10939 0.05685

-0.01)52« 0.08362 0.06901

-0.08409 (I.077A5

-0.05289 0.11111

-0.09296 0.07107

-0.0473« 0.02421 0.01761

-0.049«? 0.02010

-0.04425 0.0706« 0.02686

-0.04855 0.06596

-0,07299 0.04444

-0.0626« 0.07107

-0.06953 0.10050

-3.0921! 0.08017

-0.06546 0.00416

-0.01247

Page 90: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

J, b 6 6

(. 6 6

» 6 6 6 6 6 6 6 6 6 6 6 £ 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

. 6 6 6 6 6 6

t

6

6 6 6 6 6

t 6 6 6 6 6

3 JL ZL u 2 3 3 3 4 a

« 5 5 5 6 6 6 3 3 4 4 5 5 6 4

3 2 2 3 3 3 4 4 4 1 1 ?

2 2 3 3 3 3 4 4 4 4 4

3

i •i 5 5

u 1 1 2 ? ? 3 3

h 6 3 4

* 7 i 4 1 2 3 0 1

z 3 4 2 3 1 2 1 2

4 4

5 3 4 5 3 4 5 5 6 4 •5 6 3 4 5 6 V 3 4 S 6

2

3

4 5 6 6 5 6 4 S A 3 4

0.027«r 0.006<>4

-0 .01734 0.03219 0.0121?

-0 .02535 0.03967 0.02595

-0 .042«? 0.05477 0.09245

-0 .0893? 0.08320 0.90100

-0 .00343 0.0070?

- 0 . 0 0 * 2 0 0.00376

-0 .01089 -0 ,02159

0.00016

-0 .12599 - 0 . 0 * 6 0 7 -0 .08323 - 0 . 0 * 3 3 3 -0 .04066

0.0849a -0.OH331

B.08333 -0 .0537? -0 .10050 -0 .0494? -0 .08409

0.03604 0.07066

-0 .0833 3 0.9415? 0.02686

-0 .07299 -0 .09296

0 .0277* 0.02973

-9 .962?9 0.0579?

-0 .05505 0.07107

-0 .0704? 0.05586

-0 .03204 - 0 . 1 0 4 8 1 -0 .05630

0.07934 -0 .04456

0.06870 -0 .03654 -0 .05026 0.06487

J, 6 6 6

- 6 6 6 6 6 6 6 6 6 6 6

« 6 6 6 6 6 6 6 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 i 6 6 6 6 6 6 6 6 6 i 6 6 6 6

6

AM 4 3 4 i 4 3 4 3 4 3 4 3 4 3

4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 i 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3 « 3 4 3 4 3 4 3 4 3 4 3 <l 3 4 3 4 3 1 3 4 3 4 3

4 3 4 3 4 3 4 3 * 3

4 4

11 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4

« 4 4 4 4 4

4 4 4 5 5 S 5 S 5 5 5 S 5 5 "5 5 5 6 6 6 6 6

0

u 3 3 4 4 4 4 4 5 5 5 S S 6 6 6 6 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 f> 6 6 6 6

2 2 2 3 3 3 4 4 4 5 S 5 G 6 3 3 4 4 5

4

JL

4

- 0 . 0 4 4 0 7 - 0 . 0 0 9 7 5 - 0 . 0 6 2 6 «

0.06566 -0.O«0O9 -0 .0028!)

0 .0 *434 - 0 . 0 4 4 0 1

0.06155 • 0 . 0 4 1 4 3 - 0 . 0 1 7 5 0

0.04584 - 0 . 0 3 ? 6 9

0 .05121 - 0 . 0 6 1 7 *

0.06327 - 0 . 0 1 7 0 7

0 .04785 -0 .0173R

0 .04097 •0 .06164 -0 .0195«

0.0406? -0 .05576

0.05023 - 0 . 0 2 5 3 5

0.04545 -0 .05559

0 .047*5 -0 .039H3

0.05714 -0 .05833

0.04274 -0 .09245

0.07975 - 0 . 0 5 6 4 6

0.02656 - 0 . 0 0 3 4 3

0.01167 -0 .0275? - 0 . 0 0 4 7 0 '

0.01421 -0.0292f> • 9 . 0 0 6 2 1

0.01724 -0 .03205 -0 .00840

9,0226? • 0 . 0 3 7 9 1

0.0333? •0 .0495? -0 .00054

0.00756 - 0 . 0 0 0 7 8

0 .0036* 0.00437

0 .1111)

<

Page 91: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

M Jt J3 * 4 « 6 4 « 6 4 » 6 4 4 6 4 4 6 4 4 6 4 « 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 « 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 « 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 4 6 4 1 6 4 4 6 4 4 6 4 4 6 4 4

4. nr /* i 4 4 5 S 5 3 4 4 4 5 5 5 5 6 6 6 6 6 3 4 4 4 S 5 5 5 5 6 6 6 6 6 3 4 4 4 5 5 5 5 5 6 6 6 6 6 1 4 4 4 5 S

s s 6 6 6 3 4

6 T 9,04066

0.0633? 0.0055«. 0.05803

-0.17521 0.05771 0.0731« 0.07107 0.02*71

-0.05707 0.07107

-0.05505 0.00606 0.043?« 0.0*787

-0.04986 0.06199

-0.05799 0.03747 0.0665« 0.07107

-0.04009 -0.01717 0.06535

-0.02607 -0.02771 0.0489?

-0.02S30 0.04785 -0.06164 0.05021

-0.01857 -0.01994 0.01697 0.03987

-0.0555O 0.0400? 0.05171

•0.059S0 0.0377« 0.00731

-0.03607 0.09745

-0.06699 0.02555 0.0159"!

-0.04074 0.01280 0.013?«

-0.03701 0.04661 0.01456

-0.0351« O.04B51

-0.04317 -0.04318 (!.05467

•0.')4?91 0.00756 0.00713

J, A Å c 6

* C 6

6 6 S 6

e « « 6 6 6 6 6 6 6 A 6 6 6 6 A 6 6 6 6 6 6 6 6 6 6 6

& 6 6 6

• »

6 6 5 6 6 6 6

6 6 6 6 6 6 6 6

4 4 4 4 4

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 S 5 5 5 5 5 5 5 5 S 5 S 5 5 5 5 5 5 5 5 5

5 5 5 5 5 5 5 5

« 4 4 4 4

1 1 1 1 1 l 1 I 1 1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1

7 7 2 2 7 i 7 7

u 6 6 6 6 6

0 1 1 1 1 1 1 ? 2 7 2 7 ? 2 7 ? 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 6

0

tz 4 4 5 5 6

1 0 1 l 7 7 1 1 1 7 2 2 i 3 3 3 2 2 2 3 3 i i 4 4 4 4 3 3 3 4 4 U 5 5 5 4 4 5 i h

6 5

i> 1 l ? 1 2 3 3

k 3 4 7 3 2

5 6 S 6 4 S 6 5 6 4 5 6 3 4 5 6 4 5 6 3 4 5 6 7 9 4 5 3 4 5 7 3 4 1 2 3 7 i

! ? 0

• 1

•> 5 6 4 5 6 4 5

-0.00991 0.02335

•0.0093? 0.0737« 0.0?«3t

0.17404 0.16013 0.11737 •0.12730 0.134«« -0.1079« 0.063')T 0.041(11

-0.08906 0.01,156 •0.06569 0.09349 0.11396 -0.10050 0.08167 -0.06371 0.01763

-O.OJ«6? 0.«r>«7« 0.041)7«

-0.05,430 0.0706« -0.07747 0.10051 -0.09401 0.08535

-0.07450 0.00633 -0.01707 0.02787 0.02595

-0.03963 0.05121 0.09091

-0.06763 0.08120 0.00376

-i). 00840 (1.01515

-0.0254« 0.06367

-0.08745 0.001I'

-0.1348« -0.10799 -0.08006 -0.99711 -0.03015 0.09341

-0.08371 0.08827

Page 92: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

6 S 2 ' 6 5 2 6 5 2 ! 6 5 2 ! 6 5 2 i 6 5 2 i 6 5 2 i 6 5 2 i 6 5 ? i

Page 93: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

-0.053r? -o.or5»» -0.0«08n -0.075J1 0.01641 0.<tt>6J« -0.0«?4? 0.06611

Page 94: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

J, 6 6 A 6 6 A A 6 6 6 6 6 A 6 A A 6 A A A 6 A A A 6 A A A 6 A 6 A A A 6 6 A A 6 A A 6 A 6 6 6 A

6 6 A 6 A A A f 6 A 6

6

A b 5 5 5 5 S 5 b 5 5 5 S 5 5 S S 5 b b b b 5 b 5 b 5 5 b b b b b b 5 b b b 5 b 5 5 b b b b b b

b b b b b b b 5 b 5 5 b

ZL /» 4 4 i 4 3 4 3 4 4 « 4 4 4 4 H 4 4 4 b 4 b 4 b 4 b 4 5 « b 4 A 4 6 4 A 4 A 4 A b 1 b 1 b 2 b 2 b 2 b J S 3 b 3 b 3 5 4 b 4 b 4 b 4 b 4 5 b b b b b 5 b b 5 b t> b (> b b b b 5 b A ?. 6 2 6 2 A 3

A 3 A 3 A 3 6 4 A 4 6 4 A 4 6 b 6 S 6 b A b A A

0 . 0 4 7 6 5 -0 .00?S<> - 0 . 0 4 0 6 3 - 0 . O 6 2 0 1

0 . 0 4 2 7 4 O . O 0 2 M

- 0 . 0 3 7 5 9 0 . 0 3 2 6 9

- o . o ? 7 0 3 0 . 0 2 6 5 8 0 . 0 2 0 1 4

- 0 . 0 4 1 9 A 0 . 0 2 9 3 A 0 . 0 0 7 2 7

- 0 . 0 4 3 1 B 0 . 0 b 4 A 7

- 0 . 0 4 2 9 1 0 . 0 1 3 b 9 0 . 0 1 9 2 ?

- 0 . 0 2 2 2 « 0 . 0 5 1 4 0

- 0 . 0 2 1 4 4 O . O 4 6 0 3

- 0 . O 5 0 9 3 - 0 . O 2 A 0 A

0 . 0 4 5 5 ? - 0 . 0 4 A I O

0 . 0 1 7 9 1 - 0 . 0 3 1 8 b

0 . 0 4 R 3 2 - 0 . 0 4 3 1 7

0 . 0 1 4 8 0 0 . 0 2 1 8 9

- 0 . 0 4 4 4 7 0 . 0 5 4 1 7

- 0 . 0 J 8 A 3 0 . O 0 A 2 ? 0 . 0 2 5 4 3

- 0 . 0 8 3 A ?

0 . 0 6 1 2 b - 0 . 0 2 4 7 ? - 0 . 0 1 2 2 ?

0 . 0 3 5 1 0 • 0 . 0 0 5 4 4

0 .O1AAS - 0 . 0 3 4 1 2 - 0 . 0 0 7 J 7

0 . 0 2 0 2 0 - 0 . 0 3 5 9 A

0 . 0 4 5 5 9 - 0 . O 0 9 3 ?

0 . 0 2 3 7 4 - 0 . 0 3 8 2 1

0 . 0 4 3 2 8 - 0 . 0 1 1 6 A

0 . 0 2 8 9 7 - 0 . 0 4 2 2 4

0 . 0 4 2 4 1 0 . 0 3 8 1 0

12

6

A b b

5 b b b 5 b b b b b b 5 b b 5 b b b b b 5 5 5 5 b b b b 5 b b 5 b b b b b 5 5 b 5 b

\ b 5 5 5 5 5 b 5

b b 5

-J 4 4

5 b b 5 b b 5 b 5 5 5 b b S 5 b 5 5 b b b b b 5 b

'> b b b 5 b b 5 b b b b b b b b b

§ b b b b b b b

s b b b

/, 6 6

0 1 1

1 1 1 1 2 2 2 2 ? 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 u 4 4 4 4 4 4 4

4 •> b 5 5 5 b

5

b 5 b

4 6 A

b 4 b b A 6 6 3 4 4 5 5 5 A A A A 3 4 4

4 b b b b A A b t> 0 3 14

U

4 b b b b 5 A 6 6 A t>

6 1 4 4 4 b b

b

b b b

/> 2 3

S

* 4 5

« 5 6 3 3 4 3 4 5 3 4 b A J ? 3 4 ? 3 4

b 2 3 4 b A 3 2 3 4 1 2 3 4 5 1 2 3

? A 3 2 3 4 1 2

3

4 5 0

-0 .04950 0 .0M3A

0.09091 0.05771 0.06A11

-0 .02727 0.0314b

-0 .05777 0.05903 o.om? 0 . 0 5 5 8 8 0 . 0 4 3 2 8 0 . 0 6 1 9 0

- J . 0 2 5 9 3 - 0 . 0 3 4 7 3

0 . 0 3 5 1 4 - 0 . 0 5 2 0 8

0 . 0 3 5 9 A 0 . 0 1 1 8 1

0 . 0 5 2 8 0 0 . 0 4 9 0 1 0 . 0 4 5 8 4

- 0 . 0 2 8 3 0 0 . 0 6 4 1 6

- 0 . 0 1 8 5 ? - 0 . 0 3 1 4 ?

0 . 0 3 4 5 0 0 . 0 4 0 5 8

- 0 . 0 5 0 7 3 0 . 0 2 7 3 1 O . O l b l l

- O . O 3 9 3 5 0 . 0 A 0 9 ? 0 . 0 6 3 2 7

- 0 . 0 1 3 8 7 - 0 . 0 3 A 0 7

0 . 0 6 9 3 1 -O.OOOOO - 0 . 0 4 0 7 8

0 . 0 2 9 3 « O . O I 3 9 0 0 . 0 5 U O

- 0 . 0 5 0 9 3 0 . 0 1 7 9 1 0 . 0 2 1 B 9

- 0 . 0 3 6 3 «

0 . 0 1 1 8 1 0 . 0 4 0 A 1 0 . 0 4 2 9 8

- 0 . 0 4 8 0 5 0 . 0 1 6 A 5 0 . 0 5 1 9 8

- 0 . 0 4 9 2 4

0 . 0 1 3 5 9

0 . 0 2 5 4 3 - 0 . 0 3 4 3 8

0 *61 )36?

Page 95: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

J, A J* 6 5 5 6 1 5 6 5 5 » 5 5 6 5 5 6 5 5 6 5 5 » 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 5 6 5 b

6

6

6

6

6

6

6

t 6 6

6

6

6

6

6

6

& 6

6

6

6

6

6

6

6

6

6

* 6

6

6

6

0

0

0

0

0

0

0

0

0

0

0

0

c i)

0

0

6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 t 6 1 6 6 1 6 6 1 6 6 I 6 6 1 6 6 1

li U k 5 6 1 5 6 2 5 6 1 5 6 4 5 6 5 6 J 3 6 • 2 6 a 3 6 4 4 6 5 1 6 5 2 6 5 3 6 5 4 6 5 5 6 6 1 6 6 2 6 6 3 6 c. 4

0

1

1

2

2

?

3

3

1

3

* 4

4

5

5

6

0

1

1

2

2

?

3

3

3

3

• 4

A

5 5

6

6

5

6

4

5

6

3

4

5

6

?

3

4

1

2

0

1 0 6 1 1 5 1 1 6 2 1 5 2 1 6 2 2 « 2 2 5 2 2 6 3 2 « 3 2 5 3 2 6 3 3 3 3 3 4 3 3 5 3 3 6 4 3 3

6 2 3

-0.0*9*7 0.0010? 0.0J32A

-Q.0JJ8S 0.00453 0.01625 0.01665

-0 .03596 0.04321) 0.017*4

-0.038*6 0.04420

-0.02541 -0 .00671 -0.04491

0.04I>1 I -0 .02364 -0.01125

0.27735 0.16013 •0.16013 0.12403

-0.12*03 0.12403 0.104(3 -0.104(13 D.10483

-0.10(83 0.09245 -0.09245 0.092*5 0.(1836?

-0.0836!! 0.07692

•0.16013 •0.12230 0.01747

-0.08006 0.10037

-0.10939 0.07032

-0.0234« -0.04942 0.06863

-0.07924 -0.09806 0.07934

-0.05603 0.02809

-0.03269 0.04785 -0.05906 0.06669

-0.0893? 0.07975 -0.06699

M Å JL 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1 6 6 1

6

6

(•

6

6

6

6

6

« 6

t

6

6

6

6

6

6

6 6

5

6

6

6

6 6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

*. 6

6

6

6

6

t

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

A

6

6

6

A

6

6

6

6

6

A

6

2

?

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2 2

2

2 2

2

2

2

2

2

2

2

?

2

/. V ?

?

2

V

2

2

2

2 2

2

2

2

2

li h k • 4 5 5 4 2 5 * 3 5 4 « 5 5 1

5 5 2 5 5 3 6 i 1 6 5 2 6 6 0 6 6 1

I 1 2

2

2

2

2

2

3

3 3

3

3

3

3

3

3

4

4

4

4 4

4

4

4 4

4

4

4

5 5

•i

5 5

5

5

5

5

5

5

5

6

6

6

6

6

1 1 0

1

1

2

2

2

1

1

2

2

2 3

3

J 3

2 2

2

3 J

3

3 t

4

4

4

4

3

3

J

3

4 <l

4

4

5

5

5

5

4

4

4

5

5

5 6 6

5

6 4

5

6

5

6

4

5

6

3 4

5

6

4 5

6

3 4

5

6

2

3 4

5

(-J 4

5

6

?

3

4

5

1 2 3

4

2

3

4

1

2

0.05104 -0.02154 0.0333? . -0.04318 -0.08245

0.0777« -0.07061 -0.01283 0.0219? -0.07692 0.07509

I1.063S7 0.10037 0.12403 0-0934O

-0.02344 0.00362 0.00597

-0.06093 0.05474 -0.079?« 0.07066

-0.06543 0.041)23 0.0H53*

•0.OJ65A -0.00975 0.04384 0.02787

-0.04779 11.06730 O.0M21

-0.0616« 0.0555? -0.03483 O.OH320

-0.05646 0.02555 0.00543

-0.03141 0.0145F.

-O.Oa'6? 0.04I1S4

-0.05145 0.0 3566

-0.0495? 0.05467

-0.05093 0.08011

-0 .06*38 0.0*731

-0.0247J 0.00ft49

-0.0149«, 0.02931 0.0219? -0.03546

Page 96: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

- 92 -

J,Å i *. 6 6 2 li 6 6 2 6 6 6 2 6 6 6 7 6

6 6 6 6 6 6 6 6 6 6 6 6 6 6

6 A

A 6

6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 6 6 6 6 6 A 6 6 6 A 6 6 A 6 A 6 A 6 6 6 6 6 6 6 6 A 6 6 6 A 6 A 6 6 6 6 6 6 6 6 A A 6 6 6 6 A A A A 6 6 6 A 6 6 6 A A 6 6 A A A t> A 6 6 .

A' 6 A 6 .

i ?. ) ? ) 2

i 2 > 2 ) 3

3

) 3

) 3

) 3 1 3 ) 3 1 3 ) 3 > 3 } 4 I 4 ) 1

4 u a 1

« ) 4

1

) 4 1 4

h

) 4 ) 5 ) 5 1 5 1 5

1 5 1 5 ) S J 5 i 5 ) 5 ) S i 5 1 5 ) 5

5 i 5 1 b 1 6 1 6

A 6 6 6 6

1 1 4 3 0 . 0 4 4 0 9

0 . 0 7 6 9 ? - 0 . 0 / 1 4 3

U . 0 6 0 8 «

- 0 . 0 6 3 2 1 - 0 . 0 1 * 9 2 « - 0 . 0 5 7 8 9 - 0 . 0 6 0 4 4

0 . 0 3 0 ? ? - 0 . 1 0 4 8 1 - 0 . 0 7 7 4 7

0 . 0 2 8 0 ?

- 0 . 0 7 7 9 9

O . o i A l q 0 . 0 4 3 8 4

- 0 . 0 6 8 2 8 - 0 . 0 0 9 7 5

0 . 0 4 9 7 7 - 0 . 0 3 6 5 « - 0 . 0 4 0 8 0

0 . 0 6 6 6 9 • 0 . 0 4 9 8 A

0 . 0 5 8 7 7 - U . 0 3 4 8 3

- 0 . 0 6 1 7 A 0 . 0 5 0 2 3

- 0 . 0 1 3 9 5 - 0 . 0 2 6 2 5 - 0 . 0 7 4 4 ?

0 . 0 * 6 5 8 0 . 0 1 5 9 5

- 0 . 0 4 0 6 3 n . o j t w ?

- 0 . 0 1 7 2 ? 0 . 0 3 5 1 4

- 0 . 0 5 1 4 5 - 0 . 0 * 9 1 1

0 . 0 4 6 0 3 - 0 . 0 1 0 7 3

0 . 0 3 B 5 R - 0 . 0 4 6 8 1

0 . 0 5 4 1 7 - 0 . 0 4 ? 9 l

0 . 0 1 7 9 1 0 . 0 1 2 2 «

- 0 . 0 7 6 6 0 O.OS034

- 0 . 0 1 A 2 4 - 0 . 0 1 2 2 ?

0 . 0 4 3 2 0 - 0 . 0 0 6 9 «

0 . O I A A 5 " 0 . 0 * 8 8 3

0 . 0 4 1 1 4 - 0 . 0 1 4 9 5

0 . 0 * 8 9 7 - 0 . 0 4 0 6 1

J, 6 6 6 6 A 6

> 6 6 6

6 6 6 6 6 6

6 A A A A

A

A A A A 6 A

(• 6 6 A

6 6 A 6

6 6

6 6 6 1, 6 6 A

* f, t 6

A 6 A 6

t 6

A 6 6

Jz 6 6 6 6 A A A 6

A

6 6 6 6 6 A A A A 6

6

6

6 A A A 6 6 6 A 6 A A A A 6 6 A 6 6 A A 6 A A 6 6 6 6

A 6 6 6 6 6 6 A 6

31 JL u 4 5 S

s s A A 6 6

2 2 2 1 1 2 2 2 3 3 3

3

') 1 1

>. 2 2 3 J 3 3 n

« •i

a 4

1 1

? 2

^ 3 3 J 3 4

4

ti

4

1

•> 5 5

!> S

5

'

u 5 1 2 3

« 0 1 2 3

4 5 A

5 6 4 5 6

3 4

5

6

6 5 6

4

5 A

3

** 5 A

? 3 4 5 A 5 A

a 5 A

3 4

5

(> ? 4 u 5 A 1 2 3 4

5 6 4

0 . 0 4 5 5 9 - 0 . 0 3 0 3 7

0 . 0 4 4 9 9 - 0 . 0 4 8 9 5

0 . 0 4 1 3 A - 0 . 0 7 A 9 ?

0 . 0 6 5 9 1 - 0 . 0 4 5 9 5

0 . 0 2 0 7 3

0 . 0 2 4 2 3 0 . 0 6 2 3 0 0 . 0 6 ? 3 ! > 0 . 0 6 1 4 3 0 . 0 6 6 6 9 0 . 0 5 7 9 ?

0 . 0 4 0 2 ? - 0 . 0 J 4 8 3

0 . 0 4 9 0 1 0 . 0 4 4 3 4

- 0 . 0 3 5 0 0

- 0 . 0 2 6 * 5

0 . 0 9 7 4 5 0 . 0 6 6 3 A

- 0 . 0 3 1 9 0 0 . 0 6 1 9 9

- 0 . 0 2 8 7 8 - 0 . 0 3 1 4 1

0 . 0 6 3 2 7 - 0 . 0 1 8 5 ? - 0 . 0 3 1 4 4

0 . 0 3 8 9 ?

0 . 0 1 . 3 4 3 0 . 0 0 4 5 3

- 0 . 0 4 0 7 " 0 . 0 3 2 6 9 0 . 0 0 6 2 3 0 . 0 3 1 4 5

- 0 . 0 5 7 7 1 0 . 0 3 A 1 A

- 0 . 0 5 2 0 8 0 . 0 3 8 1 ? 0 . 0 4 7 9 4

- 0 . 0 4 9 8 4 0 . 0 2 7 3 1 0 . 0 1 2 2 9 0 . 0 5 4 37

- 0 . 0 4 A H U . 0 U 5 9 0 . 0 2 1 8 9

- 0 . 0 3 7 0 7 0 . 0 7 1 9 ?

- 0 . 0 3 0 8 ? - 0 . 0 1 0 2 7

0 . 0 3 5 1 0 • 0 . 0 3 3 8 5

0 . 0 0 9 0 7 0 . 0 1 0 8 8

Page 97: Quantum mechanical operator equivalents used in the theory ... · Quantum Mechanical Operator Equivalents Used in the Theory of Magnetism by O. Danielsen and P.-A. Lindgård Danish

93 •

J,Ji A A

A A

6 A

A A

A A

A A

A 6

A A

A A

A A

A A

6 A

A A

A A

A A

A 6

A A

A A

A A

A 6

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A A

A 6

A A

A A

A A

A A

A A

t I.

A A

A A

A A A A

A A

A A>

A A

A A

A A

6 A

A A

A A

A A

A A A A

A A

A A

A 6

A A

A A

J, 4

u

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 a

a 4

S

b

b

5

5

5

5

5

b

5

b

5

b b

b

5

5

5

5

b S

5

5

5

5

5

5

5

b

5

5

5

5

b

5

5

b

_Jk ~

A ~

J L ~

•1

- 0 . 0 2 A 1 7 0 . 0 4 ) 1 1 0 .01AA5

- A . 0 3 3 4 1 0 . 0 4 * 4 1

- 0 . 0 * 0 3 ? 0 . 0 2 4 3 1

- Q . 0 4 0 A I 0 . 0 4 4 ? «

- 0 . 0 3 0 5 3 O . O O ? 7 A

0 . 0 3 9 1 0 - 0 . 0 * 9 5 0

0 . 0 * 1 3 A - 0 . 0 1 * 5 9 - 0 . 0 1 1 2 5

0 . 0 7 A « ?

• 0 . 0 5 8 A 1 0 . 0 2 7 * 7 0 . 0 0 4 7 5

- 0 . 0 2 8 2 1

- 0 . 0 3 ? 0 f l - 0 . 0 5 9 4 0 - ( 1 . 0 1 1 4 5 - 0 . 0 3 9 0 1 - 0 . 0 5 5 7 3 - o . o i 7 i 5

0 .0 .155« - l».C&O0? - 0 . 0 5 7 7 ]

- l > . 0 5 7 9 9 - D . 0 2 4 3 5

0 . 0 3 1 1 ? - 0 . 0 5 5 8 3 -a.an9H

0 . 0 4 0 3 A 0 . 0 1 2 2 9

- 0 . 0 5 0 S A - 0 . 0 3 0 3 «

0.!>JH1(I 0 . 0 U 7 2 7

- 0 . 0 3 7 0 7 • 0 . 0 8 3 A ? - ( 1 . 0 5 7 7 7

0 . O 3 5 3 « - O . O b ? 1 1

0 . 0 3 5 9 A

0 . 0 2 0 A O - 0 . 0 b 2 A 4

d . 0 3 3 2 9 0 . 0 1 5 1 1

- 0 . 0 J R 3 O - o . o b T A r

0 . 0 2 A A 9 0 . O 1 9 2 ?

• 0 . O J A 3 4 0 . 0 0 9 0 7

-O.OAAOA

12

i-S.

2

_2_

z T ^

/# 5

b

5

5

S

A

A

A

6

A

A

A

A

A

A

A

A

A

h

A

A

6

A

A

A A

A

A

ft

A

r> 3

4

4

4 4

5

5

5

5

5

5

5

5

5

6 A

b

A

A

A

6

A

A

A

A

A

A

A

A

A

4 4 S 2

b 3

b «

5 5

b i

1 5

1 A

2 «

/ b

.> A

i 3

.1 4

I b

i 6

4 2

4 3 4 4

o 5

4 A

b 1

b 2

b 3

5 4

b 5 S 6

A 0

A 1

A ?

b 3

A 4

t> b

3 )

3 3

a ? a 3

4 4

3 3

•I i*

4 3

4 4

1 i

5 ?

b 3

' i 4

b b

J 3 4 2

4 1

4 4 S 1

b ?

b 3

b 4

5 b

|> 0

A !

o ?

ft 3

|> 4

a 5

A A

0 . 0 0 9 4 «

O.OJUA • 0 . 0 3 4 A 1

0 . 0 0 * 5 3 o.027«n

• 0 . 0 2 4 4 4 0 . 0 5 0 5 5

- 0 . 0 2 A 1 7 0 . 0 4 5 4 5

• 0 . 0 * 0 3 ? •o.ozetn

0 . 0 4 4 4 1 • 0 . 0 3 4 4 7

0 . 0 0 0 0 0 - 0 . 0 3 4 1 ?

0 . 0 4 5 5 9 - 0 . 0 3 0 5 3 - 0 . 0 0 3 5 0

0 . 0 3 0 9 3 - 0 . 0 * 4 * 1

0 . 0 4 8 1 1 - 0 . 0 2 3 A * - 0 . 0 1 1 2 5

0 . 0 3 1 9 4 - 0 . 0 2 2 5 7 - 0 . 0 7 A « ?

0 . 0 * 9 4 5 - 0 . 0 0 A 4 9 - 0 . 0 2 * 9 4

0 . 0 3 * 0 4 - 0 . 0 1 A 2 A

0 . 0 1 3 7 1 0 . 0 4 1 1 4 0 . 0 3 7 * 7 0 . 0 4 A 3 4

- 0 . 0 0 9 3 7 0 . 0 5 * 1 5 0 .05A21

-o.ouooo - 0 . 0 3 7 * 7

0 . 0 b 9 0 3 [1. 01191

- 0 . 0 3 9 3 5 " . 0 1 1 8 1 0 .02A97 0 . 3 4 1 1 4 0 . 0 « .11'

- 0 . 0 4 0 1 ? 0 . 1 0 2 7 5 I>. 05055

— J . 9 4 0 ) 2 - 0 . 0 0 9 0 0

0 . 0 3 0 9 3 - 0 . 3 Z 2 5 7

U.0759-> - 0 . 0 3 5 4 A - 0 . 0 1 0 * 4

0 . 0 3 * 9 7 - 0 . ( 1 2 0 5 7 - . 1 . 0 1 3 2 7

O.U^'14 3