quantifier (logic)

181
Quantifier (logic) From Wikipedia, the free encyclopedia

Upload: man

Post on 13-Sep-2015

241 views

Category:

Documents


2 download

DESCRIPTION

1. From Wikipedia, the free encyclopedia2. Lexicographical order

TRANSCRIPT

  • Quantier (logic)From Wikipedia, the free encyclopedia

  • Contents

    1 Andrzej Mostowski 11.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.3.1 Book by Mostowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.3.2 Papers by Mostowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2 Axiom of determinacy 32.1 Types of game that are determined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Incompatibility of the axiom of determinacy with the axiom of choice . . . . . . . . . . . . . . . . 32.3 Innite logic and the axiom of determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.4 Large cardinals and the axiom of determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52.7 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

    3 Classical mathematics 63.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    4 Computable analysis 74.1 Basic constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    4.1.1 Computable real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.1.2 Computable real functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    4.2 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

    5 Constructive analysis 95.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    5.1.1 The intermediate value theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95.1.2 The least upper bound principle and compact sets . . . . . . . . . . . . . . . . . . . . . . 10

    i

  • ii CONTENTS

    5.1.3 Uncountability of the real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.4 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

    6 Constructive proof 116.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    6.1.1 Non-constructive proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116.1.2 Constructive proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

    6.2 Brouwerian counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.5 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    7 Domain of discourse 147.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.3 Universe of discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.4 Booles 1854 denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    8 Element (mathematics) 168.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168.2 Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168.3 Cardinality of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.6 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    9 Empty set 199.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    9.2.1 Operations on the empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229.3 In other areas of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    9.3.1 Extended real numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229.3.2 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229.3.3 Category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    9.4 Questioned existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239.4.1 Axiomatic set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239.4.2 Philosophical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

  • CONTENTS iii

    9.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    10 Equiconsistency 2510.1 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2510.2 Consistency strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2510.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2610.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

    11 Existential quantication 2711.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2711.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

    11.2.1 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2811.2.2 Rules of Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2911.2.3 The empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    11.3 As adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2911.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3011.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3011.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    12 First-order logic 3112.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3112.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    12.2.1 Alphabet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3212.2.2 Formation rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3412.2.3 Free and bound variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3512.2.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    12.3 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3612.3.1 First-order structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3712.3.2 Evaluation of truth values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3712.3.3 Validity, satisability, and logical consequence . . . . . . . . . . . . . . . . . . . . . . . . 3812.3.4 Algebraizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3812.3.5 First-order theories, models, and elementary classes . . . . . . . . . . . . . . . . . . . . . 3912.3.6 Empty domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    12.4 Deductive systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4012.4.1 Rules of inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4012.4.2 Hilbert-style systems and natural deduction . . . . . . . . . . . . . . . . . . . . . . . . . . 4012.4.3 Sequent calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4112.4.4 Tableaux method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4112.4.5 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

  • iv CONTENTS

    12.4.6 Provable identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4112.5 Equality and its axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    12.5.1 First-order logic without equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4212.5.2 Dening equality within a theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    12.6 Metalogical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4312.6.1 Completeness and undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4312.6.2 The LwenheimSkolem theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4312.6.3 The compactness theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4412.6.4 Lindstrms theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    12.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4412.7.1 Expressiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4412.7.2 Formalizing natural languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    12.8 Restrictions, extensions, and variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4512.8.1 Restricted languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4512.8.2 Many-sorted logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4512.8.3 Additional quantiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4612.8.4 Innitary logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4612.8.5 Non-classical and modal logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4612.8.6 Fixpoint logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4712.8.7 Higher-order logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    12.9 Automated theorem proving and formal methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 4712.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4812.11Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4812.12References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4912.13External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    13 Free variables and bound variables 5213.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

    13.1.1 Variable-binding operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5313.2 Formal explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    13.2.1 Function expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5513.3 Natural language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5513.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5613.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    14 G space 5714.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5714.2 Properties and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5714.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

    15 Harvey Friedman 5815.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

  • CONTENTS v

    15.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5915.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5915.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    16 Hereditary set 6016.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6016.2 In formulations of set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6016.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6016.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6016.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    17 Isolated point 6117.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6217.2 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6217.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    18 Lebesgue measure 6318.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

    18.1.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6318.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6418.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6418.4 Null sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6518.5 Construction of the Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6618.6 Relation to other measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6618.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6718.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    19 Mathematical analysis 6819.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6919.2 Important concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    19.2.1 Metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7019.2.2 Sequences and limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    19.3 Main branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7119.3.1 Real analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7119.3.2 Complex analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7119.3.3 Functional analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7119.3.4 Dierential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7119.3.5 Measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7219.3.6 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

    19.4 Other topics in mathematical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7219.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    19.5.1 Physical sciences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7319.5.2 Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

  • vi CONTENTS

    19.5.3 Other areas of mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7319.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7319.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7419.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7519.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

    20 Natural language 7620.1 Dening natural language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7620.2 Native language learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7620.3 Origins of natural language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7720.4 Controlled languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7720.5 Constructed languages and international auxiliary languages . . . . . . . . . . . . . . . . . . . . . 7720.6 Modalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

    20.6.1 Sign languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7820.6.2 Written languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

    20.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7820.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7820.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

    21 Peano axioms 8021.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8021.2 Arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

    21.2.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8221.2.2 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8221.2.3 Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    21.3 First-order theory of arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8321.3.1 Equivalent axiomatizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    21.4 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8521.4.1 Nonstandard models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8521.4.2 Set-theoretic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8521.4.3 Interpretation in category theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    21.5 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8621.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8721.7 Footnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8721.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8821.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    22 Per Lindstrm 9022.1 Selected publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9022.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9022.3 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9022.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

  • CONTENTS vii

    23 Perfect set 9123.1 Examples and nonexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9123.2 Imperfection of a space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9123.3 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9123.4 Connection with other topological properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9223.5 Perfect spaces in descriptive set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9223.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9223.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

    24 Perfect set property 9324.1 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    25 Predicate (mathematical logic) 9425.1 Simplied overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9425.2 Formal denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9425.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9525.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9525.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    26 Primitive recursive arithmetic 9626.1 Language and axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9626.2 Logic-free calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9726.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9726.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9826.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

    27 Proof theory 9927.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9927.2 Formal and informal proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9927.3 Kinds of proof calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10027.4 Consistency proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10027.5 Structural proof theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10027.6 Proof-theoretic semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10127.7 Tableau systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10127.8 Ordinal analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10127.9 Logics from proof analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10127.10See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10127.11Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10127.12References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    28 Property of Baire 10328.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10328.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

  • viii CONTENTS

    28.3 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    29 Quantier (linguistics) 10429.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10429.2 Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10429.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10529.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10529.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    30 Quantier (logic) 10630.1 Mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10630.2 Algebraic approaches to quantication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10630.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10730.4 Nesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10830.5 Equivalent expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10830.6 Range of quantication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10930.7 Formal semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10930.8 Paucal, multal and other degree quantiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11130.9 Other quantiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11130.10History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11230.11See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11230.12References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11230.13External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    31 Reverse mathematics 11431.1 General principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    31.1.1 Use of second-order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11431.2 The big ve subsystems of second order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . 115

    31.2.1 The base system RCA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11531.2.2 Weak Knigs lemma WKL0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11631.2.3 Arithmetical comprehension ACA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11731.2.4 Arithmetical transnite recursion ATR0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 11831.2.5 11 comprehension 11-CA0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

    31.3 Additional systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11831.4 -models and -models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11931.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11931.6 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    32 Second-order arithmetic 12032.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    32.1.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12032.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12132.1.3 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

  • CONTENTS ix

    32.1.4 The full system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12232.2 Models of second-order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12232.3 Denable functions of second-order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12332.4 Subsystems of second-order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    32.4.1 Arithmetical comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12332.4.2 The arithmetical hierarchy for formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12332.4.3 Recursive comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12432.4.4 Weaker systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12432.4.5 Stronger systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

    32.5 Projective Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12532.6 Coding mathematics in second-order arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . 12532.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12532.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    33 Semantics 12733.1 Linguistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12733.2 Montague grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12833.3 Dynamic turn in semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12833.4 Prototype theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12933.5 Theories in semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    33.5.1 Model theoretic semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12933.5.2 Formal (or truth-conditional) semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12933.5.3 Lexical and conceptual semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12933.5.4 Lexical semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12933.5.5 Computational semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    33.6 Computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13033.6.1 Programming languages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13033.6.2 Semantic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    33.7 Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13133.8 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    33.8.1 Linguistics and semiotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13133.8.2 Logic and mathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13233.8.3 Computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13233.8.4 Psychology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

    33.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13333.10External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

    34 Topology 13434.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13534.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13634.3 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    34.3.1 Topologies on Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

  • x CONTENTS

    34.3.2 Continuous functions and homeomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . 13934.3.3 Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    34.4 Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13934.4.1 General topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13934.4.2 Algebraic topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14034.4.3 Dierential topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14034.4.4 Geometric topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14034.4.5 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    34.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14134.5.1 Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14134.5.2 Computer science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14134.5.3 Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14134.5.4 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

    34.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14134.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14234.8 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14334.9 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

    35 Universal quantication 14435.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

    35.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14535.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

    35.2.1 Negation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14535.2.2 Other connectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14635.2.3 Rules of inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14735.2.4 The empty set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    35.3 Universal closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14735.4 As adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14835.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14835.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14835.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    36 Urelement 14936.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14936.2 Urelements in set theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14936.3 Quine atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15036.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15036.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    37 Well-founded relation 15137.1 Induction and recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15137.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

  • CONTENTS xi

    37.3 Other properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15237.4 Reexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15337.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    38 ZermeloFraenkel set theory 15438.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15438.2 Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    38.2.1 1. Axiom of extensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15538.2.2 2. Axiom of regularity (also called the Axiom of foundation) . . . . . . . . . . . . . . . . 15538.2.3 3. Axiom schema of specication (also called the axiom schema of separation or of restricted

    comprehension) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15538.2.4 4. Axiom of pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15638.2.5 5. Axiom of union . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15638.2.6 6. Axiom schema of replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15738.2.7 7. Axiom of innity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15838.2.8 8. Axiom of power set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15838.2.9 9. Well-ordering theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    38.3 Motivation via the cumulative hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15938.4 Metamathematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    38.4.1 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16038.5 Criticisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16038.6 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16138.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16138.8 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16238.9 Text and image sources, contributors, and licenses . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    38.9.1 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16338.9.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16838.9.3 Content license . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

  • Chapter 1

    Andrzej Mostowski

    Andrzej Mostowski (1 November 1913 22 August 1975) was a Polish mathematician. He is perhaps best remem-bered for the Mostowski collapse lemma.Born in Lemberg, Austria-Hungary, Mostowski entered University of Warsaw in 1931. He was inuenced byKuratowski, Lindenbaum and Tarski. His Ph.D. came in 1939, ocially directed by Kuratowski but in practicedirected by Tarski who was a young lecturer at that time.He became an accountant after the German invasion of Poland but continued working in the Underground WarsawUniversity. After the Warsaw uprising of 1944 the Nazis tried to put him in a concentration camp. With the help ofsome Polish nurses he escaped to a hospital, choosing to take bread with him rather than his notebook containing hisresearch. Some of this research he reconstructed after the War, however much of it remained lost.This work was largely on recursion theory and undecidability. From 1946 until his death in Vancouver, Canada, heworked at the University of Warsaw. Much of work during that time was on rst order logic and model theory.His son Tadeusz is also a mathematician working on dierential geometry.[1] With Krzysztof Kurdyka and AdamParusinski, Tadeusz Mostowski solved Ren Thom's gradient conjecture in 2000.

    1.1 See also Mostowski model

    1.2 References[1] http://www.mimuw.edu.pl/wydzial/organizacja/pracownicy/tadeusz.mostowski.xml?LANG=en&para=&parb=

    1.3 Bibliography

    1.3.1 Book by MostowskiAndrzej Mostowski, Sentences Undecidable in Formalized Arithmetic: An Exposition of the Theory of Kurt Godel,North-Holland, Amsterdam, 1952, ISBN 978-0313231513

    1.3.2 Papers by Mostowski Andrzej Mostowski, "ber die Unabhngigkeit des Wohlordnungssatzes von Ordnungsprinzip. FundamentaMathematicae Vol. 32, No.1, ss. 201-252, (1939).

    Andrzej Mostowski, On denable sets of positive integers, Fundamenta Mathematicae Vol. 34, No. 1, ss.81-112, (1947).

    1

  • 2 CHAPTER 1. ANDRZEJ MOSTOWSKI

    Andrzej Mostowski, Un thorme sur les nombres cos 2k/n, Colloquium Mathematicae Vol. 1, No. 3, ss.195-196, (1948).

    Casimir Kuratowski, Andrzej Mostowski, Sur un problme de la thorie des groupes et son rapport latopologie, Colloquium Mathematicae Vol. 2, No. 3-4, ss. 212-215, (1951).

    Andrzej Mostowski, Groups connected with Boolean algebras. (Partial solution of the problem P92)", Collo-quium Mathematicae Vol. 2, No. 3-4, ss. 216-219, (1951).

    Andrzej Mostowski, On direct products of theories, Journal of Symbolic Logic, Vol. 17, No. 1, ss. 1-31,(1952).

    Andrzej Mostowski, Models of axiomatic systems, Fundamenta Mathematicae Vol. 39, No. 1, ss. 133-158,(1952).

    Andrzej Mostowski, On a system of axioms which has no recursively enumerable arithmetic model, Funda-menta Mathematicae Vol. 40, No. 1, ss. 56-61, (1953).

    Andrzej Mostowski, A formula with no recursively enumerable model, Fundamenta Mathematicae Vol. 42,No. 1, ss. 125-140, (1955).

    Andrzej Mostowski, Examples of sets denable by means of two and three quantiers, Fundamenta Mathe-maticae Vol. 42, No. 2, ss. 259-270, (1955).

    Andrzej Mostowski, Contributions to the theory of denable sets and functions, Fundamenta MathematicaeVol. 42, No. 2, ss. 271-275, (1955).

    Andrzej Ehrenfeucht, Andrzej Mostowski, Models of Axiomatic Theories Admitting Automorphisms, Fun-damenta Mathematicae, Vol. 43, No. 1, ss. 50-68 (1956).

    Andrzej Mostowski, L'oeuvre scientique de Jan ukasiewicz dans le domaine de la logique mathmatique,Fundamenta Mathematicae Vol. 44, No. 1, ss. 1-11, (1957).

    AndrzejMostowski, On a generalization of quantiers, FundamentaMathematicaeVol. 44, No. 1, ss. 12-36,(1957).

    Andrzej Mostowski, On computable sequences, Fundamenta Mathematicae Vol. 44, No. 1, ss. 37-51,(1957).

    Andrzej Grzegorczyk, AndrzejMostowski and Czesaw Ryll-Nardzewski, The classical and -complete arith-metic, Journal of Symbolic Logic Vol. 23, No. 2, ss. 188-206, (1958).

    Andrzej Mostowski, On a problem of W. Kinna and K. Wagner, Colloquium Mathematicae Vol. 6, No. 1,ss. 207-208, (1958).

    Andrzej Mostowski, A generalization of the incompleteness theorem, Fundamenta Mathematicae Vol. 49,No. 2, ss. 205-232, (1961).

    Andrzej Mostowski, Axiomatizability of some many valued predicate calculi, Fundamenta MathematicaeVol. 50, No. 2, ss. 165-190, (1961).

    Yoshindo Suzuki, Andrzej Mostowski, On -models which are not -models, Fundamenta MathematicaeVol. 65, No. 1, ss. 83-93, (1969).

    1.4 External links Andrzej Mostowski at the Mathematics Genealogy Project O'Connor, John J.; Robertson, Edmund F., Andrzej Mostowski, MacTutor History of Mathematics archive,University of St Andrews.

  • Chapter 2

    Axiom of determinacy

    The axiom of determinacy (abbreviated as AD) is a possible axiom for set theory introduced by Jan Mycielski andHugo Steinhaus in 1962. It refers to certain two-person games of length with perfect information. AD states thatevery such game in which both players choose natural numbers is determined; that is, one of the two players has awinning strategy.The axiom of determinacy is inconsistent with the axiom of choice (AC); the axiom of determinacy implies thatall subsets of the real numbers are Lebesgue measurable, have the property of Baire, and the perfect set property.The last implies a weak form of the continuum hypothesis (namely, that every uncountable set of reals has the samecardinality as the full set of reals).Furthermore, AD implies the consistency of ZermeloFraenkel set theory (ZF). Hence, as a consequence of theincompleteness theorems, it is not possible to prove the relative consistency of ZF + AD with respect to ZF.

    2.1 Types of game that are determinedNot all games require the axiom of determinacy to prove them determined. Games whose winning sets are closed aredetermined. These correspond to many naturally dened innite games. It was shown in 1975 by Donald A. Martinthat games whose winning set is a Borel set are determined. It follows from the existence of sucient large cardinalsthat all games with winning set a projective set are determined (see Projective determinacy), and that AD holds inL(R).

    2.2 Incompatibility of the axiom of determinacy with the axiom of choiceThe set S1 of all rst player strategies in an -game G has the same cardinality as the continuum. The same is trueof the set S2 of all second player strategies. We note that the cardinality of the set SG of all sequences possible in Gis also the continuum. Let A be the subset of SG of all sequences which make the rst player win. With the axiomof choice we can well order the continuum; furthermore, we can do so in such a way that any proper initial portiondoes not have the cardinality of the continuum. We create a counterexample by transnite induction on the set ofstrategies under this well ordering:We start with the set A undened. Let T be the time whose axis has length continuum. We need to consider allstrategies {s1(T)} of the rst player and all strategies {s2(T)} of the second player to make sure that for every strategythere is a strategy of the other player that wins against it. For every strategy of the player considered we will generatea sequence which gives the other player a win. Let t be the time whose axis has length 0 and which is used duringeach game sequence.

    1. Consider the current strategy {s1(T)} of the rst player.2. Go through the entire game, generating (together with the rst players strategy s1(T)) a sequence {a(1), b(2),

    a(3), b(4),...,a(t), b(t+1),...}.3. Decide that this sequence does not belong to A, i.e. s1(T) lost.

    3

  • 4 CHAPTER 2. AXIOM OF DETERMINACY

    4. Consider the strategy {s2(T)} of the second player.

    5. Go through the next entire game, generating (together with the second players strategy s2(T)) a sequence{c(1), d(2), c(3), d(4),...,c(t), d(t+1),...}, making sure that this sequence is dierent from {a(1), b(2), a(3),b(4),...,a(t), b(t+1),...}.

    6. Decide that this sequence belongs to A, i.e. s2(T) lost.

    7. Keep repeating with further strategies if there are any, making sure that sequences already considered do notbecome generated again. (We start from the set of all sequences and each time we generate a sequence andrefute a strategy we project the generated sequence onto rst player moves and onto second player moves, andwe take away the two resulting sequences from our set of sequences.)

    8. For all sequences that did not come up in the above consideration arbitrarily decide whether they belong to A,or to the complement of A.

    Once this has been done we have a game G. If you give me a strategy s1 then we considered that strategy at sometime T = T(s1). At time T, we decided an outcome of s1 that would be a loss of s1. Hence this strategy fails. Butthis is true for an arbitrary strategy; hence the axiom of determinacy and the axiom of choice are incompatible.

    2.3 Innite logic and the axiom of determinacyMany dierent versions of innitary logic were proposed in the late 20th century. One reason that has been given forbelieving in the axiom of determinacy is that it can be written as follows (in a version of innite logic):8G Seq(S) :8a 2 S : 9a0 2 S : 8b 2 S : 9b0 2 S : 8c 2 S : 9c0 2 S::: : (a; a0; b; b0; c; c0:::) 2 G OR9a 2 S : 8a0 2 S : 9b 2 S : 8b0 2 S : 9c 2 S : 8c0 2 S::: : (a; a0; b; b0; c; c0:::) /2 GNote: Seq(S) is the set of all ! -sequences of S. The sentences here are innitely long with a countably innite list ofquantiers where the ellipses appear.In an innitary logic, this principle is therefore a natural generalization of the usual (de Morgan) rule for quantiersthat are true for nite formulas, such as 8a : 9b : 8c : 9d : R(a; b; c; d) OR 9a : 8b : 9c : 8d : :R(a; b; c; d) .

    2.4 Large cardinals and the axiom of determinacyThe consistency of the axiom of determinacy is closely related to the question of the consistency of large cardinalaxioms. By a theorem of Woodin, the consistency of ZermeloFraenkel set theory without choice (ZF) together withthe axiom of determinacy is equivalent to the consistency of ZermeloFraenkel set theory with choice (ZFC) togetherwith the existence of innitely many Woodin cardinals. Since Woodin cardinals are strongly inaccessible, if AD isconsistent, then so are an innity of inaccessible cardinals.Moreover, if to the hypothesis of an innite set of Woodin cardinals is added the existence of a measurable cardinallarger than all of them, a very strong theory of Lebesgue measurable sets of reals emerges, as it is then provable thatthe axiom of determinacy is true in L(R), and therefore that every set of real numbers in L(R) is determined.

    2.5 See also Axiom of real determinacy (ADR) AD+, a variant of the axiom of determinacy formulated by Woodin Axiom of quasi-determinacy (ADQ) Martin measure

  • 2.6. REFERENCES 5

    2.6 References Jech, Thomas (2002). Set theory, third millennium edition (revised and expanded). Springer. ISBN 3-540-44085-2.

    Kanamori, Akihiro (2000). The Higher Innite (2nd ed.). Springer. ISBN 3-540-00384-3. Martin, Donald A.; Steel, John R. (Jan 1989). A Proof of Projective Determinacy. Journal of the AmericanMathematical Society 2 (1): 71125. doi:10.2307/1990913. JSTOR 1990913.

    Moschovakis, Yiannis N. (1980). Descriptive Set Theory. North Holland. ISBN 0-444-70199-0. Mycielski, Jan; Steinhaus, H. (1962). A mathematical axiom contradicting the axiom of choice. Bulletinde l'Acadmie Polonaise des Sciences. Srie des Sciences Mathmatiques, Astronomiques et Physiques 10: 13.ISSN 0001-4117. MR 0140430.

    Woodin,W.Hugh (1988). Supercompact cardinals, sets of reals, andweakly homogeneous trees. Proceedingsof the National Academy of Sciences of theUnited States of America 85 (18): 65876591. doi:10.1073/pnas.85.18.6587.PMC 282022. PMID 16593979.

    2.7 Further reading Philipp Rohde, On Extensions of the Axiom of Determinacy, Thesis, Department of Mathematics, Universityof Bonn, Germany, 2001

    Telgrsky, R.J. Topological Games: On the 50th Anniversary of the Banach-Mazur Game, Rocky Mountain J.Math. 17 (1987), pp. 227276. (3.19 MB)

  • Chapter 3

    Classical mathematics

    In the foundations ofmathematics, classicalmathematics refers generally to themainstream approach tomathematics,which is based on classical logic and ZFC set theory.[1] It stands in contrast to other types of mathematics such asconstructive mathematics or predicative mathematics. In practice, the most common non-classical systems are usedin constructive mathematics.[2]

    Classical mathematics is sometimes attacked on philosophical grounds, due to constructivist and other objections tothe logic, set theory, etc., chosen as its foundations, such as have been expressed by L. E. J. Brouwer. Almost allmathematics, however, is done in the classical tradition, or in ways compatible with it.Defenders of classical mathematics, such as David Hilbert, have argued that it is easier to work in, and is most fruitful;although they acknowledge non-classical mathematics has at times led to fruitful results that classical mathematicscould not (or could not so easily) attain, they argue that on the whole, it is the other way round.In terms of the philosophy and history of mathematics, the very existence of non-classical mathematics raises thequestion of the extent to which the foundational mathematical choices humanity has made arise from their superi-ority rather than from, say, expedience-driven concentrations of eort on particular aspects.

    3.1 See also Constructivism (mathematics) Finitism Intuitionism Non-classical analysis Traditional mathematics Ultranitism Philosophy of Mathematics

    3.2 References[1] Stewart Shapiro, ed. (2005). The Oxford Handbook of Philosophy of Mathematics and Logic. Oxford University Press,

    USA. ISBN 978-0-19-514877-0.

    [2] Torkel Franzn (1987). Provability and Truth. Almqvist & Wiksell International. ISBN 91-22-01158-7.

    6

  • Chapter 4

    Computable analysis

    In mathematics and computer science, computable analysis is the study of mathematical analysis from the perspec-tive of computability theory. It is concerned with the parts of real analysis and functional analysis that can be carriedout in a computable manner. The eld is closely related to constructive analysis and numerical analysis.

    4.1 Basic constructions

    4.1.1 Computable real numbersMain article: Computable number

    Computable numbers are the real numbers that can be computed to within any desired precision by a nite, terminatingalgorithm. They are also known as the recursive numbers or the computable reals.

    4.1.2 Computable real functionsMain article: Computable real function

    A function f : R ! R is sequentially computable if, for every computable sequence fxig1i=1 of real numbers, thesequence ff(xi)g1i=1 is also computable.

    4.2 Basic resultsThe computable real numbers form a real closed eld. The equality relation on computable real numbers is notcomputable, but for unequal computable real numbers the order relation is computable.Computable real functions map computable real numbers to computable real numbers. The composition of com-putable real functions is again computable. Every computable real function is continuous.

    4.3 See also Specker sequence

    4.4 References Oliver Aberth (1980), Computable analysis, McGraw-Hill, 1980.

    7

  • 8 CHAPTER 4. COMPUTABLE ANALYSIS

    Marian Pour-El and Ian Richards, Computability in Analysis and Physics, Springer-Verlag, 1989. Stephen G. Simpson (1999), Subsystems of second-order arithmetic. Klaus Weihrauch (2000), Computable analysis, Springer, 2000.

    4.5 External links Computability and Complexity in Analysis Network

  • Chapter 5

    Constructive analysis

    In mathematics, constructive analysis is mathematical analysis done according to some principles of constructivemathematics. This contrasts with classical analysis, which (in this context) simply means analysis done according tothe (ordinary) principles of classical mathematics.Generally speaking, constructive analysis can reproduce theorems of classical analysis, but only in application toseparable spaces; also, some theorems may need to be approached by approximations. Furthermore, many classicaltheorems can be stated in ways that are logically equivalent according to classical logic, but not all of these forms willbe valid in constructive analysis, which uses intuitionistic logic.

    5.1 Examples

    5.1.1 The intermediate value theorem

    For a simple example, consider the intermediate value theorem (IVT). In classical analysis, IVT says that, given anycontinuous function f from a closed interval [a,b] to the real line R, if f(a) is negative while f(b) is positive, thenthere exists a real number c in the interval such that f(c) is exactly zero. In constructive analysis, this does not hold,because the constructive interpretation of existential quantication (there exists) requires one to be able to constructthe real number c (in the sense that it can be approximated to any desired precision by a rational number). But if fhovers near zero during a stretch along its domain, then this cannot necessarily be done.However, constructive analysis provides several alternative formulations of IVT, all of which are equivalent to theusual form in classical analysis, but not in constructive analysis. For example, under the same conditions on f as inthe classical theorem, given any natural number n (no matter how large), there exists (that is, we can construct) a realnumber cn in the interval such that the absolute value of f(cn) is less than 1/n. That is, we can get as close to zero aswe like, even if we can't construct a c that gives us exactly zero.Alternatively, we can keep the same conclusion as in the classical IVT a single c such that f(c) is exactly zero while strengthening the conditions on f. We require that f be locally non-zero, meaning that given any point x in theinterval [a,b] and any natural number m, there exists (we can construct) a real number y in the interval such that |y -x| < 1/m and |f(y)| > 0. In this case, the desired number c can be constructed. This is a complicated condition, butthere are several other conditions which imply it and which are commonly met; for example, every analytic functionis locally non-zero (assuming that it already satises f(a) < 0 and f(b) > 0).For another way to view this example, notice that according to classical logic, if the locally non-zero condition fails,then it must fail at some specic point x; and then f(x) will equal 0, so that IVT is valid automatically. Thus inclassical analysis, which uses classical logic, in order to prove the full IVT, it is sucient to prove the constructiveversion. From this perspective, the full IVT fails in constructive analysis simply because constructive analysis does notaccept classical logic. Conversely, one may argue that the true meaning of IVT, even in classical mathematics, is theconstructive version involving the locally non-zero condition, with the full IVT following by pure logic afterwards.Some logicians, while accepting that classical mathematics is correct, still believe that the constructive approach givesa better insight into the true meaning of theorems, in much this way.

    9

  • 10 CHAPTER 5. CONSTRUCTIVE ANALYSIS

    5.1.2 The least upper bound principle and compact setsAnother dierence between classical and constructive analysis is that constructive analysis does not accept the leastupper bound principle, that any subset of the real line R has a least upper bound (or supremum), possibly innite.However, as with the intermediate value theorem, an alternative version survives; in constructive analysis, any locatedsubset of the real line has a supremum. (Here a subset S of R is located if, whenever x < y are real numbers, eitherthere exists an element s of S such that x < s, or y is an upper bound of S.) Again, this is classically equivalent to thefull least upper bound principle, since every set is located in classical mathematics. And again, while the denitionof located set is complicated, nevertheless it is satised by several commonly studied sets, including all intervals andcompact sets.Closely related to this, in constructive mathematics, fewer characterisations of compact spaces are constructivelyvalidor from another point of view, there are several dierent concepts which are classically equivalent but notconstructively equivalent. Indeed, if the interval [a,b] were sequentially compact in constructive analysis, then theclassical IVT would follow from the rst constructive version in the example; one could nd c as a cluster point ofthe innite sequence (cn)n.

    5.1.3 Uncountability of the real numbersA constructive version of the famous theorem of Cantor, that the real numbers are uncountable is: Let {an} bea sequence of real numbers. Let x0 and y0 be real numbers, x0 < y0. Then there exists a real number x with x0 x y0 and x an (n Z+) . . . The proof is essentially Cantors 'diagonal' proof. (Theorem 1 in Errett Bishop,Foundations of Constructive Analysis, 1967, page 25.) It should be stressed that the constructive component of thediagonal argument already appeared in Cantors work.[1] According to Kanamori, a historical misrepresentation hasbeen perpetuated that associates diagonalization with non-constructivity.

    5.2 References[1] Akihiro Kanamori, The Mathematical Development of Set Theory from Cantor to Cohen, Bulletin of Symbolic Logic /

    Volume 2 / Issue 01 / March 1996, pp 1-71

    5.3 See also Computable analysis Indecomposability

    5.4 Further reading Bridger, Mark (2007). Real Analysis: A Constructive Approach. Hoboken: Wiley. ISBN 0-471-79230-6.

  • Chapter 6

    Constructive proof

    In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical objectby creating or providing a method for creating the object. This is in contrast to a non-constructive proof (alsoknown as an existence proof or pure existence theorem) which proves the existence of a particular kind of objectwithout providing an example.Some non-constructive proofs show that if a certain proposition is false, a contradiction ensues; consequently theproposition must be true (proof by contradiction). However, the principle of explosion (ex falso quodlibet) has beenaccepted in some varieties of constructive mathematics, including intuitionism.Constructivism is a mathematical philosophy that rejects all but constructive proofs in mathematics. This leads toa restriction on the proof methods allowed (prototypically, the law of the excluded middle is not accepted) and adierent meaning of terminology (for example, the term or has a stronger meaning in constructive mathematicsthan in classical).Constructive proofs can be seen as dening certied mathematical algorithms: this idea is explored in the BrouwerHeytingKolmogorov interpretation of constructive logic, the CurryHoward correspondence between proofs andprograms, and such logical systems as Per Martin-Lf's Intuitionistic Type Theory, and Thierry Coquand and GrardHuet's Calculus of Constructions.

    6.1 Examples

    6.1.1 Non-constructive proofs

    First consider the theorem that there are an innitude of prime numbers. Euclid's proof is constructive. But acommon way of simplifying Euclids proof postulates that, contrary to the assertion in the theorem, there are onlya nite number of them, in which case there is a largest one, denoted n. Then consider the number n! + 1 (1 + theproduct of the rst n numbers). Either this number is prime, or all of its prime factors are greater than n. Withoutestablishing a specic prime number, this proves that one exists that is greater than n, contrary to the original postulate.Now consider the theorem There exist irrational numbers a and b such that ab is rational. This theorem can beproven using a constructive proof, or using a non-constructive proof.The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since atleast 1970:[1][2]

    CURIOSA339. A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational.p2p2 is either rational or irrational. If it is rational, our statement is proved. If it is irrational, (

    p2p2)p2 =

    2 proves our statement.Dov Jarden Jerusalem

    In a bit more detail:

    11

  • 12 CHAPTER 6. CONSTRUCTIVE PROOF

    Recall that p2 is irrational, and 2 is rational. Consider the number q = p2p2 . Either it is rational or it is

    irrational.

    If q is rational, then the theorem is true, with a and b both beingp2 .

    If q is irrational, then the theorem is true, with a beingp2p2 and b being

    p2 , since

    p2

    p2p2

    =p2(p2p2)

    =p22= 2:

    This proof is non-constructive because it relies on the statement Either q is rational or it is irrationalan instanceof the law of excluded middle, which is not valid within a constructive proof. The non-constructive proof doesnot construct an example a and b; it merely gives a number of possibilities (in this case, two mutually exclusivepossibilities) and shows that one of thembut does not show which onemust yield the desired example.

    (It turns out thatp2p2 is irrational because of the GelfondSchneider theorem, but this fact is irrelevant to the

    correctness of the non-constructive proof.)

    6.1.2 Constructive proofsA constructive proof of the above theorem on irrational powers of irrationals would give an actual example, such as:

    a =p2 ; b = log2 9 ; ab = 3 :

    The square root of 2 is irrational, and 3 is rational. log2 9 is also irrational: if it were equal to mn , then, by theproperties of logarithms, 9n would be equal to 2m, but the former is odd, and the latter is even.A more substantial example is the graph minor theorem. A consequence of this theorem is that a graph can be drawnon the torus if, and only if, none of its minors belong to a certain nite set of "forbidden minors". However, the proofof the existence of this nite set is not constructive, and the forbidden minors are not actually specied. They are stillunknown.

    6.2 Brouwerian counterexamplesIn constructive mathematics, a statement may be disproved by giving a counterexample, as in classical mathematics.However, it is also possible to give a Brouwerian counterexample to show that the statement is non-constructive.This sort of counterexample shows that the statement implies some principle that is known to be non-constructive.If it can be proved constructively that a statement implies some principle that is not constructively provable, thenthe statement itself cannot be constructively provable. For example, a particular statement may be shown to implythe law of the excluded middle. An example of a Brouwerian counterexample of this type is Diaconescus theorem,which shows that the full axiom of choice is non-constructive in systems of constructive set theory, since the axiomof choice implies the law of excluded middle in such systems. The eld of constructive reverse mathematics developsthis idea further by classifying various principles in terms of how nonconstructive they are, by showing they areequivalent to various fragments of the law of the excluded middle.Brouwer also provided weak counterexamples.[3] Such counterexamples do not disprove a statement, however; theyonly show that, at present, no constructive proof of the statement is known. One weak counterexample begins bytaking some unsolved problem of mathematics, such as Goldbachs conjecture. Dene a function f of a naturalnumber x as follows:

    f(x) =

    (0 if Goldbach's conjecture is false1 if Goldbach's conjecture is true

    Although this is a denition by cases, it is still an admissible denition in constructivemathematics. Several facts aboutf can be proved constructively. However, based on the dierent meaning of the words in constructive mathematics,

  • 6.3. SEE ALSO 13

    if there is a constructive proof that "f(0) = 1 or f(0) 1 then this would mean that there is a constructive proof ofGoldbachs conjecture (in the former case) or a constructive proof that Goldbachs conjecture is false (in the lattercase). Because no such proof is known, the quoted statementmust also not have a known constructive proof. However,it is entirely possible that Goldbachs conjecture may have a constructive proof (as we do not know at present whetherit does), in which case the quoted statement would have a constructive proof as well, albeit one that is unknown atpresent. The main practical use of weak counterexamples is to identify the hardness of a problem. For example, thecounterexample just shown shows that the quoted statement is at least as hard to prove as Goldbachs conjecture.Weak counterexamples of this sort are often related to the limited principle of omniscience.

    6.3 See also Existence theorem#'Pure' existence results Non-constructive algorithm existence proofs Errett Bishop - author of the book Foundations of Constructive Analysis.

    6.4 References[1] J. Roger Hindley, The Root-2 Proof as an Example of Non-constructivity, unpublished paper, September 2014, full text

    [2] Dov Jarden, A simple proof that a power of an irrational number to an irrational exponent may be rational, Curiosa No.339 in Scripta Mathematica 19:229 (1953)

    [3] A. S. Troelstra, Principles of Intuitionism, Lecture Notes in Mathematics 95, 1969, p. 102

    6.5 Further reading J. Franklin and A. Daoud (2011) Proof in Mathematics: An Introduction. Kew Books, ISBN 0-646-54509-4,ch. 4

    Hardy, G.H. & Wright, E.M. (1979) An Introduction to the Theory of Numbers (Fifth Edition). Oxford Uni-versity Press. ISBN 0-19-853171-0

    Anne Sjerp Troelstra and Dirk van Dalen (1988) Constructivism inMathematics: Volume 1 Elsevier Science.ISBN 978-0-444-70506-8

    6.6 External links Weak counterexamples by Mark van Atten, Stanford Encyclopedia of Philosophy

  • Chapter 7

    Domain of discourse

    In the formal sciences, the domain of discourse, also called the universe of discourse, universal set, or simplyuniverse, is the set of entities over which certain variables of interest in some formal treatment may range.

    7.1 OverviewThe domain of discourse is usually identied in the preliminaries, so that there is no need in the further treatment tospecify each time the range of the relevant variables.[1] Many logicians distinguish, sometimes only tacitly, betweenthe domain of a science and the universe of discourse of a formalization of the science.[2] Giuseppe Peanoformalized number theory (arithmetic of positive integers) taking its domain to be the positive integers and theuniverse of discourse to include all individuals not just integers.

    7.2 ExamplesFor example, in an interpretation of rst-order logic, the domain of discourse is the set of individuals that thequantiers range over. In one interpretation, the domain of discourse could be the set of real numbers; in anotherinterpretation, it could be the set of natural numbers. If no domain of discourse has been identied, a propositionsuch as x (x2 2) is ambiguous. If the domain of discourse is the set of real numbers, the proposition is false, withx = 2 as counterexample; if the domain is the set of naturals, the proposition is true, since 2 is not the square of anynatural number.

    7.3 Universe of discourseThe term universe of discourse generally refers to the collection of objects being discussed in a specic discourse.In model-theoretical semantics, a universe of discourse is the set of entities that a model is based on. The conceptuniverse of discourse is generally attributed to Augustus De Morgan (1846) but the name was used for the rst timein history by George Boole (1854) on page 42 of his Laws of Thought in a long and incisive passage well worthstudy. Booles denition is quoted below. The concept, probably discovered independently by Boole in 1847, playeda crucial role in his philosophy of logic especially in his stunning principle of wholistic reference.A database is a model of some aspect of the reality of an organisation. It is conventional to call this reality theuniverse of discourse or domain of discourse.

    7.4 Booles 1854 denitionIn every discourse, whether of the mind conversing with its own thoughts, or of the individual in his intercoursewith others, there is an assumed or expressed limit within which the subjects of its operation are conned. The mostunfettered discourse is that in which the words we use are understood in the widest possible application, and for them

    14

  • 7.5. SEE ALSO 15

    the limits of discourse are co-extensive with those of the universe itself. But more usually we conne ourselves to aless spacious eld. Sometimes, in discoursing of men we imply (without expressing the limitation) that it is of menonly under certain circumstances and conditions that we speak, as of civilized men, or of men in the vigour of life,or of men under some other condition or relation. Now, whatever may be the extent of the eld within which all theobjects of our discourse are found, that eld may properly be termed the universe of discourse. Furthermore, thisuniverse of discourse is in the strictest sense the ultimate subject of the discourse.[3]

    7.5 See also Domain of a function Domain theory Interpretation (logic) Term algebra Universe (mathematics)

    7.6 References[1] Corcoran, John. Universe of discourse. Cambridge Dictionary of Philosophy, Cambridge University Press, 1995, p. 941.

    [2] Jos Miguel Sagillo, Domains of sciences, universe of discourse, and omega arguments, History and philosophy of logic,vol. 20 (1999), pp. 267280.

    [3] George Boole. 1854/2003. The Laws of Thought, facsimile of 1854 edition, with an introduction by J. Corcoran. Bualo:Prometheus Books (2003). Reviewed by James van Evra in Philosophy in Review.24 (2004) 167169.

  • Chapter 8

    Element (mathematics)

    In mathematics, an element, ormember, of a set is any one of the distinct objects that make up that set.

    8.1 SetsWriting A = {1, 2, 3, 4} means that the elements of the set A are the numbers 1, 2, 3 and 4. Sets of elements of A,for example {1, 2}, are subsets of A.Sets can themselves be elements. For example consider the set B = {1, 2, {3, 4}}. The elements of B are not 1, 2, 3,and 4. Rather, there are only three elements of B, namely the numbers 1 and 2, and the set {3, 4}.The elements of a set can be anything. For example, C = { red, green, blue }, is the set whose elements are the colorsred, green and blue.

    8.2 Notation and terminology

    First usage of the symbol in the work Arithmetices principia nova methodo exposita by Giuseppe Peano.

    The relation is an element of, also called set membership, is denoted by the symbol "". Writing

    x 2 A

    means that "x is an element of A". Equivalent expressions are "x is a member of A", "x belongs to A", "x is in A"and "x lies in A". The expressions "A includes x" and "A contains x" are also used to mean set membership, howeversome authors use them to mean instead "x is a subset of A".[1] Logician George Boolos strongly urged that containsbe used for membership only and includes for the subset relation only.[2]

    Another possible notation for the same relation is

    16

  • 8.3. CARDINALITY OF SETS 17

    A 3 x;meaning "A contains x", though it is used less often.The negation of set membership is denoted by the symbol "". Writing

    x /2 Ameans that "x is not an element of A".The symbol was rst used by Giuseppe Peano 1889 in his work Arithmetices principia nova methodo exposita. Herehe wrote on page X:

    Signum signicat est. Ita a b legitur a est quoddam b; ...

    which means

    The symbol means is. So a b has to be read as a is a b; ...

    Thereby is a derivation from the lowercase Greek letter epsilon ("") and shall be the rst letter of the word ,which means is.The Unicode characters for these symbols are U+2208 ('element of'), U+220B ('contains as member') and U+2209('not an element of'). The equivalent LaTeX commands are "\in, "\ni and "\notin. Mathematica has commands"\[Element]" and "\[NotElement]".

    8.3 Cardinality of setsMain article: Cardinality

    The number of elements in a particular set is a property known as cardinality; informally, this is the size of a set. Inthe above examples the cardinality of the set A is 4, while the cardinality of either of the sets B and C is 3. An inniteset is a set with an innite number of elements, while a nite set is a set with a nite number of elements. The aboveexamples are examples of nite sets. An example of an innite set is the set of positive integers = { 1, 2, 3, 4, ... }.

    8.4 ExamplesUsing the sets dened above, namely A = {1, 2, 3, 4 }, B = {1, 2, {3, 4}} and C = { red, green, blue }:

    2 A {3,4} B {3,4} is a member of B Yellow C The cardinality of D = { 2, 4, 8, 10, 12 } is nite and equal to 5. The cardinality of P = { 2, 3, 5, 7, 11, 13, ...} (the prime numbers) is innite (this was proven by Euclid).

    8.5 References[1] Eric Schechter (1997). Handbook of Analysis and Its Foundations. Academic Press. ISBN 0-12-622760-8. p. 12[2] George Boolos (February 4, 1992). 24.243 Classical Set Theory (lecture). (Speech). Massachusetts Institute of Technology,

    Cambridge, MA.

  • 18 CHAPTER 8. ELEMENT (MATHEMATICS)

    8.6 Further reading Halmos, Paul R. (1974) [1960], Naive Set Theory, Undergraduate Texts in Mathematics (Hardcover ed.), NY:Springer-Verlag, ISBN 0-387-90092-6 - Naive means that it is not fully axiomatized, not that it is silly oreasy (Halmoss treatment is neither).

    Jech, Thomas (2002), Set Theory, Stanford Encyclopedia of Philosophy Suppes, Patrick (1972) [1960], Axiomatic Set Theory, NY: Dover Publications, Inc., ISBN 0-486-61630-4 -Both the notion of set (a collection of members), membership or element-hood, the axiom of extension, theaxiom of separation, and the union axiom (Suppes calls it the sum axiom) are needed for a more thoroughunderstanding of set element.

    8.7 External links Weisstein, Eric W., Element, MathWorld.

  • Chapter 9

    Empty set

    "" redirects here. For similar symbols, see (disambiguation).In mathematics, and more specically set theory, the empty set is the unique set having no elements; its size or

    cardinality (count of elements in a set) is zero. Some axiomatic set theories ensure that the empty set exists byincluding an axiom of empty set; in other theories, its existence can be deduced. Many possible properties of setsare trivially true for the empty set.Null set was once a common synonym for empty set, but is now a technical term in measure theory. The empty setmay also be called the void set.

    9.1 NotationCommon notations for the empty set include "{}", "", and " ; ". The latter two symbols were introduced by theBourbaki group (specically Andr Weil) in 1939, inspired by the letter in the Norwegian and Danish alphabets(and not related in any way to the Greek letter ).[1]

    The empty-set symbol is found at Unicode point U+2205.[2] In TeX, it is coded as \emptyset or \varnothing.

    9.2 PropertiesIn standard axiomatic set theory, by the principle of extensionality, two sets are equal if they have the same elements;therefore there can be only one set with no elements. Hence there is but one empty set, and we speak of the emptyset rather than an empty set.The mathematical symbols employed below are explained here.For any set A:

    The empty set is a subset of A:8A : ; A

    The union of A with the empty set is A:8A : A [ ; = A

    The intersection of A with the empty set is the empty set:8A : A \ ; = ;

    The Cartesian product of A and the empty set is the empty set:8A : A ; = ;

    19

  • 20 CHAPTER 9. EMPTY SET

    The empty set is the set containing no elements.

    The empty set has the following properties:

    Its only subset is the empty set itself:8A : A ; ) A = ;

    The power set of the empty set is the set containing only the empty set:2; = f;g

  • 9.2. PROPERTIES 21

    A symbol for the empty set

    Its number of elements (that is, its cardinality) is zero:card(;) = 0

    The connection between the empty set and zero goes further, however: in the standard set-theoretic denition ofnatural numbers, we use sets to model the natural numbers. In this context, zero is modelled by the empty set.For any property:

    For every element of ; the property holds (vacuous truth); There is no element of ; for which the property holds.

    Conversely, if for some property and some set V, the following two statements hold:

    For every element of V the property holds; There is no element of V for which the property holds,

    V = ;

  • 22 CHAPTER 9. EMPTY SET

    By the denition of subset, the empty set is a subset of any set A, as every element x of ; belongs to A. If it is nottrue that every element of ; is in A, there must be at least one element of ; that is not present in A. Since there areno elements of ; at all, there is no element of ; that is not in A. Hence every element of ; is in A, and ; is a subsetof A. Any statement that begins for every element of ; " is not making any substantive claim; it is a vacuous truth.This is often paraphrased as everything is true of the elements of the empty set.

    9.2.1 Operations on the empty setOperations performed on the empty set (as a set of things to be operated upon) are unusual. For example, the sumof the elements of the empty set is zero, but the product of the elements of the empty set is one (see empty product).Ultimately, the results of these operations say more about the operation in question than about the empty set. Forinstance, zero is the identity element for addition, and one is the identity element for multiplication.A disarrangement of a set is a permutation of the set that leaves no element in the same position. The empty set is adisarrangment of itself as no element can be found that retains its original position.

    9.3 In other areas of mathematics

    9.3.1 Extended real numbersSince the empty set has no members, when it is considered as a subset of any ordered set, then every member ofthat set will be an upper bound and lower bound for the empty set. For example, when considered as a subset of thereal numbers, with its usual ordering, represented by the real number line, every real number is both an upper andlower bound for the empty set.[3] When considered as a subset of the extended reals formed by adding two numbersor points to the real numbers, namely negative innity, denoted 1; which is dened to be less than every otherextended real number, and positive innity, denoted +1; which is dened to be greater than every other extendedreal number, then:

    sup ; = min(f1;+1g [ R) = 1;

    and

    inf ; = max(f1;+1g [ R) = +1:

    That is, the least upper bound (sup or supremum) of the empty set is negative innity, while the greatest lower bound(inf or inmum) is positive innity. By analogy with the above, in the domain of the extended reals, negative innityis the identity element for the maximum and supremum operators, while positive innity is the identity element forminimum and inmum.

    9.3.2 TopologyConsidered as a subset of the real number line (or more generally any topological space), the empty set is both closedand open; it is an example of a clopen set. All its boundary points (of which there are none) are in the empty set,and the set is therefore closed; while for every one of its points (of which there are again none), there is an openneighbourhood in the empty set, and the set is therefore open. Moreover, the empty set is a compact set by the factthat every nite set is compact.The closure of the empty set is empty. This is known as preservation of nullary unions.

    9.3.3 Category theoryIf A is a set, then there exists precisely one function f from {} to A, the empty function. As a result, the empty set isthe unique initial object of the category of sets and functions.

  • 9.4. QUESTIONED EXISTENCE 23

    The empty set can be turned into a topological space, called the empty space, in just one way: by dening the emptyset to be open. This empty topological space is the unique initial object in the category of topological spaces withcontinuous maps.The empty set is more ever a strict initial object: only the empty set has a function to the empty set.

    9.4 Questioned existence

    9.4.1 Axiomatic set theory

    In Zermelo set theory, the existence of the empty set is assured by the axiom of empty set, and its uniqueness followsfrom the axiom of extensionality. However, the axiom of empty set can be shown redundant in either of two ways:

    There is already an axiom implying the existence of at least one set. Given such an axiom together with theaxiom of separation, the existence of the empty set is easily proved.

    In the presence of urelements, it is easy to prove that at least one set exists, viz. the set of all urelements. Again,given the axiom of separation, the empty set is easily proved.

    9.4.2 Philosophical issues

    While the empty set is a standard and widely accepted mathematical concept, it remains an ontological curiosity,whose meaning and usefulness are debated by philosophers and logicians.The empty set is not the same thing as nothing; rather, it is a set with nothing inside it and a set is always something.This issue can be overcome by viewing a set as a bagan empty bag undoubtedly still exists. Darling (2004) explainsthat the empty set is not nothing, but rather the set of all triangles with four sides, the set of all numbers that arebigger than nine but smaller than eight, and the set of all opening moves in chess that involve a king.[4]

    The popular syllogism

    Nothing is better than eternal happiness; a ham sandwich is better than nothing; therefore, a ham sand-wich is better than eternal happiness

    is often used to demonstrate the philosophical relation between the concept of nothing and the empty set. Darlingwrites that the contrast can be seen by rewriting the statements Nothing is better than eternal happiness and "[A]ham sandwich is better than nothing in a mathematical tone. According to Darling, the former is equivalent to Theset of all things that are better than eternal happiness is ; " and the latter to The set {ham sandwich} is better thanthe set ; ". It is noted that the rst compares elements of sets, while the second compares the sets themselves.[4]Jonathan Lowe argues that while the empty set:

    "...was undoubtedly an important landmark in the history of mathematics, we should not assume thatits utility in calculation is dependent upon its actually denoting some object.

    it is also the case that:

    All that we are ever informed about the empty set is that it (1) is a set, (2) has no members, and(3) is unique amongst sets in having no members. However, there are very many things that 'have nomembers, in the set-theoretical sensenamely, all non-sets. It is perfectly clear why these things haveno members, for they are not sets. What is unclear is how there can be