quadratic functions chapter 7. vertex form vertex (h, k)

38
Quadratic Functions Chapter 7

Upload: cason-whinery

Post on 16-Dec-2015

265 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Quadratic Functions

Chapter 7

Page 2: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Vertex Form

• Vertex (h, k)

khxaxf 2)()(

)8,5(

8)5(2 2 x

)2,7(

2)7(3 2

x

)6,0(

65 2 x

)0,0(

3 2x

)0,9(

)9(2 2x

Page 3: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Vertex Form

• a > 0, opens upward

• a < 0, opens downward

• the larger│a│is the narrower the parabola

• the closer a is to zero the wider the parabola

khxaxf 2)()(

Page 4: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Stretching the Unit Quadratic

2)( xxf 22)( xxf

2

2

1)( xxf

Page 5: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Reflecting Across the x-axis

2)( xxf

2)( xxf

Page 6: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Translating Graphs Up/Down

2)( xxf

2)( 2 xxf

2)( 2 xxf

Page 7: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Translating Graphs Right/Left

2)( xxf

2)3()( xxf

2)4()( xxf

Page 8: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Graphing a Quadratic Function

• First graph vertex

• Find a point

1)3(2)( xxf

)1,2(

1)2(

12)2(

1)1(2)2(

1)1(2)2(

1)32(2)2(2

2

f

f

f

f

f

)1,3(

Page 9: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

• Draw axis of symmetry through vertex

• Reflect point over axis

Graphing a Quadratic Function1)3(2)( xxf

)1,4(

3x

Page 10: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Finding a Quadratic Model

• Create a scattergram• Select a vertex (Doesn’t have to be data

point)• Select non-vertex point• Plug vertex in for h and k, and the nonvertex

point for x and f(x)/y into a standard equation

• Solve for a• Then substitute a into the standard equation

Page 11: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Graph Quadratic Model

• Pick vertex– (70, 5)

• Pick point– (40, 9)

x f(x)

1930 (30) 12

1940 (40) 9

1950 (50) 7

1960 (60) 6

1970 (70) 5

1980 (80) 6

1990 (90) 7

2000 (100) 10

Page 12: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

900

4

9004

5590059

5)30(9

5)7040(9

5)70(

)(

)()(

2

2

2

2

2

a

a

a

a

a

xay

khxay

khxaxf5)70(

900

4)( 2 xxf

Page 13: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

7.2 Graphing Quadratics in Standard Form

Page 14: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Quadratic in Standard Form

• Find y-intercept (0, c)

• Find symmetric point

• Use midpoint formula of the x-coordinates of the symmetric points to find the x-coordinate of the vertex

• Plug x-coordinate of the vertex into equation for x

cbxaxxf 2)(

Page 15: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Graphing Quadratics

• Y-intercept– (0, 7)

• Symmetry Point

76)( 2 xxxf

)7,6)(7,0(

6,0

06,0

)6(0

60

77677

767

2

2

2

xorx

xorx

xx

xx

xx

xx

Page 16: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Graphing Quadratics

• (0, 7) (6, 7)• Midpoint

76)( 2 xxxf

32

)6(0

16)3(

7189)3(

7)3(6)3()3( 2

f

f

f

Page 17: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Vertex formula

• vertex formula

x-coordinate

• y-coordinate

cbxaxxf 2)(

a

bx

2

a

bf

2

a

bf

a

b

2,

2

Page 18: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Vertex Formula

3

23

3

11

3

12

3

2

3

1

43

12

9

13

43

12

3

13

3

1

3

1

)3(2

2

423)(

2

2

f

x

xxxf

3

23,

3

1

Page 19: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Maximum/Minimum

• For a quadratic function with vertex (h, k)

• If a > 0, then the parabola opens upward and the vertex is the minimum point (k minimum value)

• If a < 0, then the parabola opens downward and vertex is the maximum point (k maximum value)

cbxaxxf 2)(

Page 20: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Maximum Value Model

• A person plans to use 200 feet of fencing and a side of her house to enclose a rectangular garden. What dimensions of the rectangle would give the maximum area? What is the area?

Page 21: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

22200

)2200(

2200

2002

wwA

wwA

wl

lwA

lw

100

100200

)50(2200

2200

504

200

)2(2

200

l

l

l

wl

w

Maximum area would be 50 x 100 = 5000

Page 22: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

7.3 Square Root Property

Page 23: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Product/Quotient Property for Square Roots

• For a ≥ 0 and b ≥ 0,

• For a ≥ 0 and b > 0,

• Write radicand as product of largest perfect-square and another number

• Apply the product/quotient property for square roots

baab

b

a

b

a

Page 24: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Simplifying Radical Expressions

• No radicand can be a fraction

• No radicand can have perfect-square factors other than one

• No denominator can have a radical expression

Page 25: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Examples

52

54

54

20

53

59

59

45

5

3

25

3

25

3

6

14

2

2

23

7

29

7

18

7

Page 26: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Square Root Property• Let k be a nonnegative constant. Then,

is equivalent to kx 2 kx

3

3

5

15

5

5

785

2

2

2

x

x

x

x

24

173

8

173

8

173

8

17)3( 2

x

x

x

x

4

3412

4

34

4

12

4

343

2

2

22

173

x

x

x

x

Page 27: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Imaginary Numbers

• Imaginary unit, (i), is the number whose square is -1.

• Square root of negative number– If n is a positive real number,

12 i 1i

nin

Page 28: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Complex Numbers

• A complex number is a number in the form

• Examples

• Imaginary number is a complex number, where a and b are real numbers and b ≠ 0

bia

i73 i35 ii 330 606 i

Page 29: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Solving with Negative Square Roots

ix

ix

x

x

6

36

36

362

24

216

32

322

ix

ix

x

x

Page 30: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

7.4 Completing the Square

Page 31: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Perfect Square Trinomial

• For perfect square trinomial in the form

dividing by b by 2 and squaring the result gives c:

cbxx 2

cbxx 2

cb

2

2 c

c

cxx

16

9

4

3

2

1

2

3

2

3

2

2

2

Page 32: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Examples

34

34

3)4(

3)4(8

32

88

38

2

22

22

2

x

x

x

xx

xx

xx

5

2

5

1

5

2

5

2

10

2

5

2

5

2

2

1

5

2

5

2

5

2

5

2

225

0225

22

22

22

2

2

2

xx

xx

xx

xx

xx

xx

5

101

5

10

5

1

5

5

5

2

5

1

5

2

5

1

5

2

5

12

x

x

x

x

x

Page 33: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

7.5 Quadratic Formula

Page 34: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Quadratic Formula

• The solutions of a quadratic equation in the form are given by the quadratic formula:

02 cbxax

a

acbbx

2

42

Page 35: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Determining the Number of Real-Number Solutions

• The discriminant is and can be used to determine the number of real solutions

• If the discriminant > 0, there are two real-number solutions

• If the discriminant = 0, there in one real-number solution

• If the discriminant < 0, there are two imaginary-number solutions (no real)

acb 42

Page 36: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Quadratic Formula

8

1284

8

144164

)4(2

)9)(4(4)4()4(

944

2

2

xx

22

18

284

8

2644

i

i

i

Page 37: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Examples

0169 2 xx

0

3636

)1)(9(462

0852 2 xx

39

6425

)8)(2(4)5( 2

One real-number solution Two imaginary-number solutions

Page 38: Quadratic Functions Chapter 7. Vertex Form Vertex (h, k)

Intersections with y = n lines/points at a certain height

12

02432

y

xx

2

573

2

4893

)1(2

)12)(1(4)3()3(

0123

12243

2

2

2

xx

xx

Note if the discriminant is < 0, then there are no intersections