protocolo carambola final

35
INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ Departamento de Ingeniería Química y Bioquímica PRODUCCIÓN DE JUGO DE CARAMBOLA (Averrhoa carambola L.) EN POLVO MEDIANTE SECADO POR ASPERSIÓNPROYECTO DE TITULACIÓN INTEGRADA PARA OBTENER EL TÍTULO DE INGENIERO BIOQUÍMICO PRESENTA: BARRIGA TRUJILLO CLAUDIA GUADALUPE Y DOMINGUEZ RUIZ CARLOS JAVIER CATEDRATICO: IBQ. MARCELÍN MADRIGAL MARGARITA ASESOR: DR. MIGUEL ABUD ARCHILA TUXTLA GUTIÉRREZ, CHIAPAS, MÉXICO. OCTUBRE 2013

Upload: andres-morales

Post on 21-Jan-2016

325 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: PROTOCOLO Carambola Final

INSTITUTO TECNOLÓGICO DE TUXTLA GUTIÉRREZ

Departamento de Ingeniería Química y Bioquímica

“PRODUCCIÓN DE JUGO DE CARAMBOLA (Averrhoa

carambola L.) EN POLVO MEDIANTE SECADO POR

ASPERSIÓN”

PROYECTO DE TITULACIÓN INTEGRADA PARA

OBTENER EL TÍTULO DE

INGENIERO BIOQUÍMICO

PRESENTA:

BARRIGA TRUJILLO CLAUDIA GUADALUPE Y DOMINGUEZ RUIZ CARLOS JAVIER

CATEDRATICO: IBQ. MARCELÍN MADRIGAL MARGARITA

ASESOR: DR. MIGUEL ABUD ARCHILA

TUXTLA GUTIÉRREZ, CHIAPAS, MÉXICO. OCTUBRE 2013

Page 2: PROTOCOLO Carambola Final

2

ÍNDICE

I. INTRODUCCIÓN……………………………………………………………………..4

II. OBJETIVO GENERAL…………………………………………………………….....5

III. OBJETIVOS ESPECÍFICOS………………………………………………………...5

IV. JUSTIFICACIÓN……………………………………………………………………6-7

V. CARACTERIZACIÓN DEL ÁREA DE TRABAJO…………………………………8

VI. PROBLEMAS A RESOLVER…………………………………………………….....9

VII. ALCANCES Y LIMITACIONES……………………………………………………..9

VIII. FUNDAMENTO TEÓRICO…………………………………………………………10

VIII.1 Materia prima………………………………………………..………………..10 VIII.1.1 Origen y distribución……………………………………………………….10 VIII.1.2 Producción nacional del fruto de carambola........................................10

VIII.1.3 Producción estatal del fruto de carambola……………………..…........10

VIII.1.4 Taxonomía y morfología de carambola..........................................10-11

VIII.1.5 Variedades………………………………………………………………….12

VIII.1.6 Composición nutricional…………………………………………………..13

VIII.1.7 Propiedades atribuidas……………………………………………………13

VIII.1.8 Requerimientos climáticos………………………………………………..13

VIII.1.9 Tipos de suelo para el cultivo…………………………………………….14

VIII.1.10 Temporada de carambola……………………………………………….14

VIII.1.11 Índice de madurez………………………………………………………..14

VIII.1.12 Calidad de la carambola…………………………………………………14

Page 3: PROTOCOLO Carambola Final

3

VIII.1.13 Comercialización de la carambola…………………………….............15

VIII.2 Microencapsulación…….………………………………………………..15-16

VIII.3 Secado por aspersión……………………………………………………16-17 VIII.3.1 Elementos de un secador por aspersión………………………………..17 VIII.3.2 Microencapsulación mediante secado por aspersión……………...17-18 VIII.3.2.1 Agentes encapsulantes…………………………………………………18 VIII.3.2.2 Microencapsulación de jugos mediante secado por aspersión…18-20

IX. PROCEDIMIENTO Y DESCRIPCIÓN DE LAS ACTIVIDADES A REALIZAR........................................................................................................21

IX.1 Materia prima………………………………………………………………......21

IX.2 Metodología………………………………………………………………...21-22

IX.2.1 Desarrollo experimental…………………………………………………….21

IX.2.1.1 Secado por aspersión…………………………………………………….21

IX.2.1.2 Análisis bromatológicos……………………………………………….23-28

IX.2.1.3 Medida de intensidad de color del polvo………………………………..28

IX.2.1.4 Almacenamiento…………………………………………………………..28

X. RESULTADOS…………………………………………………………………..29-30

XI. CONCLUSIONES Y RECOMENDACIONES…………………………………….31

XII. FUENTES DE INFORMACIÓN………………………………………………..32-33

XIII. ANEXOS………………………………………………………………………….34-35

Page 4: PROTOCOLO Carambola Final

4

I. INTRODUCCIÓN.

Las frutas tropicales, también llamadas exóticas, han comenzado recientemente a

presentarse con mayor diversidad en los mercados, siendo muchas de ellas hasta

ahora desconocidas para gran parte de la población. Debido a esto, aun existe poco

conocimiento en cuanto a la manera de consumirlas lo cual puede llevar a su

rechazo (Novillo, 2009).

Las ventajas de estas frutas son los mayores rendimientos por hectárea que las

tradicionales, ya que al producirse bajo técnicas orgánicas y naturales, guardan un

equilibrio de conservación ambiental que propicia nuevas prácticas agronómicas y

comerciales para el productor. Ello les da un valor agregado ideal para dirigirlos a

mercados con alto poder adquisitivo.

La carambola (Averrhoa carambola L.) originaria de Asia tropical es un fruto

considerado como exótico por su distintiva forma de estrella mediante un corte

transversal, su particular sabor agridulce y su apariencia; además de ser rica en

vitaminas A y C, y poseer otras propiedades benefactoras hacia la salud. Esta fruta

pertenece a la familia Oxalidaceae, genero Averrhoa, del cual la especie A.

carambola es considerada la más importante desde el punto de vista comercial

(Narain et al., 2001). Actualmente el fruto de carambola se encuentra presente en

numerosos lugares de los trópicos y subtropicos, en países tales como: Australia,

Brasil, China, Estados Unidos, México, Tailandia, entre otros.

Uno de los procesos más utilizados para alargar la vida útil de los alimentos es el

secado (Marques et al., 2007). El secado es un proceso simultáneo de transferencia

de masa y calor que consiste en remover parte o casi el total de agua en los

alimentos. Existen diferentes métodos de secado, entre ellos, el secado por

aspersión.

El secado por aspersión es un proceso para convertir un alimento líquido en un polvo

por evaporación del solvente. Comparado con otros procesos de evaporación, el

secado por aspersión tiene la gran ventaja que el producto pueda ser secado sin

mucha perdida de volátiles o componentes termolábiles, como los aromas. El

método se basa en atomizar la solución que va a ser secada en forma de gotas muy

finas, en el seno de una corriente de gas caliente que generalmente es aire. El aire

caliente introducido, alcanza una temperatura que oscila entre 100 y 200 °C. A pesar

de dicha temperatura relativamente alta, las gotas del líquido atomizado se calientan

solo hasta 40°C debido a la corta duración del secado (fracciones de segundo), lo

que evita la degradación del producto, ya que a pesar del aporte de aire caliente,

este sustrae calor por la vaporación del disolvente (Voigt, 1982).

Page 5: PROTOCOLO Carambola Final

5

II. OBJETIVO GENERAL.

Evaluar el efecto del secado por aspersión sobre la calidad nutrimental de jugo de

carambola (Averrhoa carambola L.) después del secado y durante el

almacenamiento.

III. OBJETIVOS ESPECIFICOS.

Evaluar la calidad nutrimental del jugo de carambola.

Evaluar el efecto de los agentes encapsulantes, temperatura del aire de

secado y flujo de alimentación sobre la calidad nutrimental del jugo de

carambola después del secado por aspersión.

Evaluar la calidad nutrimental del jugo de carambola secada por aspersión

durante el almacenamiento a temperatura ambiente y en condiciones de

refrigeración.

Page 6: PROTOCOLO Carambola Final

6

IV. JUSTIFICACIÓN.

La fruta debe ser uno de los alimentos imprescindibles en la dieta de cualquier

individuo. Se recomienda que comamos entre cuatro y cinco piezas diarias y, sin

embargo, asistimos a un paulatino descenso en su consumo (Navarrete, 2011).

Partiendo de esta situación, se plantea una manera de contribuir a que la población

consuma más el fruto de carambola para así aprovechar sus propiedades

nutricionales que contribuyen a la salud del ser humano.

En México, la carambola (Averrhoa carambola L.), es un fruto poco conocido, la

superficie plantada en áreas tropicales es de alrededor de 100 hectáreas, reportadas

en Morelos, Chiapas, Veracruz, Michoacán y Nayarit, pero la superficie se está

incrementando por productores innovadores. Por ser una fruta relativamente nueva,

la carambola es utilizada únicamente para preparar bebidas frescas. Este fruto

presenta una agradable apariencia, propiedades nutritivas y un aporte de fenoles

totales que la hace ser una buena aliada para nuestra salud. Por ello su consumo es

muy recomendable para personas de cualquier edad incluyendo deportistas, mujeres

embarazadas y madres lactantes.

La carambola, al ser una fruta rica en agua y pobre en calorías, grasa e hidratos de

carbono resulta ideal para incluirlas en dietas de control de peso. La pulpa de esta

fruta al poseer fibra soluble presenta la ventaja de tener propiedades laxantes, lo cual

hace que su consumo sea bueno para las personas que padecen de estreñimiento,

debido a esto es considerado como un laxante natural. Como ya antes mencionado,

esta fruta se caracteriza por un bajo aporte en hidratos de carbono, lo que hace de

ella un buen alimento para ser ingerida por personas que padecen de diabetes, así

como por ser rica en potasio, haciéndola idónea para la hipertensión arterial y

afecciones tanto de vasos sanguíneos como del corazón (Burgos, 2012).

La carambola además de poseer las propiedades ya antes descritas, contiene

vitamina A y C, por lo que esta fruta se recomienda para toda la población,

especialmente para aquellas personas que tienen un mayor riesgo de sufrir carencias

en dichas vitaminas, como son las personas que no toleran los cítricos, el pimiento u

otros vegetales (fuente exclusiva de vitamina C en nuestra alimentación), las

personas que llevan dietas bajas en grasa, y por tanto de un escaso contenido en

vitamina A, o simplemente personas con necesidades nutritivas aumentadas como la

etapa de crecimiento, el embarazo, el estrés entre otros.

La vitamina A es esencial para la visión, el buen estado del cabello, la piel, las

mucosas, los huesos y para el buen funcionamiento del sistema inmunológico.

Mientras que la vitamina C interviene en la formación del colágeno, huesos y dientes,

glóbulos rojos, además de favorecer la resistencia a las infecciones y a la absorción

Page 7: PROTOCOLO Carambola Final

7

de hierro. No obstante la acción antioxidante de ambas vitaminas hace de la

carambola una fruta ideal para reducir el riesgo de padecer numerosas

enfermedades, tales como las cardiovasculares, las de tipo degenerativo e incluso el

cáncer (Burgos, 2012).

Dentro del contenido mineral de esta fruta destaca el potasio, el cual es necesario

tanto para la transmisión como para la generación del impulso nervioso, para una

actividad muscular normal y ser el encargado principal de la hidratación y regulación

celular.

En base a esta información se plantea la producción de un producto pulverizado para

aprovechar de manera integral todas las propiedades nutricionales que el fruto nos

puede brindar. Por consiguiente para realizar productos pulverizados a partir del fruto

de carambola, el principal factor que afecta a la estabilidad y vida útil de la fruta es su

alto contenido en agua, por lo que implementar un método de secado por aspersión

es lo más conveniente, ya que el secado por aspersión es un procedimiento por el

cual muchas industrias elaboran productos secos cuyas especificaciones son

deseables para subsecuentes procesos o para consumirlos directamente. La

investigación intensiva y desarrollo de los últimos años ha dado como resultado que

este tipo de secado sea un gran competitivo medio para el secado de gran variedad

de productos (Masters, 1988).

Una de las ventajas de implementar un sistema de secado por aspersión es que usa

altas temperaturas sin afectar las características del producto, conlleva a un alto

rendimiento, se controlan las variables finales del producto el cual no requiere de otro

proceso, y su presentación queda lista para el mercado, además de que es un

método de secado rápido (tiempo de residencia del producto entre 10 y 30 s).

En los productos secados por aspersión, dentro de sus propiedades se encuentra la

larga duración sin contaminación y descomposición, se conservan las características

organolépticas, hay una disminución de procesos y mano de obra en su elaboración,

entre otros. Debido a esto y a las ventajas de implementar este tipo de secado se

decidió trabajar con este método.

Page 8: PROTOCOLO Carambola Final

8

V. CARACTERIZACIÓN DEL ÁREA DE TRABAJO.

El proyecto se realizará en el laboratorio de alimentos y de investigación de posgrado

del Departamento de Ingeniería Bioquímica del instituto Tecnológico de Tuxtla

Gutiérrez, ubicado en carretera panamericana km 1080 de la ciudad de Tuxtla

Gutiérrez, Chiapas, México. Las actividades que se realizarán en el laboratorio de

alimentos será el análisis bromatológico del fruto, mientras que en el laboratorio de

investigación de posgrado se realizará la deshidratación de este por el método de

secado por aspersión.

Políticas y Normas de la institución.

Ser una oferta educativa tecnológica suficiente, a nivel superior y de posgrado, en las

modalidades escolarizada y abierta, con perfiles profesionales acordes a los retos de

todas las regiones del país. Compartir con la población en general los beneficios del

conocimiento, la cultura científica y tecnológica; en particular, proporcionar servicios

directos a los demandantes, con la finalidad de coadyuvar al modelo de desarrollo

que el país reclama, para alcanzar el bienestar social que demandamos los

mexicanos.

Objetivo de la institución.

Promover el desarrollo integral y armónico del educando en relación con los demás,

consigo mismo y con su entorno, mediante una formación intelectual que lo capacite

en el manejo de los métodos y los lenguajes, sustentados en los principios de

identidad nacional, justicia, democracia, independencia, soberanía y solidaridad; en

la recreación, el deporte y la cultura, que le permite una mente y cuerpo sano.

Departamento de Ingeniería Química y Bioquímica.

Este departamento se encarga de planear, coordinar, controlar y evaluar las

actividades de docencia, investigación y vinculación en las áreas correspondientes a

la ingeniería Química y Bioquímica que se imparte en el Instituto Tecnológico, de

conformidad con las normas y lineamientos establecidos por la Secretaría de

Educación Pública, además de elaborar el programa educativo anual y el

anteproyecto de presupuesto del departamento y presentarlo a la Subdirección

Académica para la conducente. También se encarga de aplicar la estructura orgánica

autorizada para el departamento de procedimientos establecidos.

Page 9: PROTOCOLO Carambola Final

9

VI. PROBLEMAS A RESOLVER.

Actualmente el consumo de la carambola en el estado de Chiapas es poco conocido

debido a las costumbres dietéticas de la población y a la falta de información acerca

de estos frutos. En este proyecto, se plantea una nueva forma de consumir la

carambola que contribuya a la salud de la población chiapaneca. Así mismo se

plantea una manera innovadora en la presentación del producto dándole mayor

importancia y que sea probablemente más accesible para la población.

Para resolver estos problemas se plantea la elaboración de un producto pulverizado

mediante el secado por aspersión para aprovechar de manera integral las

propiedades nutricionales de la pulpa del fruto de carambola.

Actualmente no existe jugo de carambola en polvo, por lo que el problema radica

principalmente en encontrar las condiciones de secado por aspersión que permitan

obtener un polvo de carambola que conserve la calidad nutricia del jugo fresco y, que

además sea estable durante el almacenamiento.

VII. ALCANCES Y LIMITACIONES.

Se realizó el secado por aspersión de la carambola exitosamente, junto con algunas

determinaciones físico-químicas. Debido al tiempo, fue imposible realizar los análisis

bromatológicos y las condiciones de almacenamiento del polvo.

Page 10: PROTOCOLO Carambola Final

10

VIII. FUNDAMENTO TEÓRICO.

VIII. 1. Materia prima

VIII.1.1. Origen y distribución

La carambola, cuyo nombre científico es Averrhoa carambola L., es una fruta tropical

originaria del suroeste de Asia, específicamente Malasia e Indonesia. En América fue

introducido a fines del siglo XVIII; actualmente se encuentra este cultivo en un gran

número de países tales como: Australia, Tailandia, Brasil, Venezuela, México,

Colombia, entre otros. En México, el cultivo comercial de esta fruta existe desde

hace más de 10 años, en Morelos, Colima, Veracruz, Chiapas, Tabasco y Sinaloa,

incrementando considerablemente su producción (Salinas et al, 2003).

VIII.1.2. Producción nacional del fruto

Los árboles de carambola pueden producir frutos a los 10 ó 14 meces después de

plantarse. Se puede esperar, generalmente, un rendimiento de 4.5 a 18 kg de fruto

por árbol por año. A medida que el árbol madura, la producción de frutos se

incrementa rápidamente de manera tal que antes del quinto y sexto año se puede

esperar un rendimiento de 45 a 68 kg por árbol por año. Los arboles maduros de 7 a

12 años, pueden producir de 112 a 160 kg de fruto o más por año (Nagy et al., 1991).

VIII.1.3. Producción estatal del fruto

En México, la superficie plantada e incrementando considerablemente en áreas

tropicales es de alrededor de 100 hectáreas, reportadas en Chiapas.

VIII.1.4. Taxonomía y morfología del fruto

En el siguiente cuadro 1 se muestra la taxonomía del fruto de carambola.

Cuadro 1. Taxonomía de la carambola

Taxonomía de la carambola

Reino Plantae

Subreino Tracheobionta

División Magnoliophyta

Clase Magnoliopsida

Subclase Rosidae

Orden Oxalidales

Familia Oxalidaceae

Género Averrhoa

Especie A. carambola

Nombre binomial Averrhoa carambola L.

Fuente: Frutas y vegetales Andean para el mundo, 1998.

Page 11: PROTOCOLO Carambola Final

11

El árbol de carambola, en comparación con otras especies tropicales, es bien

resistente; mide alrededor de 5-12 m. de altura, con racimos de pequeñas flores

liliáceas que nacen de sus ramas. Se adapta bien a climas tropicales, aunque

también puede crecer en climas subtropicales bajos en frío. La temperatura ideal

para el desarrollo de esta especie, está considerada entre los 21 y 34 °C (Orduz,

2002). Sus hojas poseen una longitud de 15 a 30 cm y se disponen alternativamente

entre las ramas. Las flores son de color lila y están conformadas por cinco pétalos,

cinco sépalos, cinco estambres, cinco estaminodios, y un ovario súpero con cinco

estilos. El fruto, el cual se cosecha durante todo el año, es una baya carnosa de

forma ovoide a elipsoidal variada, con cuatro o cinco aristas longitudinales y

redondeadas que al ser cortada transversalmente le dan la forma de una estrella,

(figura 1). La superficie es cerosa, tiene de 5 a 15 cm de longitud por 3 a 6 cm de

ancho. La cascara es delgada, lustrosa y comestible, de color verde o dorado y

amarillo-anaranjado cuando está madura. La pulpa es traslúcida con un color

amarillo claro; es jugosa con un sabor que varía de sub-ácido a dulce dependiendo

de la maduración (Tello et al., 2002). Los frutos se demoran de 60 a 75 días de la

floración hasta madurar, dependiendo de la variedad, prácticas de producción y el

tiempo. La madurez es determinada por la experiencia, desarrollo de color y

porcentaje de azúcares. La concentración de azucares se eleva y la acidez

disminuye conforme el color se desarrolla cuando maduran en el árbol. Cuando

alcanzan el desarrollo completo de color (anaranjado), las aristas de los frutos son

muy frágiles y son fácilmente dañadas durante el manejo (Campbell y Koch, 1998).

Figura 1. Forma y color del fruto

Usualmente no hay más de 6 semillas por fruto y en ocasiones no se encuentra

ninguna. Tienen una longitud de 0.6 a 1.3 cm, son delgadas, de color café y están

encerradas en un arilo gelatinoso. Las semillas pierden su viabilidad en unos cuantos

días una vez que se extraen del fruto.

Page 12: PROTOCOLO Carambola Final

12

VIII.1.5. Variedades

Las principales variedades son Golden Star, Arkim, Cheng Tsey, B-2, B-10 y B-17.

Estas últimas tres variedades son malayas y la letra B que poseen antes del número

se refiere a la inicial de la palabra Belimbing (Galán y Menini, 1991).

- Golden Star: Es originaria de Florida, Estados unidos. Es un fruto ovoide o

elipsoide de tamaño medio, color amarillo dorado, siendo la variedad que

presenta un mayor atractivo visual. Su pulpa es muy jugosa y crujiente, y

posee alta resistencia a daños mecánicos y a daños por frío en el almacén.

- Arkim: También procede de Florida, posee un tamaño medio y en la madurez,

su color pasa de amarillo dorado a amarillo naranja. Tiene una excelente

textura y su sabor es dulce y de baja acidez. Se puede emplear tanto para

fruta fresca como para procesado. Al igual que la variedad Golden Star posee

alta resistencia a daños mecánicos y por frío.

- Cheng Tsey: Es originario de Taiwán. Junto con B-10 y merced a unas

prácticas agrícolas es el que mayor tamaño alcanza. Es de color naranja

cuando está madura y es bastante dulce con una acides baja.

- B-2: Procede de Malasia, al igual que B-10 y B.17. Fruto algo alargado con un

tamaño medio. Posee un color amarillo cuando madura totalmente y es

relativamente resistente al transporte, pero su capacidad de almacenamiento

no es muy larga.

- B-10: Fruto grande, de color desde amarillo hasta dorado rojizo o naranja.

Posee escasa acides, es jugoso y útil tanto para fruta fresca como para

procesado.

- B-17: Fruto grande y cilíndrico. Presente un color amarillo dorado y posee una

textura crujiente. Es el más dulce de las variedades citadas.

Page 13: PROTOCOLO Carambola Final

13

VIII.1.6. Composición nutricional

En el cuadro 2 se observa la composición nutricional de la carambola en

comparación a otras frutas en estado maduro por cada 100 g de contenido.

Cuadro 2. Composición por cada 100 gr. de fruta

Componentes mayoritarios

Frutas Naranja Manzana Piña CARAMBOLA

Calorías 32 56 36 36

Agua (g) 91 85 89 90

Proteínas (g) 0.4 0.3 0.3 0.5

Grasas (g) 0.2 0.3 0.2 0.3

Carbohidratos (g) 8.4 14.3 10 9

Fibra (g) - 0.8 0.4 0.6

Cenizas (g) 0.3 0.2 0.3 0.4

Vitamina C (mg) 42.20 1.20 25 35

Vitamina A (mg) 0 0 0.05 90

Tiamina (B1) (mg) 0.03 0.03 0.04 0.04

Riboflavina (B2) (mg)

0.03 0.03 0.04 0.04

Niacina (B5) (mg) 0.05 0.04 0.06 0.02

Calcio (mg) 20 5 10 5

Fosforo (mg) 8 10 4 18

Hierro (mg) 0.3 1.4 0.4 0.4

VIII.1.7. Propiedades atribuidas

La carambola es una fruta rica en vitamina C. Esta vitamina antioxidante, ayuda a

prevenir algunos cánceres de órganos con mucosa como el estómago, y otras

enfermedades crónicas o degenerativas. Junto con la acción de ácido fólico y de la

fibra soluble ayuda a prevenir el estreñimiento crónico y el cáncer de colon (Palomar,

2006). La fibra soluble impide la absorción del colesterol por el intestino; por su bajo

contenido de carbono, riqueza en potasio y bajo aporte de sodio, resulta muy

recomendable para aquellas personas que sufren diabetes, hipertensión arterial o

afecciones de vasos sanguíneos y corazón. En México, se ha extendido su uso

debido a sus propiedades atribuidas.

VIII.1.8. Requerimientos climáticos

Requiere de condiciones tropicales, aunque también puede darse en condiciones

subtropicales, adaptándose a temperaturas entre los 18 a 34 °C, con una altura

sobre el nivel del mar de 0-1000 m. y con una precipitación anual de 1800 mm bien

distribuidos en el año. El cultivo es altamente susceptible en sitios con alta

ventosidad, para lo cual se debe construir sistemas de protección en ocasiones.

Page 14: PROTOCOLO Carambola Final

14

VIII.1.8. Tipos de suelo para el cultivo

Se adapta a suelos desde arenosos hasta arcillosos, siempre y cuando tengan un

buen drenaje, con un pH de 6-7. Las localidades donde el agua suele encharcarse

después de una lluvia por periodos de 12 horas o más, no son adecuadas para la

carambola.

VIII.1.9. Temporada de la fruta

Debido a que la fruta de carambola crece en climas tropicales, la temporada de

cosecha puede variar. Los arboles de carambolo a los dos años de establecidos

aproximadamente, inician su producción durante todo el año, presentando dos

épocas importantes de producción, la primera en febrero y marzo y la segunda en los

meses de septiembre a noviembre. En los meses de abril a junio la producción de

fruta es muy baja, debido a la escasa floración que ocurre de enero a marzo (Pérez,

2005).

VIII.1.10. Índice de madurez

La relación de madurez presenta un aumento progresivo a partir del día 66 y hasta el

final del ciclo de desarrollo. El comportamiento de la relación de madurez es

resultado del aumento de sólidos solubles y azúcares, y decremento en el contenido

de ácidos durante la maduración. La relación de madurez refleja el balance

dulce/ácido de los frutos y es usada como un criterio para evaluar la calidad del fruto.

Durante el proceso de maduración el nivel de firmeza disminuye, resultado de

adelgazamiento de las paredes celulares y la degradación de productos de reserva

(Chin et al., 1999). La maduración de los frutos también suele coincidir con un

cambio de color y el desarrollo del aroma y sabor característico del fruto, producto de

la síntesis y desenmascaramiento de carotenoides y la manifestación de los

compuestos volátiles.

VIII.1.11. Calidad de la fruta

Se ha evaluado una gran lista de características deseables en cultivares de

carambolo. Las más importantes han sido con relación a las características del fruto

como: peso, color, relación azúcares-ácido, cantidad de semillas, textura y

resistencia a daños mecánicos (Nakasone y Paull, 1999). Por otra parte las

características que debe tener un cultivar comercial son: una alta producción, tamaño

mediano del fruto, color amarillo brillante, resistencia a los daños por manejo y

habilidad para mantener buena calidad durante el almacenamiento y mercadeo.

Page 15: PROTOCOLO Carambola Final

15

VIII.1.12. Comercialización y usos de la fruta

En el mercado, la carambola suele aparecer en algunos establecimientos

comerciales, aunque poco a poco va extendiéndose. Las características de este

producto tales como versatilidad, atractivo, larga vida comercial y producción a lo

largo de todo el año, suponen grandes ventajas de cara a la futura comercialización

de este producto, tanto en nuestro país como en otros países. Todas estas

cualidades no hacen sino resaltar el magnífico potencial de mercado de este fruto. Si

a ello unimos su rapidez de entrada en los diferentes circuitos comerciales, sin duda

la carambola tiene todas las características para ser uno de los frutales con mayor

incremento de producción y consumo a lo largo de los próximos años (Costabeber et

al., 2005).

El fruto de carambola se caracteriza por tener diversos usos debido a sus

propiedades, y pueden consumirse en fresco, cocinados o procesados. Los frutos

frescos, ya sean verdes, sazones o maduros, se utilizan para adornar bebidas,

ensaladas de fruta, vegetales o de mariscos; también pueden cocinarse en puré,

tartas, pasteles y budines. La pulpa de la fruta puede consumirse en almíbar, en

forma de jugo o en forma de licor. Los frutos de carambola procesados pueden

encontrarse como jaleas, mermeladas, deshidratados enteros o en rebanadas, entre

otros.

VIII. 2. Microencapsulación

La microencapsulación se define como el proceso en el cual pequeñas partículas o

gotas son rodeadas por un revestimiento, o embebidas en una matriz homogénea o

heterogénea, dando como resultado pequeñas capsulas con propiedades útiles

(Madene et al., 2006). La microcápsula mas simple posee una estructura que está

compuesto por dos elementos, el material activo y una delgada pared que envuelve

al primero (Figura 2).

Figura 2. Estructura general de una microcápsula.

El sistema de barrera está diseñado para proteger al material encapsulado de

factores que pueden causar su deterioro, para prevenir la interacción prematura entre

el material de barrera y otros ingredientes, para limitar la pérdida de volátiles y

Page 16: PROTOCOLO Carambola Final

16

también para permitir la liberación controlada o prolongada bajo las condiciones

deseadas.

La tecnología de microencapsulación ha sido usada en la industria alimentaria por

más de 60 años. La microencapsulación en el procesamiento de alimentos incluye el

recubrimiento de partículas diminutas de acidulantes, lípidos, aromas, sabores,

aceites esenciales, edulcorantes, antioxidantes, colorantes, aminoácidos, vitaminas,

entre otros. Esas microcápsulas pueden variar de unos cuantos micrómetros a

milímetros y tener diferentes formas, dependiendo de los materiales y métodos que

se utilizan para prepararlas (Desai y Park, 2005).

VIII. 3. Secado por aspersión El secado por aspersión es una operación unitaria utilizada en la industria

procesadora de alimentos, en la cual un producto líquido es atomizado en una

corriente de gas caliente para obtener instantáneamente un polvo. El líquido que se

alimenta al secador puede ser una solución, emulsión o suspensión. El gas

introducido es generalmente aire, que alcanza una temperatura que oscila entre 100

y 200 °C. A pesar de la temperatura relativamente alta del aire, las gotas del líquido

atomizado se calientan solo hasta 40°C debido a la corta duración del secado

(fracciones de segundo), lo que evita la degradación del producto, ya que a pesar del

aporte de aire caliente, este sustrae calor por la vaporización del disolvente (Voigt,

1982).

La aspersión presenta tres fases distintas: En la primera etapa el gas atomizante se

expande adiabáticamente de la boquilla a la cámara de secado (atmosfera), el gas

sufre el efecto Joule-Thomson y su temperatura cae. En la segunda, el líquido forma

gotas, durante la aspersión el área superficial específica se incrementa mil veces.

Teóricamente se requiere poca energía para formar las gotas; sin embargo, la

ineficiencia mecánica, la presión y la inercia además de la perdida por viscosidad

causan un elevado consumo de energía. En la tercera etapa, viajan estando

formadas para convertirse en materia seca, durante esta fase el solvente se evapora

y el diámetro de la gota decrece. La primera fase ocurre instantáneamente, la

segunda dura ente 0.1 s, y la tercera puede sostener un tiempo relativamente grande

dependiendo de las condiciones de la aspersión, el líquido disperso y la saturación

relativa del aire ambiente (Maccabe et al., 1991). El secado es controlado por medio

del producto y las condiciones del aire a la entrada (flujo y temperatura). Finalmente,

el producto es recuperado del aire.

El secador por aspersión más común es el de ciclo abierto, este sistema tiene

entrada continua de aire que es calentado y usado como medio secante, limpiado por

Page 17: PROTOCOLO Carambola Final

17

medio de ciclones o agotadores y luego liberado al ambiente. Un segundo tipo es el

de ciclo cerrado, donde el aire es calentado, usado como agente secante, limpiado,

secado y de nuevo usado. La eficiencia energética de este tipo de secador es más

alta que el de ciclo abierto. Las ventajas del secado por aspersión son cortos tiempos

de residencia, tamaño y forma definido del producto, fácil limpieza y mantenimiento,

aplicable a materiales sensibles al calor, entre otras.

VIII.3.1. Elementos de un secador por aspersión

Básicamente un sistema de atomización tiene cinco elementos esenciales: un

calentador de aire, una cámara de secado, un dispositivo para dispersar el material

que se va a secar (boquilla), una bomba para impulsar el líquido hacia la cámara de

secado y un sistema de recolección de las partículas secas en el seno del aire (Ibarz

et al., 2000).

VIII.3.2. Microencapsulación mediante secado por aspersión La microencapsulación por secado por aspersión ha sido usado en la industria

alimentaria desde 1959, para la protección de ciertos ingredientes contra la

degradación-oxidación y para convertir líquidos a polvos (Desai y Park, 2005).

Figura 3. Visión general del proceso de microencapsulación por secado por aspersión.

Para efectuar la microencapsulación, el material de recubrimiento se disuelve en un

disolvente apropiado y en esta disolución se dispersa la sustancia, sólida o líquida,

que va a servir como material activo. La dispersión, en estado líquido, preparada en

estas condiciones, se suele introducir en la cámara de secado con aire en

contracorriente. El aire caliente proporciona el calor de evaporación requerido para la

separación del disolvente, produciéndose en esta forma la microencapsulación. Las

partículas sólidas se microencapsulan sometiendo a secado por atomización una

suspensión de ellas en una disolución del agente de recubrimiento. Cuando el

disolvente se evapora, el material de recubrimiento envuelve las partículas. Los

líquidos oleosos pueden microencapsularse emulsificándo primero uno de ellos en

Page 18: PROTOCOLO Carambola Final

18

una disolución acuosa del agente de recubrimiento y sometiéndolos, posteriormente,

al proceso de secado.

Una de las grandes ventajas de este proceso, en comparación con otros métodos de

microencapsulación, además de su simplicidad, es que es apropiado para materiales

muy volátiles y sensibles al calor, ya que el tiempo de exposición a temperaturas

elevadas en muy corto.

VIII.3.2.1. Agentes encapsulantes

Como la mayoría de los procesos de microencapsulación por secado por aspersión

en la industria alimentaria utilizan formulaciones acuosas, el material de barrera debe

ser soluble en agua a un nivel aceptable. Los materiales de barrera típicos incluyen

goma arábiga, maltodextrina, almidón hidrofóbicamente modificado y mezclas de

estos. Otros polisacáridos (alginato, carboximetilcelulosa, goma guar) y proteínas (de

suero de leche, de soya y caseinato de sodio) pueden ser utilizados como materiales

de barrera en secados por aspersión (Desai y Park, 2005).

- Maltodextrina (MD):

Las maltodextrinas (MD) se forman por la hidrólisis parcial del almidón de maíz con

ácidos o enzimas, y son suministrados como equivalentes de dextrosa (EDs); el valor

de ED es una medida del grado de la hidrólisis del polímero de almidón. Ellos

manifiestan la habilidad de formar matrices que es importante en la formación de

sistemas de barrera (Mandene et al., 2006). La maltodextrina es un polímero lineal

con una masa molecular promedio de aproximadamente 1800 g/mol.

Las maltodextrinas son una buena elección como material de barrera debido a su

bajo costo y efectividad, no aportan sabor, tienen bajas viscosidades a altas

concentraciones de sólidos y están disponibles en diferentes pesos moleculares.

Esto permite crear mezclas con diferentes densidades de pared que provee

protección contra la oxidación del ingrediente encapsulado (Desobry et al., 1997).

VIII.3.2.2. Microencapsulación de jugos mediante secado por aspersión

El secado por aspersión de los jugos de frutas es una operación de proceso en un

solo paso que transforma los jugos en un producto en polvo. La formulación en polvo

facilita el transporte al reducir el peso, y también preserva el producto de la

degradación bacteriana al disminuir drásticamente la actividad del agua. Los jugos

presentar por naturaleza un elevado contenido de azúcares como glucosa y fructosa,

y ácidos orgánicos como acido cítrico, málico y tartárico, lo que les confiere una

características diferencial a la hora de conseguir que un jugo por eliminación de su

contenido en agua se transforme en una presentación en polvo.

Page 19: PROTOCOLO Carambola Final

19

Estos compuestos tienen temperaturas de transición vítrea bajas y ya sea con los

secadores por atomización utilizados en la industria alimentaria para transformar

disoluciones, emulsiones o dispersiones de un producto (estado líquido) en

productos en polvo, o bien con el uso de liofilizadores, nos encontramos con los

problemas de pegajosidad (stickiness) y de elevada higroscopicidad con los

productos obtenidos. El término “stickiness” hace referencia a los fenómenos de

cohesión partícula-partícula y de adhesión partícula-pared que presentan los polvos

obtenidos, que dificulta su presentación en estado polvo y mancha las paredes de los

cilindros de pulverización (Dolinsky et al., 2000). La cohesión es una propiedad

interna del polvo y una medida de las fuerzas que mantienen unidas las partículas,

mientras que la adhesión es una propiedad interfacial y una medida de las fuerzas

que mantienen las partículas unidas a otro material. La mayor causa de la

pegajosidad en polvos amorfos de jugos es la acción plastificante del agua en la

superficie, que da lugar a la adhesión y cohesión (Boonyai et al., 2004). Este

fenómeno no solo depende de las propiedades de los materiales sino también de las

condiciones aplicadas en el secado. La evaporación rápida en el secado por

aspersión produce partículas en estado amorfo que presentan una temperatura de

transición vítrea (Tg) baja. Tg es una medida de un fenómeno de transición de fase,

donde un material pseudo- líquido pegajoso (gomoso) se transforma en un material

pseudo-sólido en estado vítreo.

El alto contenido en azúcares de bajo peso molecular y ácidos orgánicos disminuye

la temperatura de transición vítrea (Tg) por debajo de la temperatura de preparación

del producto, incluso a la temperatura de salida del secado. Esto conlleva a la

existencia de un estado pseudo-líquido de material amorfo, que es responsable de la

cohesión interpartículas y de la adhesión de las partículas a las paredes del cilindro

de aspersión. Cuanto mayor sea esta diferencia de temperatura (ΔT=T - Tg) mayor

será el grado de pegajosidad.

Una solución a este problema de pegajosidad es el uso de cilindros de pulverización

de doble pared o el uso de aire seco para enfriar. Otra solución al problema es la

utilización de productos ayudantes de secado. Estos ayudantes de secado son

productos envolventes o encapsuladores que mezclados con la muestra liquida

evitan la pegajosidad y aglomeración del producto obtenido.

Los encapsulantes comunes utilizados en la industria incluyen los carbohidratos, las

gomas y los esteres de celulosa. Los ayudantes de secado más ampliamente

utilizados para obtener polvos de jugo de fruta son productos de almidón

parcialmente hidrolizados. Estos polímeros de la D-glucosa tienen un sabor neutro,

color blanco, carecen de olor, son fácilmente digeridos y son bien tolerados. Se

Page 20: PROTOCOLO Carambola Final

20

clasifican generalmente según su grado de hidrólisis, expresado como equivalente de

dextrosa (DE).

La formulación en polvo está ampliamente extendida en el campo de la alimentación.

Podemos encontrar una amplia gama de productos alimenticios en polvo, como café

soluble, cacao, papillas para bebes, queso, leche, pigmentos y muchos más.

Obtener jugos en polvo es muy atractivo desde el punto de vista industrial, es un

sector con gran proyección, encontrándose muchas aplicaciones tanto en el sector

de la alimentación como en el de productos nutraceúticos y de cosmética.

Page 21: PROTOCOLO Carambola Final

21

IX. PROCEDIMIENTO Y DESCRIPCIÓN DE LAS ACTIVIDADES

A REALIZAR.

IX.1. Materia prima

Se utilizó como materia prima el fruto de carambola, adquiridas de un mercado local

de la ciudad de Tuxtla Gutiérrez, Chiapas. Se seleccionaron los frutos maduros con

un color amarillo-naranja, visiblemente sanos y con un tamaño promedio aproximado

de 9.5 cm.

IX.2. Metodología

El experimento se llevará a cabo según se muestra en la figura 4.

IX.2.1. Desarrollo experimental.

La fruta fue lavada con bastante jabón y agua de la llave, con la finalidad de eliminar

la materia adherida a la superficie. Para la obtención del jugo, se partió en pequeñas

porciones la fruta de carambola y se retiraron las semillas con ayuda de un cuchillo

de acero inoxidable, posteriormente la extracción del jugo de la pulpa fue mediante

prensado. Después de obtener el jugo se midieron los sólidos solubles y se llevo a

13°Brix con un refractómetro. Posteriormente se adicionó maltodextrina. Se utilizó

maltodextrina al 20% y óxido de silicio al 1% en 100 ml de jugo. Estos se añadieron

lentamente al jugo con una agitación continua utilizando un homogenizador ULTRA-

TURRAX.

IX.2.1.1. Secado por aspersión

El secado por aspersión se realizó en un secador Spray Dryer B-290 utilizando como

temperatura de entrada 140 °C y una temperatura de salida a 88 °C. El flujo del

aspirador fue del 100% con una alimentación del 10%.

Page 22: PROTOCOLO Carambola Final

22

Figura 4. Diagrama de bloques de la estrategia a seguir.

Recepción de

materia prima

Selección

Lavado

Obtención del jugo

Secado por aspersión

Análisis bromatológico:

Sólidos disueltos totales,

Sólidos solubles,

Azúcares reductores,

Proteínas, Acidez total,

pH, fibra cruda, Vitamina

C, Fenoles totales

Adición de agentes

encapsulantes

Envasado del polvo

Determinación de

vida de anaquel

Análisis bromatológico:

Humedad, Sólidos totales,

Sólidos solubles, Azúcares

reductores, Proteínas,

Acidez total, pH, Cenizas,

fibra cruda, Vitamina C,

Fenoles totales, Actividad

de agua, Rendimiento del

proceso

Análisis bromatológico:

Humedad, Sólidos totales,

Sólidos solubles, Azúcares

reductores, Proteínas,

Acidez total, pH, Cenizas,

fibra cruda, Vitamina C,

Fenoles totales, Actividad

de agua, Rendimiento del

proceso

Almacenamiento:

T° ambiente

T° refrigeración

Page 23: PROTOCOLO Carambola Final

23

IX.2.1.2. Análisis bromatológicos

- Humedad

Se pesan de 1 a 3 gramos de muestra en una cápsula de porcelana previamente

calibrado. Después se colocan las cápsulas en la estufa de aire a 70°C hasta

alcanzar un peso constante. Transferir la muestra a un desecador, dejar enfriar a

temperatura ambiente y pesar. La humedad en base húmeda se calcula mediante la

siguiente ecuación 1:

(1)

Donde Pi es la = masa inicial de la muestra, en gramos y Pf es la = masa final de la

muestra, en gramos (peso constante).

Los sólidos totales se calcularán con la ayuda de la ecuación 2:

(2)

- Sólidos solubles totales (°Brix)

Los sólidos solubles se determinarán con un refractómetro ATAGO. El primer paso

es su calibrado con agua destilada, obteniendo así el cero de la escala. A

continuación se coloca una pequeña cantidad de muestra liquida de concentrado y

se lee sobre la escala.

- Azúcares reductores

Se toma 1 ml de la solución acuosa de la muestra, a la cual se le adiciona 1 ml del

reactivo de DNS y se calienta por 5 min a baño maría. Después, se deja enfriar y se

diluye con 10 ml de agua destilada. Leer la absorbancia del color producido a 450 nm

frente a un blanco de reactivos y agua tratado igual que la muestra. Cuantificar los

azúcares reductores interpolando los valores de absorbancia obtenidos en una curva

estándar preparada con el carbohidrato reductor de interés.

- Proteínas

Se utiliza la determinación por el método Kjeldahl, el cual comprende por tres fases:

digestión, destilación y titulación.

Digestión: Se pesan 0.5 g de muestra en un matraz de digestión Kjeldahl. Después

se agrega 5 g de sulfato de potasio, 0.5 g de sulfato de cobre y 15 ml de ácido

sulfúrico concentrado. Se calienta en manta calefactora dejando en ebullición 15 a 20

min. Se enfría y posteriormente se afora a 100 ml.

Page 24: PROTOCOLO Carambola Final

24

Destilación: Al equipo de destilación se le agregan 25 ml de la muestra anteriormente

digestada y 20 ml de hidróxido de sodio al 40% o la cantidad necesaria hasta que la

mezcla tome un color negro. Previamente en el extremo del refrigerante se coloca un

frasco, al que se le agrega 10 m de ácido bórico con 4 gotas de indicador de Toshiro.

La resistencia se introduce al matraz balón que contiene agua, el cual servirá para

calentar la muestra. Se deja que transcurra la destilación hasta reunir

aproximadamente 100 ml de destilado, cuyo contenido cambia de color violeta a azul

verdoso a medida que se acumula el amoniaco. Reunido el volumen de destilado, se

retira el recipiente receptor.

Titulación: Del volumen destilado se mide una alícuota de 25 ml y se deposita en un

matraz erlenmeyer, al que se le adicionan 3 gotas de indicador Toshiro. Finalmente

con ácido sulfúrico 0.02 N se titula, hasta que el color azul verdoso cambie

nuevamente a violeta.

El porcentaje de proteína se determina por la ecuación 3.

(3)

Donde N es el = normalidad de H2SO4, V = volumen gastado de H2SO4, factor= 6,25

para proteínas en general y m= masa de la muestra en gramos.

- Acidez total

Se utiliza una muestra de 10 ml de jugo y se aforan en un matraz a 100 ml

empleando agua destilada hervida y fría. Por otro lado en un matraz Erlenmeyer se

toma una alícuota de 25 ml, que se titula con hidróxido de sodio 0.1 N, usando como

indicador 3 gotas de fenolftaleína. El porcentaje de acidez se calcula con la ecuación

4.

(4)

m.e ácido cítrico= 0.064 m.e ácido oxálico= 0.045

m.e ácido málico= 0.067 m.e ácido tartárico= 0.075

- pH

Para la medida del pH se utiliza un potenciómetro digital previamente calibrado,

posteriormente el electrodo se introduce en la muestra y se lee el pH.

Page 25: PROTOCOLO Carambola Final

25

- Cenizas

Para esta determinación se utiliza un crisol a peso constante, donde se colocan 3

gramos de muestra. Posteriormente empleando un mechero la muestra se calcina,

en seguida se pasa a la mufla por 2 horas a 500 °C, una vez concluido el tiempo, se

pasa al desecador para que enfrie y cuando este a temperatura ambiente se pesa. El

porcentaje de cenizas se calcula con la ecuación 5.

(5)

Donde P es el= Peso de la muestra, en gramos P1 el = peso del crisol mas muestra,

en gramos y P2 es= peso del crisol mas cenizas, en gramos.

- Fibra cruda

En esta determinación se pesan 2 gramos de muestra pulverizada, seca y

desengrasada. Se coloca la muestra en un matraz de balón de 500 ml y se agrega

100 ml de ácido sulfúrico al 1.25% y perlas de ebullición. Después se pone a

ebullición con reflujo la mezcla durante media hora, de la cual se filtra al vacío y

enjuaga con agua hirviendo hasta que el agua de lavado alcance un pH neutro. Se

transfiere el residuo al matraz de balón y adiciona 100 ml de hidróxido de sodio al

1.25%, poniendo a ebullición con reflujo durante media hora. Nuevamente filtrar la

solución (a través de un papel filtro pesado previamente) y enjuagar con 10 ml de

acido sulfúrico al 1.25% y luego con agua hirviendo hasta que el agua de lavado

alcance un pH neutro. Se coloca en un crisol a peso constante este residuo, junto

con el papel filtro, y se deja enfriar en un desecador y se pesa. Finalmente, calcinar

en la mufla durante 30 minutos a 600 °C, dejar enfriar y pesar.

-Fenoles totales

Para esta determinación se utiliza el método de Folin-Ciocalteu.

Preparación de la curva de calibración: Se realiza una solución estándar de ácido

gálico preparándose 50 ml de solución madre (A) con una concentración de 105

µg/ml: 0.00525 g (5.25 mg) de ácido gálico. Se adiciona 50 ml de solvente (alcohol

metílico). Por otra parte se prepara una solución (B): 0.1 ml de alcohol metílico y 9.9

ml de agua; también se prepara reactivo de Folin.Ciocalteu al 50% v/v (5 ml de

reactivo más 5 ml de agua destilada), y 100 ml de carbonato de sodio al 7.5%. Se

realiza la curva estándar considerando concentraciones entre 10-90 mEq/ml. Para

esto se tomaron las alícuotas mostradas en la cuadro 3.

Page 26: PROTOCOLO Carambola Final

26

Cuadro 3. Volúmenes empleados para la realización de la curva patrón.

Número

de tubo

Ml de

solución A

Ml de solución

B

Concentración (mEq.

Ácido gálico/ ml).

1 0.9 0.1 90

2 0.8 0.2 80

3 0.7 0.3 70

4 0.6 0.4 60

5 0.5 0.5 50

6 0.4 0.6 40

7 0.3 0.7 30

8 0.2 0.8 20

9 0.1 0.9 10

10* - - 0

En una celda se coloca 300µl de cada concentración (10-90 mEq/ml), 1200 µl de

agua desionizada y 1500 µl de reactivo de Folin-Ciocalteu. La mezcla agita durante

3 minutos y enseguida se adiciona 300 µl de carbonato de sodio al 7.5%. Se agita de

nuevo por unos segundos y se incuba durante 15 minutos a 45 °C. Para que la

reacción se estabilice se deja transcurrir 20 minutos, pasado este tiempo se hace la

lectura en el espectrofotómetro a 760 nm de longitud de onda (ʎ) contra un testigo

de metanol.

Preparación de la muestra: De la muestra de carambola se toma una alícuota de 10

ml la cual se evapora a sequedad y de ahí se toma 0.2 g de muestra, a la que se

adiciona 5 ml de metanol. Después se incuba durante 24 horas a 25 °C empleando

un baño maría. Posteriormente se centrifuga a 13,000 rpm durante 10 min. El

sobrenadante se separa empleando jeringas estériles. El sólido se resuspendió en 5

ml de solvente y se incubó 24 horas a 25 °C y 300 rpm. Después de este tiempo se

pone en la centrífuga a 13,000 rpm por 10 min. El sobrenadante se incorporó con el

anterior y se almaceno a -20 °C hasta su utilización. Se coloca en las celda 35 µl de

cada muestra, 1690 µl de agua desionizada y 1725 µl de reactivo de Folin-Ciocalteu.

La mezcla se agita durante 3 minutos y enseguida se adiciona 3450 µl de carbonato

*Testigo (Metanol)

Page 27: PROTOCOLO Carambola Final

27

de sodio al 7.5%. Se agita por unos segundos y se incuba durante 15 minutos a 24

°C. Pasado este tiempo se hace la lectura en el espectrofotómetro a 769 nm de

longitud de onda (ʎ).

- Vitamina C

Se utiliza el método de Indofenol para esta determinación descrita a continuación

Solución de ácido acético-ácido metafosfórico: Se disuelve con agitación 15 g de

ácido metafosfórico en 40 ml de ácido acético y 200 ml de agua, diluyéndose

aproximadamente 500 ml. Después se filtra rápidamente a través de un papel filtro.

Solución estándar de ácido ascórbico 1mg/ml: se pesa exactamente 50 mg de ácido

ascórbico de referencia, el cual se mantuvo en un desecador. Se continúa con la

transferencia de lo pesado a un matraz aforado de 50 ml, aforando con la solución

ácido metafosfórico-ácido acético.

Solución estándar de indofenol: Se disuelve 50 mg de la sal de sodio del 2,6

dicloroindofenol en 50 ml de agua, a la cual se le adiciona previamente 42 mg de

bicarbonato de sodio. Se agita vigorosamente y cuando el colorante este disuelto se

afora a 200 ml con agua. Se filtra y se conserva en frasco ámbar en refrigeración.

Valoración de estándares de ácido ascórbico: Se transfiere tres alícuotas de 2ml de

la solución estándar de ácido ascórbico a tres matraces erlenmeyer de 50 ml

conteniendo 5 ml de HPO3-HOAC. Se titula rápidamente con solución de indofenol,

con una bureta de 50 ml, hasta un ligero pero distintivo color rosa. Es necesario para

una exactitud la titulación de tres blancos con 7 ml de solución de HPO3-HOAC más

un volumen de agua igual al volumen de la solución de indofenol usada en la

titulación directa. Se calcula y se expresa la concentración de la solución de

indofenol como: mg de ácido ascórbico equivalente a 1 ml de reactivo, mediante la

ecuación 6.

(6)

Donde x es= ml gastados para la muestra estándar de ácido ascórbico y B es= ml

gastados para la muestra blanco.

Preparación de la muestra: Se usa aproximadamente 10 ml de la solución

HPO3HOAC por cada g de muestra. La solución final debe contener de 10 a 100 mg

de ácido ascórbico por cada 100 ml.

Determinación del contenido de ácido ascórbico: Se titularon tres replicas por

muestra, la cual contenía aproximadamente 2 ml de ácido ascórbico. Se realizaron

determinaciones de blancos para la corrección de las titulaciones, se usaron

Page 28: PROTOCOLO Carambola Final

28

volúmenes apropiados de la solución HPO3-HOAC y agua. La determinación del

contenido de ácido ascórbico se calcula por la ecuación 7.

(7)

Donde F es el = mg de ácido ascórbico equivalente a 1 ml de solución estándar

indofenol, E= numero de gramos, tabletas, ml., V= volumen de la solución inicial

ensayada y Y= volumen de la alícuota de la muestra titulada.

- Actividad de agua

Para esta determinación se utiliza un medidor de actividad de agua rotronic

HYGROPALM.

- Rendimiento del proceso

El rendimiento en peso obtenido tras el secado por aspersión se calcula a partir del

peso del polvo obtenido, de acuerdo con la ecuación X7.

(8)

Donde los Gramos totales es igual a la suma de gramos del jugo seco más los

gramos de agente encapsulante.

- Medida de intensidad del color del polvo

El sistema CIE L*a*b* describe el color en términos de dos coordenadas cromáticas

(a* y b*) y una luminosidad (L*), lo que permite inferir el color de una muestra a partir

de estos atributos. Los parámetros colorímetros L*, a* y b* se evaluaron mediante un

colorímetro modelo ColorTec-PCM. Se realizo por triplicado para obtener un

promedio de los tres parámetros. El cambio de color total se calculo con la ecuación

9.

(9)

Donde L* es la diferencia en el valor de claridad/oscuridad (+=claro; -=oscuro), a* es

la diferencia en el eje rojo/verde (+=rojo; -=verde), y b* es la diferencia en el eje

amarillo/azul (+=amarillo; -=verde).

-Almacenamiento

El producto se envasará en bolsas de polietileno transparente y almacenará a

temperatura ambiente y bajo refrigeración. Se realizarán análisis del producto cada

30 días por un periodo de 2 meses.

Page 29: PROTOCOLO Carambola Final

29

X. RESULTADOS.

-Rendimiento del proceso

Se obtuvieron 27 g de polvo por 100 ml de jugo. El valor de rendimiento del producto

obtenido tras el secado por aspersión se presenta en el cuadro 4.

Cuadro 4. Condiciones de secado y rendimiento de proceso.

Experimento 1

Tentrada (°C) 140

Tsalida (°C) 88

Flujo del aspirador (%) 100

Alimentación (mL/min) 3

Encapsulante (g) 20

Polvo obtenido (g) 27

η (%)

57.45

El rendimiento de proceso fue de 57%, este valor coincide con los reportados por

Bermudez Hernández (2013) quien reportó valores entre 41 y 63% para el caso del

secado de jugo de zarzamora.

-De igual manera se calculó la actividad de agua, y la intensidad de color por

triplicado obteniendo los siguientes resultados en el cuadro 5 y 6.

El valor de la actividad de agua del polvo es bajo de tal forma que éste será estable

en cuanto a la proliferación de microorganismos, ya que para que los

microorganismos puedan proliferar el alimento debe tener una aw igual o superior a

0.6 (Badui-Delgal, 2002), valor dos veces más grande que el del polvo obtenido.

Cuadro 5. Actividad acuosa del polvo de carambola secado por aspersión.

Actividad de agua 0.388

T (°C) 25.8

Page 30: PROTOCOLO Carambola Final

30

Los valores de L, a y b sugieren que el polvo asperjado presenta una coloración

blanca con un ligero tono amarillo de los colorantes naturales del jugo. Sin embargo,

se tendrán que hacer adecuación con la finalidad de que el polvo obtenido tenga una

coloración amarilla.

Cuadro 6. Intensidad del color de jugo de carambola en polvo.

Parámetros Prueba 1 Prueba 2 Prueba 3 Promedio

L* 85.68 84.83 84.18 84.90

a* -4.46 -4.48 -4.31 -4.42

b* 16.44 18.32 19 17.92

ΔE= 86.88

Page 31: PROTOCOLO Carambola Final

31

XI. CONCLUSIONES Y RECOMENDACIONES.

Los resultados preliminares muestran que es posible secar y obtener jugo en polvo

de carambola mediante secado por aspersión. Sin embargo, es necesario realizar

experimentación con la finalidad de conocer el efecto que producen las variables del

proceso sobre el rendimiento, color y actividad de agua del polvo. Así mismo, es

necesario evaluar, si las condiciones de almacenamiento al vacío o no y en

condiciones de refrigeración o congelación propician la conservación del jugo.

Page 32: PROTOCOLO Carambola Final

32

XII. FUENTES DE INFORMACIÓN.

Burgos Benza, J. (2012). "143 Frutales Nativos". Perú: Acopell. Boonyai, P. Bhandari, B., Howes, T. (2004). Stickiness measurements techinques for food powders: a review. Powder Technology 145, 34-46.

Campbell, C.A., Koch, K.E. (1998). Sugar/acid composition and development sweer

and tart carambola fruit. J. Amer. Hortscience. 114 (3): 455-457 p.p.

Chin-Lienghong, Z.M., ALI, Lazan, H., Chin, L.H. (1999). Cell wall modifications,

degrading enxymes and softening of carambola fruit during ripening. Journal of

experimental botany 50 (335): 767-775 p.p.

Costabeber, A., Abadio, F.D., Oliveira, V.M. (2005). Physical properties of powered pineapple (Ananas comosus) juice-effect of malt dextrin concentration and atomization speed. Journal of food Engineering. 64, 285-287. Desai K. y Park H. 2005. Recent Developments in Microencapsulation of Food Ingredients. Drying Technology, 23:1361–1394. Desobry S., Netto F., Labuza T. 1997. Comparison of Spray-drying, Drum-drying and Freeze-drying for β-Carotene Encapsulation and Preservation. Journal of Food Science, 62(6):1158–1162. Dolinsky, A., Maletskaya, K. y Snezhkin, Y. (2000). Fruit and vegetable powders

production technology on the bases of spray and convetive drying methods. Drying

Technology 18, 747-758.

Galan, V., y Menini, U. (1991). La carambola y su cultivo. Roma: FAO.

Ibarz, A. et al. (2000). Métodos experimentales en la ingeniería alimentaria.

Zaragoza: Acribia.

Madene A., Jacquot M., Scher J., Desobry S. 2006. Flavour encapsulation and controlled release–a review. International Journal of Food Science and Technology, 41:1–21. Marquez, R.E., Gonzales, T. (2007). Microencapsulacion por secado por aspersión. Perú: Agro. Martinez, N.B. (2011). Análisis bromatológico del carambolo (Averrhoa carambola L.) y determinación de su capacidad oxidante. Tesis de licenciatura no publicada, Universidad veracruzana, Orizaba, Veracruz. Master, K. (2002). Spray drying in practice. Ed. SprayDyConsult International ApS.

Page 33: PROTOCOLO Carambola Final

33

Mccabe, W., Smith, J., y Harriot, P. (1991). Operaciones básicas de ingeniería química. España: Mc Graw Hill. Miravet, V.G. (2009). Secado por atomización de zumo de granada. Tesis de

maestría no publicada, Universidad técnica, Cartagena.

Narain, N., Bora, P.S., Holschuh, H.J., Vasconcelos M.A. (2001). Composición física

y química de la fruta de carambola (Averrhoa carambola L.) en tres estados de

madurez. Brazil: Taylor & Francis group.

Nagy, S., Barros, S., Carter, R., y Chin, S.C. (1991). Production and characterization

of carambola essence. Proceedings of the Florida State Horticultural Society 103:

277-279 p.p.

Nakasone, H.Y. y Paull, R.E. (1988). Tropical fruits. London: CAB international.

Navarrete L.R. (2011). Manual de análisis de alimentos. España: Acribia.

Novillo, R.T. (2009). Fisiología y manipulación de frutas y hortalizas post-recolección.

España: Acribia.

Orduz, R., J.O., Rangel M., J.A. (2002). Frutales tropicales potenciales para “El

Piedemonte llanero”. Colombia: Corpoica.

Palomar A. (2006). La despensa de Hipócrates: los poderes curativos de los

alimentos. Txalarpa.

Perez Barraza, M.H., Vázquez Valdivia, V., Osuna García, J.A. (2005). El cultivo del

carambolo (Averrhoa carambola L.): una alternativa para el trópico seco. Revista

chapingo pág. 83-87.

Salinas Hernández, R.A., Reyes Ascencio, D., Marínez Moreno, E. (2003).

Frigoconservación y aplicación de atmósferas modificadas en la conservación en

fresco de frutos de carambola (Averrhoa carambola L.). Memoria de resúmenes del X

Congreso Nacional de la Sociedad Mexicana de Ciencias Hortícolas, IX Congreso

Nacional y II Internacional de Horticultura Ornamental. Universidad Autónoma de

Chapingo, 20-24 de Oct. Pág. 259.

Tello Orlando., García Ricardo., Vásquez Oscar. (2002). Conservación de Averrhoa

carambola L. por azúcar y calor. Facultad de ingeniería en Industrias Alimentarias de

la UNAP, Perú. Revista Amazónica de investigación Alimentaria, V.2, nº1, pág. 49-

58.

Voigt R. (1982). Tratado de tecnología farmacéutica. Zaragoza: Acribia.

Page 34: PROTOCOLO Carambola Final

34

XI. ANEXOS.

-Materia prima

-Materiales utilizados.

Figura 6. Secador por aspersión Figura 7. Medidor de Aw

Figura 5. Frutos de carambola

Page 35: PROTOCOLO Carambola Final

35

-Polvo obtenido

Figura 8. Medidor de intensidad de color Figura 9. Medidor de °Brix

Figura 10. Polvo almacenado en bolsa de

polietileno Figura 8. Pulverizado de carambola