projecto clean sky

17
PROTECÇÃO do AMBIENTE e SEGURANÇA Seminário: I Jornada de Ambiente da Força Aérea, 10 de Dezembro 2010 2 ACARE: Advisory Council for Aeronautics Research in Europe ACARE Plenary Council 27 Member States European Commission Manufacturing Industry (ASD) Airlines (IATA, AEA) Airports (ACI Europe) Aeronautical Research Establishments (EREA) Universities (EASN) Regulators ( EASA, EUROCONTROL) Over 40 Members Integration Team Implementation Stakeholders of the European Air Transport System Communication MEMBERS STATES HR & Research Providers infrastructure

Upload: ambiente-forca-aerea-portuguesa

Post on 14-Jul-2015

364 views

Category:

Documents


2 download

TRANSCRIPT

PROTECÇÃO do AMBIENTE  

e  

SEGURANÇA 

Seminário: I Jornada de Ambiente da Força Aérea, 10 de Dezembro 2010 

2

ACARE:  Advisory Council for Aeronautics Research in Europe 

ACARE Plenary Council •  27 Member States •  European Commission •  Manufacturing Industry (ASD) •  Airlines (IATA, AEA) •  Airports (ACI Europe) •  Aeronautical Research

Establishments (EREA) •  Universities (EASN) •  Regulators ( EASA,

EUROCONTROL)

Over 40 Members

Integration Team

Implementation

Stakeholders of the European Air Transport System

Communication

Member States

MEMBERS STATES

HR & Research Providers

infrastructure

Strategy

ACARE PLENARY COUNCIL Co-Chairmanship: . Technical

. Institutional

3

ACARE and Clean Sky 

ACARE October 2002 : The Strategic Research Agenda (SRA)            5 Challenges 

Quality and Affordability 

Environment  Safety Air Transport 

System EfNiciency  Security 

Vision 2020 (January 2001) •  To meet Society’s needs 

•  To achieve global leadership for Europe 

October 2004 : The SRA 2              High level Target Concepts 

Very Low Cost ATS 

Ultra Green ATS 

Highly Customer 

oriented ATS 

Highly time­efNicient ATS 

Ultra Secure ATS 

22nd Century 

CLEAN SKY 

•  80% cut in NOx emissions •  Halving perceived aircraft noise •  50% cut in CO2 emissions per passenger‐Km by drastic fuel consumption reduction 

•  A green design, manufacturing, maintenance and disposal product life cycle 

4

Joint Technology Initiative 

  Within FP7, « level 3 projects »   System‐level integration into full scale demonstrators   Affordability and competitiveness   Timeliness    Involvement of all sectors of aeronautics 

« Integrated Technology Demonstrators »

Clean Sky Joint Technology Initiative

  With a strong involvement of the large aeronautic companies: internal R&T capabilities + knowledge of the market constraints for future aircraft 

5

Aerospace Technology 2010, Stockholm,

Benefits of investing in aeronautics technologies

 Environment  Greener products into service sooner

  Less noise, lower emissions   Reduced fuel consumption   Greener design, production and maintenance   Faster introduction of innovative technologies

 Application across all commercial aircraft

 Socio-economic impact  Integrating European industry  Open access to SMEs and New Member States  Expected multiplier effect via complementary National Programmes  A competitive European industry leading the introduction of more

environmentally friendly products and sustaining the creation of highly qualified jobs

 Major contribution to sustainable growth in Europe

6

Technology Readiness Level 

7

Aerospace Technology 2010, Stockholm,

Towards a High maturity

 Demonstrators definition close to the market needs: the demonstrator is the last R&T phase, before starting a development

 Schedule is key to keep this link (be neither too early, nor too late)

 A large part of this downstream research activity lays within big players, « integrators » - a typical feature of aeronautics

 These activities must be thoroughly coordinated A large programme focused on environment… 

 … and compe++veness 

A high level of « technology readiness »: the technologies are integrated into large demonstrators, in-flight or on-ground

These features create the condi0ons for a Public‐Private Partnership 

8

•  Start: 02/2008 •  Multi‐year research project on Greening of 

Aeronautics: up to 2017 to the latest 

•  Total budget 1.6 billion €, one of the largest  •  European research programmes ever 

•  800 million € from Commission in­cash •  800 million € from industry in­kind 

Public­Private Partnership 

9

Split of the 800 M€ public funding 

ITD leaders

Up to 50%

74 associates

Up to 25%

  MEMBERS are committed for the full duration of CSJU   PARTNERS are committed for the duration of their topic(s)

~500 partners (*) through calls

At least 25%

(*) ~100 today

10

Smart Fixed Wing Aircraft

Systems for Green Operations

Green Rotorcraft

Technology Evaluator Sustainable and Green Engines

Eco-Design

Green Regional Aircraft

Integrated Technology Demonstrators 

Rolls-Royce & Safran

Airbus & SAAB

Eurocopter & AgustaWestland

Alenia & EADS-CASA

Dassault & Fraunhofer

Thales & Liebherr

DLR & Thales

11

Targets   Preliminary targets were set for each Integrated Technology

  Demonstrator »: CO2, NOx, noise

  Integrated at aircraft level (2020 as compared to 2000)

  Targets to be refined by end of October 2010

Wide body

Narrow body

Regional Bizjets Rotor craft

CO2 - 30% - 20% - 40% - 30% - 30%

NOX - 30% - 20% - 40% - 30% - 60%

Noise - 20 dB - 15 dB - 20 dB - 10 dB - 10dB

ACARE targets:

- 50% C02

- 50% noise

- 80% Nox

in 2020 vs 2000

12

Aerospace Technology 2010, Stockholm,

Expected results from Clean Sky

13

50%CO2 80% NOx

50% noise

Green design..

14

Reduced fuel consumption Reduction of CO2 and NOX 

•   Engines •   Loads & Flow Control •   New Aircraft ConNigurations •   Low weight •    Aircraft Energy Management •    Mission & Trajectory Management 

External noise reduction 

“Ecolonomic” life cycle 

•   Engines •   Mission  & Trajectory Management •   ConNigurations •   Rotorcraft Noise Reduction 

   Aircraft Life Cycle 

15

“Sustainable and Green Engines” – ITD CROR engine

“System for Green Operation” – ITD” Management of Aircraft / Management of Trajectories and Missions

Links with:

CleanSky Technology Evaluator SFWA technologies for a Green Air Transport System

Output providing data to:

Innovative Powerplant Integration   Technology Integration

  Large Scale Flight Demonstration

  Impact of airframe flow field on Propeller design (acoustic, aerodynamic, vibration)

  Impact of open rotor configuration on airframe (Certification capabilities, structure, vibrations...)

  Innovative empennage design

Smart Wing Technologies   Technology Development   Technology Integration   Large Scale Flight Demonstration

  Natural Laminar Flow (NLF)   Hybrid Laminar Flow (HLF)   Active and passive load control   Novel enabling materials   Innovative manufacturing scheme

16

17

Aerospace Technology 2010, Stockholm,

18

Port wing Laminar wing structure

concept option 2

Starboard wing

Laminar wing structure concept option 1

Smart Passive Laminar Flow Wing   Design of an all new natural laminar wing

  Proof of natural laminar wing concept in wind tunnel tests

  Use of novel materials and structural concepts

  Exploitation of structural and system integration together with tight tolerance / high quality manufacturing methods in a large scale ground test demonstrator   Large scale flight test demonstration of the laminar wing in operational conditions

19

Reduced fuel consumption (CO2 & NOx reduction  

External noise reduction  

« Ecolonomic » life cycle   

•   Engines •   Loads & Nlow control •   New Aircraft ConNigurations  •   Low weight •   Aircraft Energy Management •   Mission & Trajectory Management 

•   Engines •   Mission & Trajectory Management •   ConNiguration •   Rotorcraft noise reduction 

•  Aircraft Life Cycle 

CO  up to 20% 

NOx  up to 60% 

Noise up to 20 dB 

20

Contra-rotating open rotor (CROR) propulsion systems, demonstrating

  Feasibility of both geared & direct drive power transmission

  Ability to control contra-rotating propeller blade pitch   Ability to control system noise levels equal to or better

than current engines

Lightweight Low Pressure (LP) systems for turbofans, including

  Composite fan blades & fancase   Lightweight structures   High efficiency low pressure turbine

Advanced engine externals & installations including novel noise attenuation

For advanced geared fan engine concepts   High efficiency LP spool technology   High speed LP turbine design   Aggressive mid turbine interduct

For next generation rotorcraft engine   High efficiency & lightweight compressor   High efficiency & lightweight turbine   Low emission combustion chamber

To develop and validate technologies   Contributing to the environmental targets   On 5 complementary demonstrator engines for regional, narrow body, wide body & rotorcraft

applications   Raising the Technology Readiness Levels to TRL 6

21

22

23

Rotating structure

Shafts

Modules, sub-systems, nacelle items

Design integration, assembly Test Programme

Power Turbine items

PGB for alternate architecture

Airframer requirements and installations

Project launch 1 June 2008

Project completion 2013

Prelim. DR June 2011

Interim Review Nov. 2009

Concept studies Demo spec.

Prelim. design Partner selection

Detail design Manufacture

Build and test

Critical DR Dec. 2011

Open rotor technology development → full-scale engine demonstration

Concept DR Sept. 2010

Nacelle items

Pitch Change Mechanism

PGB

Bearings

24

Reduced fuel consumption (CO2 & NOx reduction) 

External noise reduction 

"Ecolonomic"   life cycle 

•   Power plant •   Loads & Flow Control •   New Aircraft ConNigurations •   Low weight •   Aircraft Energy Management •   Mission & Trajectory Management 

•   Power Plant •   Mission & Trajectory Management •   ConNigurations •   Rotorcraft Noise Reduction 

•   Aircraft Life Cycle 

25

Reduced fuel consumption (CO2 & NOx reduction) 

External noise reduction 

"Ecolonomic"   life cycle 

  Power plant   Loads & Flow Control   New Aircraft ConNigurations   Low weight   Aircraft Energy Management   Mission & Trajectory Management 

  Power Plant   Mission & Trajectory Management   Con`igurations   Rotorcraft Noise Reduction 

  Aircraft Life Cycle 

26

1.   Innovative Rotor Blades  •  Active blade devices  •  Blade stall alleviation,  pro`ile drag reduction (tayloring of blade design) 

2.   Drag reduction, required power reduction   Passive and active `low controls for helicopter and tiltorotor components   Integration of MR pylon, hub, aft body, tail, turboshaft engine installation 

3.   More electrical Helicopter   Elimination of noxious hydraulic `luid; optimised on‐board energy ; weight reduction 

4.   Lean powerplant   installation of a Diesel engine on a light single HC for low CO2 emission 

5.   Environment­Friendly Flight Path  Noise abatement with optimized `light procedures in VFR & IFR including ATM constraints   Fuel consumption and pollutant emissions reduction through a mission pro`ile optimization  

6.   EcoDesign   Participation to generic studies +demo on speci`ic rotorcraft technologies & components 

7.   Technical Evaluator   Interfacing to the assessment of actual impact of selected technologies for rotorcraft 

27

Reduced fuel consumption (CO2 & NOx reduction) 

External noise reduction 

"Ecolonomic"   life cycle 

•   Power plant •   Loads & Flow Control •   New Aircraft ConNigurations •   Low weight •   Aircraft Energy Management •   Mission & Trajectory Management 

•   Power Plant •   Mission & Trajectory Management •   ConNigurations •   Rotorcraft Noise Reduction 

  Aircraft Life Cycle 

28

Ground Tests

TechnologyDevelopment

COPPER Test Rig at Hispano -Suiza PROVEN Test Rig at Airbus Flight Test Aircraft

Electrical ECS Electrical Engine Start and Power Generation

Electrical WIPS Electrical Power Distribution

and Management

Electrical Power Drive Systems

Thermal Management Equipment

►Management of Aircraft Energy (MAE) branch of SGO ITD encompasses all aspects of on-board energy provision, storage, distribution and consumption

►MAE aims at developing electrical system technologies and energy management functions to reduce fuel consumption and overall aircraft emissions through:

• Development of all-electrical system architectures and equipment

• Validation and maturation of electrical technologies to TRL 6 by large scale ground and flight demonstrations.

FlightDemonstration

29 Multi-criteria optimisation

Fuel

Noise NOx Contrails CO2

Cruise T/O Climb Descent Approach

►Management of Trajectory and Mission (MTM) branch of SGO ITD aims at reducing the environmental impact in the way the aircraft manages its trajectory either on ground or in flight

►Two main fields of research : • Improve in-flight trajectories, including overall missions profiles

• Reduce the need to use main engines during taxiing operations Electrical taxiing Green FMS Robustness to Weather

TechnologyDevelopment

SESAR

30

6 ­ Eco­Design  

Reduced fuel consumption (CO2 & NOx reduction) 

External noise reduction 

"Ecolonomic"   life cycle 

•   Power Plant •   Loads & Flow Control •   New Aircraft ConNigurations •   Low Weight •   Aircraft Energy Management •   Mission & Trajectory Management 

•   Power Plant •   Mission & Trajectory Management •   ConNigurations •   Rotorcraft Noise Reduction 

•   Aircraft Life Cycle 

31

To design airframes for decreasing inputs, outputs and nuisances during A/C design & production and withdrawal phases

To design architectures of a/c systems, towards the more/all electrical a/c, with the objective of reducing use of non-renewable and noxious fluids/materials

Eco-Design for Airframe (EDA) main objective Eco-Design for Systems (EDS) main objective

Modelling

Eco­Design Life­Cycle Modelling and Simulation  

32

Eco­Design  

33 flo

ws

&

impa

cts flo

ws

&

impa

cts

Current technology Aircraft (Reference)

Without Clean Sky

2020 / 2020+ forecast (incl. SESAR)

2000

List of Clean Sky Conceptual Aircraft

Promising technologies

from ITDs Generic fleet

inserted into traffic

Performances of technologies

Performances of aircraft Environment impacts

Deltas

With Clean Sky