prestack migration deconvolution jianxing hu and gerard t. schuster university of utah
Click here to load reader
Post on 19-Dec-2015
222 views
Embed Size (px)
TRANSCRIPT
- Slide 1
- Prestack Migration Deconvolution Jianxing Hu and Gerard T. Schuster University of Utah
- Slide 2
- Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
- Slide 3
- Comparison of Poststack MD Depth Slices 6 8 Y (km) Y (km) X (km) X (km)4 8 6 10 10 Kirchhoff Image Kirchhoff Image MD Image MD Image 6 8 Y (km) Y (km) X (km) X (km)4 8 6 10 10
- Slide 4
- Comparison of Prestack Migration and MD Images X (km) X (km) 4 6 8 10 10 1 4 Depth (km) Depth (km) X (km) X (km) 4 6 8 10 10 1 4 Depth (km) Depth (km) Prestack Kirchhoff Migration Image of Prestack Kirchhoff Migration Image of a North Sea Data Set a North Sea Data Set MD Image
- Slide 5
- Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
- Slide 6
- Modeling and Migration Seismic data Reflectivity Greens Function Model Space Migrated Image Data Space Seismic Data Forward Modeling: Migration: Wavelet
- Slide 7
- Model Space Where: Denote as the migration Greens Function Relation of Migrated Image and Reflectivity Distribution Relation of Migrated Image and Reflectivity Distribution Data Space
- Slide 8
- Reflectivity Modulated by Migration Greens Function Model Space
- Slide 9
- Migration Deconvolution Model Space Model Space --- reference position of migration Greens function
- Slide 10
- Lateral Velocity Variation Multi-Reference migration Greens function Subdivide the migration image area and use multi- reference migration Greens function to account for lateral velocity variation and far-field artifacts
- Slide 11
- Methodology Calculate migration Greens function Recording geometry & migrated image dimension Velocity Model + Traveltime Table Migration Greens function
- Slide 12
- Methodology Apply migration deconvolution filter to the stacked prestack migration image 5 Offset(km) 6 5 1 2 3 Depth (km) RTM Migration Image Deconvolved Image Deconvolved Image Pseudo-Convolution Offset(km) 6 5 1 2 3 Depth (km) RTM
- Slide 13
- Difference between Poststack MD and Prestack MD Zero-offset trace location & migrated image dimension Velocity Model Traveltime Table migration Poststack migration Greens function Greens function + migration Prestack migration Greens function Greens function Recording Geometry & migrated image dimension +
- Slide 14
- Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
- Slide 15
- Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
- Slide 16
- 5 X 5 Sources; 21 X 21 Receivers (0, 0) (1km, 0) (1km, 1km) (0, 1km) Point scatterer Recording Geometry Wavelet frequency 50 Hz
- Slide 17
- Prestack KM vs. Prestack MD Y X Y X Y X Y X
- Slide 18
- Prestack KM vs. Poststack MD Y X Y X Y X Y X
- Slide 19
- Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
- Slide 20
- (0, 0) (1 km, 0) (1 km,1 km) (0, 1 km) A river channel Recording Geometry 5 X 5 Sources; 21 X 21 Receivers Wavelet frequency 50 Hz
- Slide 21
- Meandering River Model 01000 X (m) 0 1000 Y (m)
- Slide 22
- Kirchhoff Migration Image 01000 X (m) 0 1000 Y (m)
- Slide 23
- MD Image 01000 X (m) 0 1000 Y (m)
- Slide 24
- Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
- Slide 25
- Prestack Migration Image Prestack Migration Image Deconvolved Migration Image Deconvolved Migration Image 0 km 20 km 20 km 0 km 4 km 20 km 0 km 0 km 0 km 4 km X(km) Depth (km)
- Slide 26
- Zoom View of KM and MD Prestack KM Prestack MD 2 4 3 Depth (km) 37 X (km) 2 4 3 Depth (km) 37 X (km)
- Slide 27
- Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set (Canadian Foothills)2-D Husky data set (Canadian Foothills) 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
- Slide 28
- Husky Prestack Migration Image 4 6X(km)0 0 10 5 2 Depth (km)
- Slide 29
- Velocity Model for Husky Data 6X(km)0 0 10 5 2 Depth (km) 7000 3200 Velocity (m/s)
- Slide 30
- MD with 20 reference positions 6X(km)0 0 10 5 2 Depth (km) A
- Slide 31
- KM X(km) 95 1 3 Depth (km) MD X(km)95 1 3 Depth (km)
- Slide 32
- MD with 20 reference positions 6X(km)0 0 10 5 2 Depth (km) B
- Slide 33
- KM X(km) 1411 1 3 Depth (km) MD X(km)1411 1 3 Depth (km)
- Slide 34
- MD with 20 reference positions 6X(km)0 0 10 5 2 Depth (km) C
- Slide 35
- KM X(km)1410 2 5 Depth (km) MD X(km)1410 2 5 Depth (km)
- Slide 36
- Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set2-D Husky data set 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
- Slide 37
- KM Inline (97,Y) Section MD Inline (97,Y) Section 58 Y (km) 58 0 4 2 04 2 Depth (km)
- Slide 38
- KM Crossline (X,97) Section MD Crossline (X,97) Section 04 2 Depth (km) 118 X (km) 118 X (km) 04 2
- Slide 39
- Numerical Tests 3-D point scatterer model3-D point scatterer model 3-D meandering stream model3-D meandering stream model 2-D SEG/EAGE overthrust model2-D SEG/EAGE overthrust model 2-D Husky data set2-D Husky data set 3-D SEG/EAGE salt model3-D SEG/EAGE salt model 3-D West Texas data set3-D West Texas data set
- Slide 40
- KMMD03 X(kft)46 8 Depth (kft) 4 6 8 03 X(kft)
- Slide 41
- 46 8 Depth (kft) KMMD4 6 8 X(kft)2 4 2 4
- Slide 42
- Outline MotivationMotivation MethodologyMethodology Numerical TestsNumerical Tests ConclusionsConclusions
- Slide 43
- Conclusions Works well on 2-D land and 3-D synthetic marine prestack data More work is needed to remedy the problems in MD for 3-D land prestack data Standard post-migration processing procedure ?
- Slide 44
- Acknowledgement Thank 1999 UTAM sponsors for their financial supportThank 1999 UTAM sponsors for their financial support