presentazione en

Upload: ngozi-henrietta-emi

Post on 05-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Presentazione En

    1/22

    Universita degli Studi di Napoli

    Federico II

    Facolta di Ingegneria

    Corso di laurea in Ingegneria AerospazialeDipartimento di Ingegneria Aerospaziale

    Analogical-differential sun sensor simulator

    Academic Year 2007/2008

    Teacher Supervisor: Ch.mo Prof. Ing. Candidate: Claudio Bove

    Michele Grassi matr. 347/436

  • 7/31/2019 Presentazione En

    2/22

    The aim of the thesis is the development of modeling and a numerical code that simulates the

    operation of an analogical-differential sun sensor instead on a satellite in orbit.It consists of five

    solar cells arranged on a truncated pyramid with square base and allows to determine the direction

    of the sun through a combination of short-circuit currents.

    The comparison between this direction and that reconstructed from the know apparent motion of

    the sun allows to estimate the satellite attitude.

    Analogical differential sun sensor Satellite attitude

    yo

    zo

    xo

    12

    3

  • 7/31/2019 Presentazione En

    3/22

  • 7/31/2019 Presentazione En

    4/22

    The key element of an analogical differential sun sensor is the solar cell,a device capable of

    trasforming the energy of light radiation into electrical energy.

    The most common solar cell consists of a silicon sheet, a non-reflective glass and two electrical

    contacts.

    The efficiency of the solar cell is obtained by evaluating the relationship between provided

    energy and the energy of light which invests its entire surface.Typical values for specimens of

    crystalline silicon on the market is around 15%.

  • 7/31/2019 Presentazione En

    5/22

    Electricfield

    p-type silicon

    Anti-reflection coating

    Top electric contact

    Junction

    n-type silicon

    Low electric contact

    Solar radiation

    Putting a load in parallel there is the passage of electric current due to a concentration gradient of

    charges.

    Electrical

    resistance

    + -

    -

    ++

    Principle of operation of the photovoltaic cell

    Doping pure silicon with group III atoms as boron (p-type silicon) and group V such as phosphorus

    (n-type silicon) an electrical field that favors the separation of charge carriers is obtained at the

    junction when an electron is removed from atom due photoelectric effet.

  • 7/31/2019 Presentazione En

    6/22

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0.4Curva caratteristica della cella solare Silicon K7700A

    Tensione [V]

    Corrente[A]

    The diagram showing the current as a function of the voltage is called characteristic curve .In it

    there are two parameters that depend on the construction of the cell:

    Short -circuit current Short- circuit voltage

    In addition there is a dependence on the angle of solar radiation incidence.

    teta=0

    teta=pi/6

    teta=pi/4

    teta=pi/3

    n

  • 7/31/2019 Presentazione En

    7/22

    In particular the cells 1,2,5 combine to determine the angle s that the projection of solar directionThe cells 3,4,5 instead combine to determine the angle s that the projection of solar direction in

    lane XsZs sha e with the axis Zs.

    Analogical differential sun sensor combines the short-circuit currents of five cells to determine the

    direction of the sun in sensory reference XsYsZs.

    4

    3

    1

    2

    5

    Xs

    Ys

    Zs

    s

    Zs

    Xs

    Ys

    YsZs

    s

  • 7/31/2019 Presentazione En

    8/22

    The formulas needed to determine the angle s in plane YsZs are achieved by combining short-

    circuit currents of cells 1,2,5.This angle can be calculated only in three cases:

    Zs

    Ys

    -/2 /2

    -/2+0 /2-0

    C

    E

    D

    BA

    521

    n2n1

    Sun in the fields of view of cells 1,2,5 stg0sin25scI

    1sc

    I

    2sc

    I

    =

    Sun in the fields of view of cells 2 e 5

    s005sc

    2sc

    tgsincosI

    I

    +=s005sc

    1sc

    tgsincosI

    I

    =

    Sun in the fields of view of cells 1 e 5

  • 7/31/2019 Presentazione En

    9/22

    In a similar way the formulas are written for the calculation of the angle s in plane XsZs.

    Zs

    Xs

    -/2 /2

    -/2+0 /2-0

    C

    E

    D

    BA

    543

    n2n1

    Sun in the fields of view of cells 3,4,5 stg0sin2

    5sc

    I

    3scI4scI =

    Sun in the fields of view of cells 4 e 5

    s005sc

    4sc

    tgsincosI

    I

    +=

    Sun in the fields of view of cells 3 e 5

    s005sc

    3sc

    tgsincosI

    I

    =

  • 7/31/2019 Presentazione En

    10/22

    Simulation program

    Simulate the operation of the analogical differential sun sensor means to predict the short-circuit

    currents produced by the five cells at any instant of the time if it is placed on a satellite in orbit.

    A block that calculates short-circuit currents and rebuild the direction of the sun in the sensory

    system XsYsZs.

    So it is necessary to design:

    An orbit propagator to simulate the satellites orbit.

    A propagator of the dynamics of attitude.

    A propagator of the apparent motion of the sun.

    X

    Y

    ZZs

    YsXs

  • 7/31/2019 Presentazione En

    11/22

    The simulation program is implemented using Simulink

    The general scheme is:

    Sun orbitalparameters

    Sun sensor

    Orbitalpropagator

    X,Y,Z satellite in IRF

    X,Y,Z sun in IRF

    satellite in IRF

    Solarpropagator

    Orbital parameters

    X,Y,Z sun in BRF

    Matrix

    IRF to ORF

    Propagatorof the

    dynamics of

    attitude

    Initial attitude Matricx

    ORF to BRF

    Z,Y,X

    ,,

    ,,

  • 7/31/2019 Presentazione En

    12/22

    Orbital propagator

    Input:inclination, right ascension of the ascending node, argument of perigee,true anomaly, semi-

    major axis maggiore,eccentricity.

    Output:componenti della posizione del satellite nel riferimento inerziale.

    By derivation the velocity components can also be obtained.

    Z

    X

    Y

    i

    w

    a

    ( ) ( )[ ]

    +

    +=cose1

    psinwcosicossinwsincoscoswsinicossinwcoscosrX

    ( ) ( )[ ]+

    +++=cose1

    psinwcosicoscoswsinsincoswsinicoscoswcossinrY

    [ ]+

    +=cose1

    psinwcosisincoswsinisinrY

    Equatorialplane

    n

    Descendingnode

    Ascending

    node

    xp

    zp

    yp

    Perigee

    r

  • 7/31/2019 Presentazione En

    13/22

    Simulink diagram for orbital propagator

    M A T L A B

    Fu n ct io n

    ve l o ci ta ' a n g o la re

    m e d ia

    M A T L A B

    F u n ct i o n

    se m il a to re tt o

    6 7 7 8

    se m i a sse

    m a g g io re

    M A T L A B

    Fu n ct io n

    p e rio d o o rb i ta le

    3 .9 8 *(1 0 5 )

    m u te rra

    4 5

    in cl in a zio n e

    0

    e cce n t r ic i ta '

    M A T L A B

    Fu n ct i o n

    c o n ve rsio n e

    4 0

    a sc e n sio n e re tta

    3 0

    a rg o m e n to p e ri g e o

    M A T L A B

    Fu n ct io n

    a n o m a l i a ve ra

    M A T L A B

    Fu n ct io n

    a n o m a l ia e cce n tr ic a

    I n 1

    S o tto siste m a ve lo ci ta '

    I n 1

    S o tto siste m a p o siz io n e

    C l o ck

  • 7/31/2019 Presentazione En

    14/22

    Propagator of the dynamics of the attitude

    The equations of dynamics of attitude ,in case of small eccentricity and small angles ,are:

    ( ) 0k1MkM4 112 =+

    ( )tMsinMe2kM3 22 =+

    ( ) 0k1MkM 332 =++

    The obtained solutions by integration are the following:

    ( ) ( ) ( )tkM2sinkM2

    tkM2cost 11

    010

    +=

    ( ) ( ) ( ) ( ) ( ) ( ) ( )tk3Msink31k3e2

    tMsink31

    e2tk3Msink3Mtk3Mcost

    2222

    22

    020

    +

    +=

    ( ) ( ) ( )tkMsinkM

    tkMcost 33

    030

    +=

  • 7/31/2019 Presentazione En

    15/22

    So the propagator of dynamics of satellite attitude is created by a block that produces in output

    these solutions giving in input the initial angles ,the initial angle speed,the eccentricity,medium

    angle speed,details of the moments of inertia mass.

    yaw punto [gradi/s]

    yaw [rad]

    yaw [gradi]

    MATLAB

    Function

    velocita' angolare

    media

    In1

    Out1

    Out2

    sottosistema yaw

    In1

    Out1

    Out2

    sottosistema roll

    In1

    In2

    Out1

    Out2

    sottosistema pitch

    6778

    semiasse

    maggiore

    roll punto [gradi/s]

    MATLAB

    Function

    roll e rollpunto

    roll [rad]

    roll [gradi]

    pitch punto [gradi/s]

    MATLAB

    Function

    pitch e pitchpunto

    pitch [rad]

    pitch [gradi]

    3.98*(10^5)

    mu terra

    MATLAB

    Function

    gradi yaw e yawpunto

    0

    eccentricita'

    2

    Out2

    1

    Out1

    MATLAB

    Function

    roll punto

    MATLAB

    Function

    roll

    0.94299

    k1

    clock

    8.7266*10^-6

    alfazeropunto

    0.297

    alfa0

    1

    In1

    2

    Out2

    1

    Out1

    MAT LAB

    Function

    pitch punto

    MAT LAB

    Function

    pitch

    0.11141

    kdue

    8.7266*10^-6

    beta0punto

    0.262

    beta0

    Clock

    2In 2

    1

    In 1

    2

    Out2

    1

    Out18.7266*10^-6

    yaw0punto

    0.279

    yaw0

    MATLAB

    Function

    yaw punto

    MATLAB

    Function

    ya w

    0.92920

    ktre

    Clock

    1

    In1

  • 7/31/2019 Presentazione En

    16/22

    Simulink model of the analogical differential sun sensor

    The simulink diagram that models the analogical differential sun sensor has in input the

    components of the solar unit vector in the sensory reference and output short-circuit currents of the

    five solar cells.

    MATLAB

    Function

    ricostruzione

    versore sole

    In1 Out1

    determinazione angoli

    alfa e beta sole

    corrente cella 5 [A]

    MATLAB

    Function

    corrente cella 5

    corrente cella 4 [A]

    MATLABFunction

    corrente cella 4

    corrente cella 3 [A]

    MATLAB

    Function

    corrente cella 3

    corrente cella 2 [A]

    MATLAB

    Function

    corrente cella 2

    corrente cella 1 [A]

    MATLAB

    Function

    corrente cella 1

    componenti versore sole

    ricostruito dal sensore

    MATLAB

    Function

    componen ti versore sole

    nel sistema sensoriale

  • 7/31/2019 Presentazione En

    17/22

    The simulink diagram is:

    In the simulation program five solar sensors were considered ,each placed on one side of the

    satellite except the one facing the earth,in order to increase the chances of reconstruction of the

    solar direction.Then the ideal operation of the sensors with perfectly same cells and that real with

    cells having short-circuit currents equal to less than 1% were simulated.

    yaw radiantiMATLAB

    Function

    versore sole BRF

    sen sori sol ari

    rol l radianti

    propagatore solare

    propagatore orbitale e dinam ica d'assetto

    pitch radianti

    modulo posizione

    sole [km]

    MATLAB

    Function

    eclisse

    compo nenti versore

    sole BRF

    componenti sole

    in B RF [km]

    comp onenti po sizione [km]

    componenti posizione

    sole [km]

    compon enti velocita' [km/s]

    MATLAB

    Function

    ORF to BRFMATLAB

    Function

    IRF to ORF

    RICOSTRUZIONE DEL VERSORE SOLE COMPONENTI VERSORE SOLE IN BRF

  • 7/31/2019 Presentazione En

    18/22

    Simulation results

    The simulator works for any type of Keplerian orbit having small eccentricity.In this thesis

    simulations have been carried out for three types of orbits,showing the trends of short-circuit

    currents of all the solar cells and the reconstructions of the solar unit for each sensor in terms both

    of components both of coelevation and azimuth sun angles.

    Keplerian circular orbit at the spring equinox,with 400 km altitude,inclination 0 (equatorial

    orbit), = 40, w = 30.

    yo

    zo

    xo

    1 2

    3

    0 1000 2000 3000 4000 5000 6000-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    tempo [s]

    COMPONE

    NTIVERSORE

    RICOSTRUZIONE DEL VERSORE SOLE

    prima componente

    seconda componente

    terza componente

    TIME OFFSET:6.7391e+006

    0 1000 2000 3000 4000 5000 6000-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    tempo [s]

    COMPONENTIVERSO

    RE

    RICOSTRUZIONE DEL VERSORE SOLE

    prima componente

    seconda componente

    terza c omponente

    TIME OFFSET:6.7391e+006

    0 1000 2000 3000 4000 5000 60-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    tempo [s]

    COMPONENTIVERSO

    RE

    RICOSTRUZIONE DEL VERSORE SOLE

    prima componente

    seconda componente

    terza componente

    TIME OFFSET:6.7391e+006

    0 1000 2000 3000 4000 5000 60-1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    tempo [s]

    COMPONE

    NTIVERSORE

    COMPONENTI VERSORE SOLE IN BRF

    prima componente

    seconda c omponente

    terza componente

    TIME OFFSET:6.7391e+006

    Eclipse

    Eclipse

    Eclipse

    RICOSTRUZIONE COELEVAZIONE ED AZIMUTH DEL SOLE COELEVAZIONE ED AZIMUTH SOLE IN BRF

  • 7/31/2019 Presentazione En

    19/22

    yo

    zo

    xo

    1 2

    3

    0 1000 2000 3000 4000 5000 60000

    50

    100

    150

    200

    250

    300

    350

    400

    tempo [s]

    AMPIEZZA

    [gradi]

    coelevazione

    azimuth

    TIME OFFSET : 6.7391e+006

    0 1000 2000 3000 4000 5000 60000

    50

    100

    150

    200

    250

    300

    350

    400

    tempo [s]

    AMPIEZZA

    [gradi]

    RICOSTRUZIONE COELEVAZIONE ED AZIMUTH DEL SOLE

    coelevazione

    azimuth

    TIME OFFSET : 6.7391e+006

    0 1000 2000 3000 4000 5000 600

    50

    100

    150

    200

    250

    300

    350

    400

    tempo [s]

    AMPIEZZA

    [gradi]

    RICOSTRUZIONE COELEVAZIONE ED AZIMUTH DEL SOLE

    coelevazione

    azimuth

    TIME OFFSET : 6.7391e+006

    0 1000 2000 3000 4000 5000 6000

    50

    100

    150

    200

    250

    300

    350

    400

    tempo [s]

    AMPIE

    ZZA

    [gradi]

    coelevazione

    azimuth

    TIME O FFSET : 6.7391e+006

    Eclipse

    Eclipse

    Eclipse

  • 7/31/2019 Presentazione En

    20/22

    Simulation results

    The simulator works for any type of Keplerian orbit having small eccentricity.In this thesis

    simulations have been carried out for three types of orbits,showing the trends of short-circuit

    currents of all the solar cells and the reconstructions of the solar unit vector for each sensor in terms

    both of components both of coelevation and azimuth sun angles:

    Keplerian circular orbit at the spring equinox,with 400 km altitude ,inclination 0 ( equatorial

    orbit), = 40, w = 30.

    Keplerian circular orbit at the spring equinox,with 400 km altitude and inclination 45, =

    40, w = 30.

    Keplerian circular orbit at the summer solstice,with 800 km altitude and inclination 90( polar

    orbit ), = 40, w = 30.

  • 7/31/2019 Presentazione En

    21/22

    Conclusions

    The aim of the thesis have been the creation of a program that simulates the operation of five

    solar sensors placed on the satellite faces.

    The combination of the short-circuit currents determines in each sensory reference the sun

    direction which ,compared with that known by sun apparent motion,can estimate the satellite

    attitude.So it possible choose the best placement of the sensors.

    The numeric code have been created using Simulink and has given satisfactory results ,that could

    be improved by modeling the main causes perturbations of the orbit.

    The program could be used in the design of future spece missions ,for prediction calculations on

    the satellite attitude and to obtain useful informations for development of the best design of

    attitude control.

  • 7/31/2019 Presentazione En

    22/22

    Thank you for your kind attention