presentation eldas infrared zeolit dan clay

104

Upload: dyah-ratna-deedee

Post on 23-Oct-2014

75 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Presentation ELDAS Infrared Zeolit Dan Clay
Page 2: Presentation ELDAS Infrared Zeolit Dan Clay

Regions of the electromagnetic spectrum

Representation of an electromagnetic wave

Page 3: Presentation ELDAS Infrared Zeolit Dan Clay
Page 4: Presentation ELDAS Infrared Zeolit Dan Clay

Pentaammine isothiocyanatocobalt(III) ion

Pb2+ EDTA complex[Co(en)3]3+

complex ion

Page 5: Presentation ELDAS Infrared Zeolit Dan Clay

Zeolite-AZeolite-Y

Zeolite-MFI

Page 6: Presentation ELDAS Infrared Zeolit Dan Clay

Pokok Bahasan

1.Review Infrared Spectroscopy2.Infrared Spectroscopy of Inorganic Molekul3.Infrared Spectroscopy of Zeolite

Identification of dealumination process Identification of isomorphous reaction

process4.Infrared Spectroscopy of Clay

Identification of pillarization process5.Infrared Adsorbed Molecule on zeolite

structureand metal oxide

6. Conclusion

Page 7: Presentation ELDAS Infrared Zeolit Dan Clay

Regions of the electromagnetic spectrum

Representation of an electromagnetic wave

Page 8: Presentation ELDAS Infrared Zeolit Dan Clay

Change in the dipole moment of a heteronuclear diatomic molecule

A molecule that has infrared absorptions it must possess a specific feature, i.e an electric dipole moment of the molecule must change during the vibrations

Page 9: Presentation ELDAS Infrared Zeolit Dan Clay
Page 10: Presentation ELDAS Infrared Zeolit Dan Clay
Page 11: Presentation ELDAS Infrared Zeolit Dan Clay
Page 12: Presentation ELDAS Infrared Zeolit Dan Clay

Normal modes of vibration of linear and bent XY2 molecules

+ and – denote vibrations moving upwards and downwards, respectively,in direction perpendicular to the palne of the paper

Page 13: Presentation ELDAS Infrared Zeolit Dan Clay

Normal modes vibration in CO2

Normal modes vibration in H2O

1 is Raman-active2 and 3 are Infrared-active

Page 14: Presentation ELDAS Infrared Zeolit Dan Clay

Frequency vibrations of Various Inorganic Molecules (1/cm)

Page 15: Presentation ELDAS Infrared Zeolit Dan Clay

Infrared spectra of (a) dihydrate, (b) hemihydrate, and (c) anhydrous CaSO4

Page 16: Presentation ELDAS Infrared Zeolit Dan Clay

Jenis isotop unsur-unsur logam menentukan frekwensi vibrasi inframerah molekul anorganik

Spektra inframerah molekul NiF2

Page 17: Presentation ELDAS Infrared Zeolit Dan Clay

CompoundCompound StructureStructure 1 (cm-1) 2 (cm-1) 3 (cm-1)

BeFBeF22 linearlinear (680)(680) 345345 15551555

BeClBeCl22 linearlinear (390)(390) 250250 11351135

BeBrBeBr22 linearlinear (230)(230) 220220 10101010

BeIBeI22 linearlinear (160)(160) (175)(175) 873873

MgFMgF22 linearlinear 550550 249249 842842

MgClMgCl22 linearlinear 327327 9393 601601

MgBrMgBr22 linearlinear 198198 8282 497497

MgIMgI22 linearlinear 148148 5656 445445

(680) frequencies Raman-active or Infrared-inactive

Vibrational Frequencies of XY2 – Type Metal Halides

Page 18: Presentation ELDAS Infrared Zeolit Dan Clay

Normal modes of vibration of planar (a) and pyramidal (b)of XY3 molecules

Page 19: Presentation ELDAS Infrared Zeolit Dan Clay

Frequency vibrations of Various Molecules of planar and pyramidal of XY3 (1/cm)

Page 20: Presentation ELDAS Infrared Zeolit Dan Clay

Raman Spectra of the SnX3- ions in diethyl ether extracts from SnX2 in HX solution

Daerah near infra red

Page 21: Presentation ELDAS Infrared Zeolit Dan Clay

Normal modes of vibration of tetrahedral (a) and square planar (b) of XY4 molecules

Page 22: Presentation ELDAS Infrared Zeolit Dan Clay

Frequency vibrations of Various Molecules of tetrahedral and square planar of XY4 (1/cm)

Page 23: Presentation ELDAS Infrared Zeolit Dan Clay

Vibrational Modes of NH4Cl

55 and and 66 are lattice vibrational modes

Page 24: Presentation ELDAS Infrared Zeolit Dan Clay

ClK

KClO3

K I

KClO3 KIO3

Infrared spectra of KClO3 (solid line) and KIO3 (dash line)

Page 25: Presentation ELDAS Infrared Zeolit Dan Clay
Page 26: Presentation ELDAS Infrared Zeolit Dan Clay
Page 27: Presentation ELDAS Infrared Zeolit Dan Clay
Page 28: Presentation ELDAS Infrared Zeolit Dan Clay

Primary and Secondary Building Unit Zeolites Structure

PBU

SBU

Page 29: Presentation ELDAS Infrared Zeolit Dan Clay

(1)Garis tebal : Tetrahedral internal(tidak sensitif struktur, sensitif

komposisi kimia, rasiio Si/Al)

(2) Garis putus-putus : Jalinan Eksternal(sensitif struktur, tidak sensitifkomposisi kimia)

Page 30: Presentation ELDAS Infrared Zeolit Dan Clay

Tetrahedral InternalTetrahedral Internal Jalinan EksternalJalinan Eksternal

Jenis vibrasiJenis vibrasi (cm(cm-1-1)) Jenis vibrasiJenis vibrasi (cm(cm-1-1))

Regangan asimetrisRegangan asimetris 1250-9501250-950 Regangan asimetrisRegangan asimetris 750-820750-820

Regangan simetrisRegangan simetris 720-650720-650 Regangan simetrisRegangan simetris 1050-11501050-1150

Bend T-OBend T-O 420-500420-500 Cincin gandaCincin ganda 650-500650-500

Pori terbukaPori terbuka 300-420300-420

Assignment infra merah Zeolite

Page 31: Presentation ELDAS Infrared Zeolit Dan Clay
Page 32: Presentation ELDAS Infrared Zeolit Dan Clay

IR spectra of OH groups in Mazzites Zeolite of Si/Al = 4,4 ; 10 ; 30

Page 33: Presentation ELDAS Infrared Zeolit Dan Clay

(a)activated mazzite, (b) ammonia adsorption, (c) pyridine adsorption, (d) reacting with pyridine (a minus c)

Page 34: Presentation ELDAS Infrared Zeolit Dan Clay

IR spectra of OH groups MAZ 4,4 (a), 10 (b), 30 (c) after benzene adsorption

IR spectra of OH groups MAZ 4,4 (a), (b) after benzene adsorption, (c) a-b

Page 35: Presentation ELDAS Infrared Zeolit Dan Clay

(1)Garis tebal : Tetrahedral internal(tidak sensitif struktur, sensitif

komposisi kimia, rasiio Si/Al)

(2) Garis putus-putus : Jalinan Eksternal(sensitif struktur, tidak sensitifkomposisi kimia)

Page 36: Presentation ELDAS Infrared Zeolit Dan Clay

H-Zeolite-Y

H-Zeolite-ZSM20

DealuminatedZeolite-US

DealuminatedZeolite-Y

DealuminatedZeolite-ZSM20

IR Spectra in the region lattice vibrations of hydrated Faujasite type Zeolitesbefore and after dealumination

Page 37: Presentation ELDAS Infrared Zeolit Dan Clay
Page 38: Presentation ELDAS Infrared Zeolit Dan Clay

Dealumination process

Page 39: Presentation ELDAS Infrared Zeolit Dan Clay
Page 40: Presentation ELDAS Infrared Zeolit Dan Clay
Page 41: Presentation ELDAS Infrared Zeolit Dan Clay
Page 42: Presentation ELDAS Infrared Zeolit Dan Clay

Infrared spectra padatan hasil reaksi isomorphous abu layang dan (NH4)2HPO4

Page 43: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari IR Spectroscopy in catalysis, Catalysis today 68 (2001) 263-281EBOOK-IR Review, halaman 312

Page 44: Presentation ELDAS Infrared Zeolit Dan Clay

In faujasite zeolites, the cations in the beta-cages and the double six-ring(SD6R, the hexagonal prism) (i.e., at sites SI, SI, and SII) are sterically inaccessible to nitrogen, and so only the supercage cations (i.e., those at SII andDiambil dari Adsorbent Fundamental and Application, EBook, Chapter X, hal 287

Unit cell of faujasite-type (X and Y) zeolites, including cation sites.

Page 45: Presentation ELDAS Infrared Zeolit Dan Clay

(Top) Site II cation on six-membered oxygen ring as the basic unit on A and X zeolites. T denotes Si or Al. (Bottom) Geometry-optimized cluster model to represent the chemistry of Ag-zeolite.

Diambil dari Adsorbent Fundamental and Application, EBook, Chapter VII, hal 174

Page 46: Presentation ELDAS Infrared Zeolit Dan Clay

(a) Extra-framework cation sites in X- and Y-type zeolites. (b) Far- infrared spectrumof Na-Y with band assignments to cation sites according to [232]. (c) Experimental IR spectrum in comparison to simulated spectra calculated according to the shell model and occupancy of different cation sites. (d) Experimental spectrum in comparison to power spectra simulated by MD at occupancy of different cation sites (parts c and d from [79] with permission) halaman 67

Page 47: Presentation ELDAS Infrared Zeolit Dan Clay

Far-infrared (FIR) spectra of alkali-metal cation-exchanged faujasites and H-Y zeolite

Page 48: Presentation ELDAS Infrared Zeolit Dan Clay
Page 49: Presentation ELDAS Infrared Zeolit Dan Clay
Page 50: Presentation ELDAS Infrared Zeolit Dan Clay
Page 51: Presentation ELDAS Infrared Zeolit Dan Clay
Page 52: Presentation ELDAS Infrared Zeolit Dan Clay

IR Spektra Montmorillonit yg di treatment dgn asam 6 M HCl pada variasiWaktu (a) 0, (b) 2, (c) 4, (d) 6, (e) 8, (f) 10, (g) 12, (h) 18, (i) 24 dan (j) 30 jam

Page 53: Presentation ELDAS Infrared Zeolit Dan Clay

Pita yg paling intensif didekat 1048 cm-1 diindikasikan sbg vibrasi stretching Si-O dari lapisan tetrahedral. Pita 524 cm-1 adalah vibrasi Si-O-Al ( dimana Al adalah kation oktahedral) Pita 466 cm-1 adalah vibrasi bending Si-O-Si. Pita serapan pada 621 cm-1 ini sesuai dgn vibrasi tegak lurus dari kation oktahedral (M-O-Si) dimana M adalah Al, Mg dan Li Tiga puncak pada daerah bending OH adalah :

(a) 917 cm-1 (Al2OH)(b) 886 cm-1 (AlFeOH)(c) 850 cm-1 (AlMgOH)

Al oktahedral disubstitusi oleh Fe dan Mg. Intenditas yg rendah dari puncak pita MgAlOH mengindikasikan kandungan Mg yang rendah. Puncak doublet pada 799 dan 779 mengindikasikan adanya campuran mineral lain dalam hal ini adalah mineral kuarsa.

Page 54: Presentation ELDAS Infrared Zeolit Dan Clay

Pita 524 cm-1 adalah vibrasi Si-O-Al ( Al adalah kation oktahedral) Intensitas puncak 524 berkurang dgn kenaikan waktu Pita doublet 799 dan 779 indikasi adanya mineral kuarsa, Intensitas puncak 799 bertambah dgn kenaikan waktu (dealuminasi kuarsa) Tiga puncak pada daerah bending OH adalah :

(a) 917 cm-1 (Al2OH)(b) 886 cm-1 (AlFeOH)(c) 850 cm-1 (AlMgOH)

Ketiga puncak berkurang dgn kenaikan waktu (dealuminasi, penukaran kation) Pita 1048 cm-1 diindikasikan sbg vibrasi stretching Si-O (tetrahedral) Puncak makin membesar indikasi terbentuknya amorphous silika

Page 55: Presentation ELDAS Infrared Zeolit Dan Clay

IR Spektra Hectorite yg di treatment dgn asam 0,25 M HCl pada variasiWaktu (a) 1, (b) 3, (c) 5 dan (d) 8 jam

Page 56: Presentation ELDAS Infrared Zeolit Dan Clay

Hectorite adalah trioktahedral smectite yg berisi Mg dan Li sebagai kation oktahedral Puncak 654 cm-1 bending OH

Puncak 1012 cm-1 stretching Si-O Puncak 701 cm-1 bending Si-O tegak lurus bidang Puncak 467 cm-1 bending Si-O dlm bidang Pita 524 cm-1 adalah vibrasi Si-O-Al ( Al adalah kation oktahedral) Intensitas puncak 524 berkurang dgn kenaikan waktu Tiga puncak pada daerah bending OH adalah :

(a) 917 cm-1 (Al2OH)(b) 886 cm-1 (AlFeOH)(c) 850 cm-1 (AlMgOH)

Ketiga puncak berkurang dgn kenaikan waktu (dealuminasi, penukaran kation) Pita 1048 cm-1 diindikasikan sbg vibrasi stretching Si-O (tetrahedral) Puncak makin membesar indikasi terbentuknya amorphous silika

Page 57: Presentation ELDAS Infrared Zeolit Dan Clay

IR Spektra Smectite yg di treatment dgn asam 6 M HCl pada variasi suhu(a) asli, (b) 60oC dan (c) 95oC

Page 58: Presentation ELDAS Infrared Zeolit Dan Clay

IR Spektra Hectorite yg di treatment dgn asam HCl pada variasi konsentrasi(a) 0, (b) 0,1, (c) 0,25 dan (d) 0,5 M

Page 59: Presentation ELDAS Infrared Zeolit Dan Clay

Surfactan~ 3 % b/b

Acid Leaching

Hydrotermal

HEKSAGONAL MESOPORE CLAY( H M C )

Natural Bentonite

Calcination

Page 60: Presentation ELDAS Infrared Zeolit Dan Clay

Infrared Spectra Natural Bentonite and Leached bentonite resulted from nonswelling leaching in various concentrasion of Hydrochloride Acid,

(a) Natural Bentonit

(b) 7M (c) 8 M,(d) 9 M

and (e) 10 M

Page 61: Presentation ELDAS Infrared Zeolit Dan Clay

Difractogram Spectra Natural Bentonite and Leached bentonite resulted from nonswelling leaching in various concentrasion of Hydrochloride Acid,

(a) Natural Bentonit

(b) 7M (c) 8 M,(d) 9 M

and (e) 10 M

Page 62: Presentation ELDAS Infrared Zeolit Dan Clay

Infrared Spectra Natural Bentonite and Leached bentonite resulted from swelling leaching in various concentrasion of Hydrochloride Acid,

(a) Natural Bentonit

(b) 4M (c) 5 M, and (d) 6M

Page 63: Presentation ELDAS Infrared Zeolit Dan Clay

Difractogram Spectra Natural Bentonite and Leached bentonite resulted from swelling leaching in various concentrasion of Hydrochloride Acid,

(a) Natural Bentonit

(b) 4M (c) 5 M, and (d) 6M

Page 64: Presentation ELDAS Infrared Zeolit Dan Clay

Difractogram Spectra of Composed Bentonite prepared from Leached bentonite resulted by swelling method in various concentrasion of Hydrochloride Acid and C14TMA

(a) 4M

(b) 5M and (c) 6M

Page 65: Presentation ELDAS Infrared Zeolit Dan Clay

Spectra Infrared of Heksagonal Mesopore Clay

a) before calcination

b) after calcination

Page 66: Presentation ELDAS Infrared Zeolit Dan Clay

Difraktogram Spectra of Heksagonal Mesopore Clay

(a)before calsination

(b) after calcinations

d001 2,10o, 42,03 Å

a

b

d110 3,88o, 22,73 Å

d200 4,42o, 19,94 Å

d110 3,93o, 21,83 Å

d200 4,46o, 19,04 Å

d001 2,14o, 41,13 Å

Page 67: Presentation ELDAS Infrared Zeolit Dan Clay

t = 6-12 A

da

Å

d = basal spacing ~ 41,31 Å

a = distance between center pore

t = pore wall thickness, for MCM-41

~ 6-12 Å

AAd

a 49,473

21

13,41

30cos Å

Å

Pore diameter = a – t = 47,49 Å – 12 Å = 35,49 Å

Two dimension Ilustration of HMC pore

Page 68: Presentation ELDAS Infrared Zeolit Dan Clay

Isoterm Adsorpsi-desorpsi HMC

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

P/Po

V (c

c/g)

adsorpsi

desorpsi

Isoterm Adsorption-Desorption

SBET = 614,647 m2/g

dpore = 36,49 Å

Page 69: Presentation ELDAS Infrared Zeolit Dan Clay

Pore Size Distribution

-0.05

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

rP rata-rata

Vp

/de

lta

rP

13,2 Å

Page 70: Presentation ELDAS Infrared Zeolit Dan Clay
Page 71: Presentation ELDAS Infrared Zeolit Dan Clay

The XRD patterns of Cp sample (Fig. 1) showed that the main crystalline phases correspond to clinoptilolite. The FTIR spectrum of Cp is shown in Fig. 2. The peaks at 3600, 3440 cm-1 are related to stretching mode of H-O-H, the peaks at1080 and 1150 cm-1 belong to antisymmetrical stretching and peaks at 680 and 740 cm-1 are symmetricall stretchings of SiO4 and AlO4, respectively

The FTIR spectrum of Clinoptilolite

Page 72: Presentation ELDAS Infrared Zeolit Dan Clay
Page 73: Presentation ELDAS Infrared Zeolit Dan Clay
Page 74: Presentation ELDAS Infrared Zeolit Dan Clay

(Top) Site II cation on six-membered oxygen ring as the basic unit on A and X zeolites. T denotes Si or Al. (Bottom) Geometry-optimized cluster model to represent the chemistry of Ag-zeolite.

Diambil dari Adsorbent Fundamental and Application, EBook, Chapter VII, hal 174

Page 75: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari IR Spectroscopy in catalysis, Catalysis today 68 (2001) 263-281EBOOK-IR Review, halaman 312

Page 76: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, VibrationalSpectroscopy, EBOOK halaman 51

Zeolite framework vibrations according to the interpretation of Flanigen et al. (adopted from[112]); 1, solid lines: intra-tetrahedral vibrations; 2, broken lines: inter-tetrahedral vibrations

Page 77: Presentation ELDAS Infrared Zeolit Dan Clay

Wavenumbers of various framework vibrations as a function of the mole fraction of aluminum in tetrahedral (T) sites of the zeolite framework; s indicates the slope, i.e., the decrease of the wavenumber (cm–1) per 0.1 atom fraction of Al ion substitution (adopted from [112]). D6R means double six-membered ring, ns and nas stand for symmetric and asymmetric stretching modes, respectively (cf. text and list of abbreviations)

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 52

Page 78: Presentation ELDAS Infrared Zeolit Dan Clay

Approximate assignments of observed lattice vibrational frequencies of Na-X zeolite [246] based on calculations [113]

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 53

Page 79: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 59

Raman spectra of zeolites (a) Na-Y (nSi/nAl = 2.6) and (b) Na-X (nSi/nAl = 1.18)

Raman spectra of ion-exchanged Y-type zeolites (nSi/nAl = 2.6), viz. (a) Na-Y, (b) K-Y, (c) Rb-Y, (d) Cs-Y

Page 80: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 65

Far-infrared (FIR) spectra of alkali-metal cation-exchanged faujasites and H-Y zeolite

Page 81: Presentation ELDAS Infrared Zeolit Dan Clay

(a) Extra-framework cation sites in X- and Y-type zeolites. (b) Far- infrared spectrumof Na-Y with band assignments to cation sites according to [232]. (c) Experimental IR spectrum in comparison to simulated spectra calculated according to the shell model and occupancy of different cation sites. (d) Experimental spectrum in comparison to power spectra simulated by MD at occupancy of different cation sites (parts c and d from [79] with permission) halaman 67

Page 82: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 69

Calculated and experimental FIR spectrum of Ba-ZSM-5 (nSi/nAl = 13), adopted from [363] with permission

Page 83: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 73

Comparison of far-infrared spectra of zeolites Na-Y and K-Y before and after adsorption of pyrrole [371] and pyrrolidine (from [372] with permission)

Page 84: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 79 dan 83

Infrared spectra in the OH stretching region of Y-type zeolite after dealumination via steam treatment. Calcined in A: moist air at 813 K; B: self-steam at 813 K; C: moist air at 1033 K; D: self-steam at 1033 K [411]

Wavenumbers and intensities of the OH stretching bands of a homologous series of zeolites, viz. mordenites ion-exchanged with alkaline earth

cations [443]

Page 85: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 85

Correlation between the absorbance of the OH stretching band produced on sorption of H2S into faujasite-type zeolites and the population of the SIII sites (cf. Fig. 16a) by Na+ cations [454]

Page 86: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 89

Gmelinite cage, hexagonal prism and cancrinite cage of the offretite structure and indication of crystallographically different oxygen atoms and corresponding OH groups therein [487]

Infrared bands of OH groups in hydrogen offretite (a: with 2.3 K+ cations per unit cellleft after exchange; b: with 0.6 K+ cations per unit cell left after exchange): Left: before (full line) and after (dotted line) adsorption of pyridine. Right: before (full line) and after (dotted line) adsorption of ammonia [487]

Page 87: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 98

Diffuse reflectance IR spectra of H-ZSM-5 (adopted from [546])

Page 88: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 100 dan 104

Near-infrared spectra of H-ZSM-5 with combination bands, n˜(OH)+d(OH) on increasing activation temperatures (adopted from [557])

Calculated power spectra of zeolites H-Y and D-Y in the mid-infrared frameworkregion in comparison with the experimental INS spectrum of H-Y (from [577])

Page 89: Presentation ELDAS Infrared Zeolit Dan Clay

INS spectra of bulk pyrrole obtained with the spectrometers (a) TFXA and (b) IN1BeF and of pyrrole adsorbed in (c) Na-Y and (d) Rb-Y; the asterisks indicate the most intense peaks, cf. text (from [585])

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 105

Page 90: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 107 dan 108

Infrared fundamentals of molecular deuterium, nitrogen and oxygen adsorbed on A-type zeolites [587]

Supercage of zeolite A with the main cation positions and symmetry axes [588]

Page 91: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 113

Page 92: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 113

IR spectra of CO adsorbed at 0.13 mbar on autoreduced Ru, Na-Y in the temperaturerange 75–298 K [624]

Page 93: Presentation ELDAS Infrared Zeolit Dan Clay

Schematic representation of the fundamental vibrations of carbon dioxide, CO2; the mode n2 is twofold degenerated (n2a, n2b)

Schematic representation of the fundamental vibrations of nitrous oxide,N2O

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 119 dan 121

Page 94: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 120

Top : Sorption geometries of (a) CO2 and (b) N2O in zeolite Na4Ca4-A. Bottom :Observed fundamental vibrations n3 (a) of CO2 and n3(b) and n1 (c) of N2O in zeolite Na4Ca4-A (adopted from [596])

Page 95: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 123 dan 124

Infrared spectra of methane,CH4, adsorbed on Na-A; the spectra obtained at 10–4 and 10–5 mbar (adopted from [599])

Schematic representation of the fundamental vibrations of the bent triatomic molecules of sulfur dioxide, SO2, hydrogen sulfide,H2S, and water, H2O

Page 96: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 113

Infrared spectra of water vapor adsorbed on H-ZSM-5 at low pressures (10–5–1 mbar); the spectra obtained at 10–4 and 10–5 mbar were expanded by the factors 5 and 10, respectively (adopted from [127])

Page 97: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, Vibrational Spectroscopy, EBOOK halaman 128 dan 129

Calculated potential energy surface for the adsorption of a single water molecule on azeolitic Brønsted site (bridging OH group); AD: adsorption energy,PT: proton transfer energy (in kJ mol–1), showing the hydroxonium ion as a transition structure and not in an energy minimum [655, 656]

Hydroxonium ion on a zeolite surface stabilized by a second water molecule where both surface species, (H2O)2 and (H3O+◊◊H2O) become stable [655, 656]. For the meaning of AD and PT see caption of Fig. 43 or list of abbreviations

Page 98: Presentation ELDAS Infrared Zeolit Dan Clay
Page 99: Presentation ELDAS Infrared Zeolit Dan Clay
Page 100: Presentation ELDAS Infrared Zeolit Dan Clay
Page 101: Presentation ELDAS Infrared Zeolit Dan Clay

Diambil dari Molecular Sieves, Sciences and Technology, Characterization I, VibrationalSpectroscopy, EBOOK halaman 36

Scheme for the quantitative evaluation of zeolite spectra using integrated or maximum absorbance [128]

Page 102: Presentation ELDAS Infrared Zeolit Dan Clay
Page 103: Presentation ELDAS Infrared Zeolit Dan Clay
Page 104: Presentation ELDAS Infrared Zeolit Dan Clay