preliminary market outlook for in water nutrient sensors€¦ · nutrient sensor challenge economic...

24
i Preliminary Market Outlook for In- water Nutrient Sensors by Abstract This paper provides a preliminary assessment of potential U.S. markets for in-water nutrient sensor technologies being developed as part of the federally sponsored Nutrient Sensor Challenge (NSC). These NSC-based technologies are not yet fully developed, are not expected to reach markets until 2017, and will differ from one another in ways that will affect their suitability in various market segments. As a result, there is still significant uncertainty regarding potential market demand overall, in specific market segments, and for particular NSC-based technologies. Estimates presented in this paper regarding potential sizes of markets and the timing of market development are based on ongoing research. These estimates should be considered preliminary and useful for general planning purposes. Data will be refined during 2016 and throughout the course of the NSC as new information becomes available about how particular NSC-based nutrient sensor technologies match user needs in specific market segments, and about key market drivers that will determine how rapidly these market segments are likely to grow. Key market drivers are associated with changes in water-related research priorities and federal and state water quality regulations, competing research and monitoring funding demands, public awareness and sense of urgency regarding national and regional water quality problems, and the cost and availability of competing methods of providing in-water nutrient measurements. Preliminary assessments of existing markets related to Federal, state, university, industrial, agricultural, and non-profit research and monitoring needs suggest that overall demand for in- water nutrient sensors with characteristics specified in the NSC, over the next five years, will be 24,000 to 30,000 units. At an average market price of $5,000 per unit, this constitutes a potential U.S. market of $120 million to $150 million. These preliminary market predictions are based on the assumption that these technologies will be available in the market place in 2017 and achieve a five-year adoption rate of 25% among potential users across various market segments. They do not take into account global market potential or potential in U.S. market segments that are expected to develop as a result of the availability of NSC-based sensors. Interviews with nutrient measurement users and representatives of various market segments indicate that increasing awareness of nutrient problems and new federal and state regulations,

Upload: others

Post on 30-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

i

Preliminary Market Outlook for

In-water Nutrient Sensors by

Abstract ThispaperprovidesapreliminaryassessmentofpotentialU.S.marketsforin-waternutrientsensortechnologiesbeingdevelopedaspartofthefederallysponsoredNutrientSensorChallenge(NSC).TheseNSC-basedtechnologiesarenotyetfullydeveloped,arenotexpectedtoreachmarketsuntil2017,andwilldifferfromoneanotherinwaysthatwillaffecttheirsuitabilityinvariousmarketsegments.Asaresult,thereisstillsignificantuncertaintyregardingpotentialmarketdemandoverall,inspecificmarketsegments,andforparticularNSC-basedtechnologies.Estimatespresentedinthispaperregardingpotentialsizesofmarketsandthetimingofmarketdevelopmentarebasedonongoingresearch.Theseestimatesshouldbeconsideredpreliminaryandusefulforgeneralplanningpurposes.Datawillberefinedduring2016andthroughoutthecourseoftheNSCasnewinformationbecomesavailableabouthowparticularNSC-basednutrientsensortechnologiesmatchuserneedsinspecificmarketsegments,andaboutkeymarketdriversthatwilldeterminehowrapidlythesemarketsegmentsarelikelytogrow.Keymarketdriversareassociatedwithchangesinwater-relatedresearchprioritiesandfederalandstatewaterqualityregulations,competingresearchandmonitoringfundingdemands,publicawarenessandsenseofurgencyregardingnationalandregionalwaterqualityproblems,andthecostandavailabilityofcompetingmethodsofprovidingin-waternutrientmeasurements.PreliminaryassessmentsofexistingmarketsrelatedtoFederal,state,university,industrial,agricultural,andnon-profitresearchandmonitoringneedssuggestthatoveralldemandforin-waternutrientsensorswithcharacteristicsspecifiedintheNSC,overthenextfiveyears,willbe24,000to30,000units.Atanaveragemarketpriceof$5,000perunit,thisconstitutesapotentialU.S.marketof$120millionto$150million.Thesepreliminarymarketpredictionsarebasedontheassumptionthatthesetechnologieswillbeavailableinthemarketplacein2017andachieveafive-yearadoptionrateof25%amongpotentialusersacrossvariousmarketsegments.TheydonottakeintoaccountglobalmarketpotentialorpotentialinU.S.marketsegmentsthatareexpectedtodevelopasaresultoftheavailabilityofNSC-basedsensors.Interviewswithnutrientmeasurementusersandrepresentativesofvariousmarketsegmentsindicatethatincreasingawarenessofnutrientproblemsandnewfederalandstateregulations,

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

ii

alongwiththeavailabilityoflowcostsensorswithNSC-specifiedcharacteristics,arelikelytoresultinthedevelopmentofsignificantnewU.S.markets.TheemergenceofnewU.S.marketscombinedwithpotentialforeignmarketscanbeexpectedtoresultintheoverallmarketpotentialforthesesensorsbeingsignificantlygreaterthanestimatespresentedinthispaper.Also,thepreliminarymarketestimatespresentedinthispaperarebasedonone-timepurchasesoverafive-yearperiod.Iftheaverageusefullifeofthesesensorsystemsisapproximately5to10years,thesizeoftheoverallmarket,over20years,mightbeexpectedtobetwotofourtimeslarger.Onekeydriverofnewmarketdemandwillbestateandcountygovernmentsneedformorelocation-specificinformationaboutin-waternutrientsinordertofindandvalidatetheeffectivenessofaffordablewaystomeetTMDLs(TotalMaximumDailyLoads).Thepotentialofthesestate/countyTMDL-basedmarketscouldbesignificant,butwilldependonwhen,where,andhowTMDLsareimplementedandenforcedandrelatedreportingandverificationrequirements.Inaddition,theevolutionofwaterqualitytradingandoffsetprograms,andotherresponsestoTMDLsandothersimilarwaterqualitypoliciesintheU.S.andelsewherecouldresultinsignificantnewmarkets.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

iii

Table of Contents Abstract...........................................................................................................................................i

TableofContents..........................................................................................................................iii

Section1Introduction....................................................................................................................4

Format........................................................................................................................................6

Section2StagesofTechnologyMarketDevelopment...................................................................6

StatusofNutrientSensorDevelopment.....................................................................................7

Section3MarketOverview............................................................................................................8

MarketTypesandDrivers..........................................................................................................8

MarketSegments.......................................................................................................................8

Section4PreliminaryMarketAssessment.....................................................................................9

SurveyofGovernment/UniversityUsers....................................................................................9

AnalysisofPotentialDemandbyMarketSegment..................................................................10

OverviewofInterviewResults..............................................................................................10

Results......................................................................................................................................11

Agriculturalmarkets–Aspecialcase...................................................................................13

Section5Long-termMarketOutlook...........................................................................................13

Potentialcostsavings-the1%rule..........................................................................................14

PotentialCostSavings–UsingCost-effectivenessandIncrementalCostAnalysis..................15

References....................................................................................................................................19

Appendix:InterviewNotes...........................................................................................................21

IndustryMarketSegments.......................................................................................................21

DrinkingWaterFacilities.......................................................................................................21

CommercialMarketSegments.................................................................................................22

GovernmentMarketSegments................................................................................................23

FederalResearchandMonitoringPrograms........................................................................23

StateandLocalResearchandMonitoringPrograms............................................................23

OtherMarketSegments...........................................................................................................24

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

4

Section 1 Introduction Sourcesofin-waternutrientpollutionarewidespreadandincludestormwater,wastewater,agriculturalrunoff,atmosphericdeposition(e.g.,fromcombustionoffossilfuels),andhouseholdsources(e.g.,yardfertilizers,petwaste,detergents).Growingawarenessofnutrientpollutionandtheneedtofindsolutionsisincreasinginterestinusinglocation-specificin-waternutrientmeasurementstoprioritizenutrientproblems,identifytheirsources,compareandvalidateresponseoptions,verifycompliancewithnutrientdischargelimits,and“score”waterqualitytrades,offsets,andcredits.Nutrientmeasurementsarealsousedtomakeinternaloperatingandmanagementdecisionsinvolvingflowratesandtreatmentlevelsatwastewateranddrinkingwaterfacilitiesandinvarioustypesofagriculturalandindustrialoperations.Currentlyavailablemethodsofmeasuringin-waternutrientsarebasedeitheronsimpletestkitswhicharefastandinexpensive,buttooimpreciseformostpurposes;onwatersamplingandlaboratoryanalyseswhichareaccurateandprecise,butcumbersome,timeconsuming,andexpensive;oronin-watersensorsandanalyzers.Useofcurrentlyavailablein-watersensorshasnotbeenwidespreadbecauseoftheircomplexity,technicaldemands,reliability,andpurchaseandoperatingcosts,aswellaslagtimesinlaboratoryanalysis.Marketpricesofcurrentlyavailablein-watersensorsystemsareintherangeof$20,000to$30,000,fielddeploymentsarelimitedtoafewweeks,andanadvancedleveloftrainingisrequiredtooperatethemeffectively.Itisgenerallyrecognizedthatthehighcostofreliablemeasuresofin-waternutrientsispreventingnutrientmeasurementsfrombeingavailabletoimprovenutrientmanagementdecisionsinmanyplaceswherethesedecisionsarebecomingcritical.Asaresult,largepotentialmarketsareexpectedtoexistfornewmethodsofproducingaccurate,precisein-waternutrientmeasurementsatareasonableprice.Themostpromisingmethodsforreachingthesemarketsinvolvetechnologiesthatmakeuseofin-waternutrientsensors.TheNutrientSensorChallengefocusesonnitrate/nitrateandorthophosphatesensors.Somemarketsegmentsrequiremeasuresofnitriteonly(e.g.,wastewatertreatment);othersrequiremeasuresofonlytotalnitrogenortotalphosphorus.ThispaperisaninterimreportthatpresentstheresultstodateofanongoinganalysisofpotentialU.S.marketsfornutrientsensortechnologiesbeingdevelopedaspartofthefederallysponsoredNutrientSensorChallenge(NSC).TheNSCisexpectedtoresultinnutrientsensorsthatare:accurate,easytouse,maintenance-free,capableofremotedeploymentsforuptothreemonths,andavailableinthemarketplaceby2017atapriceof$5,000orless.Theresearchthatformsthebasisofthispaperinvolved:

• areviewofresultsfrom2014NSC-basedsurveysandinterviewsoflikelygovernmentanduniversitybuyers;

• anassessmentofgenerallyavailablestatisticsregardingthenumbersofentitiesinspecificmarketsegmentsthatconstitutepotentialbuyers;

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

5

• Preliminaryinterviewswithmorethan30currentprovidersandusersofnutrientmeasurementsandrepresentativesofvariousmarketsegmentswithinthreegeneralmarketareas:industry,government,anduniversity.

InterviewsindicatethatsensorsthatmeettheNSCchallengespecificationswilloutcompeteotheravailablenutrientmeasurementmethodsinexistingmarketsonthebasisofpriceandperformance.Perhapsmoreimportantly,mostintervieweesbelievethattheavailabilityofhighlyefficient,lowcostnutrientsensorswillresultintheemergenceoftotallynewmarketsassociatedwithnewtypesofresearch,expandedwaterqualitymonitoring,newwaysofsearchingforsolutionstonutrientproblems,andlesscostlyandmoreeffectivemethodsofmonitoringandverifyingcompliancewithnutrientdischargeregulations.Programsbeingproposedanddevelopedtoreducethecostofachievingnutrientdischargereductiongoals,suchaswaterqualitytradingandtax/subsidyprograms,arealsoexpectedtogeneratenewmarketsfornutrientmeasurementsthatwillbeneededto“score”nutrientdischargecredittradesandoffsetsandjustifynutrient-relatedtax/subsidyprograms.NSC-basedtechnologiesarenotyetfullydeveloped,arenotexpectedtobemarketableuntil2017,andareexpectedtodifferfromoneanotherinwaysthatarelikelytoaffecttheirsuitabilityinvariousmarketsegments.Asaresult,thereisstilluncertaintyregardingoverallpotentialmarketdemandforthesesensors,anddemandforspecificsensortechnologiesinspecificmarketsegments.OurpreliminaryinterviewsconfirmedthewidespreadbeliefthatU.S.marketsforNSC-basedsensorswillbelarge.However,basedonwhatlittleisknownaboutthesuitabilityofthesesensorsforparticularapplicationsandtheacceptanceofsensor-basednutrientmeasurementsbyregulatorsandmanagersmostintervieweeswerereluctantatthistimetotrytoquantifyhowmanyunitsthey,orothersinthemarketsegmentstheyrepresented,arelikelytopurchase.Typicalquestionstheythoughtwouldneedtobeansweredbeforeassessingthesizesofvariousmarketsegmentswererelatedtothefollowing:

• Accuracy,precision,andreliabilityofsensoroperationsinwaterwithdifferentsalinities,flowrates,sludgeorwastecontents,orsuspendedsolids

• Suitabilityforuseinvarioussettingsassociatedwithgroundwater,streams,rivers,lakes,estuaries,wetlands.

• Impactsofextremetemperaturesandsnowandicecoveronoperationanddurability• Size,portabilityanddeploymentandpositioningoranchoringrequirements• Datastorage,transmissionandintegration/communicationcapabilities,• Power,maintenance,andtechnicalsupportrequirements• Upfrontcosts,annualoperatingcostsandleasingoptions• Usefullife,resale/salvagevalue• Acceptabilityofmeasurements,andanalysesandinterpretationsofmeasurementsby

federalandstateregulatorsInformationthatcanbeusedtoaddresstheissueslistedabovewillbecomeavailableatlaterstagesintheNSCprocess.Untilthenitisnotpossibletoquantifythesizeofmarketsforin-

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

6

waternutrientsensorswithanyprecision.Thepreliminaryestimatesoftheoverallsensormarketanddemandinspecificmarketsegmentsthatarepresentedinthispaperarebasedondataregardingtheoverallnumberofpotentialbuyersinvariousmarketsegmentsandinterviewswithrepresentativesofspecificmarketsegmentsregardingpossiblelevelsandratesofadoption.Theyareprovidedasaguideforgeneralplanningpurposesonly,andshouldberefinedregularlyasnewinformationbecomesavailableaboutthecharacteristicsofparticularNSC-basednutrientsensortechnologies,howtheymatchuserneedsinspecificmarketsegments,andhowthesemarketsareexpectedtorespondtochangesinregulations,researchneeds,competingtechnologies,andotherfactors.

Format Afterthisintroductionthepaperhasfoursections.Section2providessomecontextforassessingnutrientsensormarketsbydescribingthetypicalstagesoftechnologyandtechnologymarketdevelopment,andwherenutrientsensorsfallalongatypicaltechnologymarketdevelopmentcurve.Section3describesgeneralmarkettypesandspecificmarketsegmentsanddriversthatwilldeterminepotentialU.S.marketsfornutrientsensors.Section4presentspreliminaryestimatesofthepotentialsizeofoverallnutrientsensormarketsandspecificmarketsegmentsandhowactualmarketpotentialwillbeaffectedbyvariousratesandlevelsofadoption.Section5presentsthepotentiallong-termoutlookfornutrientsensormarketsrelatedtowaterqualityresearch,industrialapplications,andestablishingandmeetingregulatoryrequirements.Section6summarizesresults,presentssomeconclusions,offerscaveatsregardingtheuseofpreliminarymarketestimatespresentedinSection4,andidentifiessomeleadingindicatorsofnutrientsensormarketsthatshouldbemonitoredfromthispointforwardtohelppredictdemandinvariousmarketsegments.

Section 2 Stages of Technology Market Development Mostnewtechnologies(e.g.,toolsandmethodsusedinheartsurgery,spaceexploration,micro-processing,andscientificinvestigation)tendtofollowasimilarsequenceofdevelopmentandadoption.Figure1showstentypicalstagesofdevelopmentfornewtechnologiesandtechnologymarketsdepictedalongatechnology/marketdevelopmentcurvewhichprovidesausefulwaytocharacterizeandtrackevolvingmarketsforNSC-basednutrientsensors.InFigure1newtechnologiesareshowntostartwithpreliminary“proofofconcept”research(Stage1)whichisfollowedbyresearchtoclarifytheunderlyingscientificandengineeringbasisofthetechnology(Stage2),andthenbysomeinitiallaboratory-basedexperimentationaimedatdeterminingifthetechnologycanmeetcertaintargets(Stage3).Ifthetechnologyseemscapableofmeetingcertaintargets,thisisfollowedbysomelimitedfieldtrials(Stage4)andthensomelimitedcommercialproduction(Stage5).Furtherrefinementsareoftenrequiredbasedontheexperiencesofearlyadopters(Stage6)whichisfollowedbythestandardizationofproductionmethods(Stage7)andthescalingupofcommercialproduction(Stage8).Thisallowsprimarymarketstodevelop(Stage9)andmayresultinfurtherrefinementsandadaptationstosupportthedevelopmentofsecondarymarkets(Stage10).

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

7

Figure1.TypicalStagesofdevelopmentfornewtechnologies

Status of Nutrient Sensor Development Whileexistinginstrumentationtomeasurenutrientcouldbeconsideredinstage7or8,nextgeneration,NSC-basedin-waternutrientsensingtechnologies,inlate2015,arejustmovingintoStage4,whichisseveralstagesbeforetheywillgeneratemarketsales(Stages8through10).OrganizersoftheNSChaveofferedbetatestingandareofferingverificationtestingtoquantifyinstrumentperformance(Stage4)inordertoreducethetimeandcostofmovingthesetechnologiesintoearlystagesofcommercialproduction(Stage5).Thisishopedtobeachievedin2017.RelatedeffortsbytheNSCteamandothersareaimedatimprovingmarketefficienciesandreducingtransactioncoststofurtherreducethetimerequiredforthesetechnologiestomovethroughStages6and7andachievescaledupcommercialproduction(Stage8),widespreadadoptioninprimarymarkets(Stage9),anddiffusionintosecondarymarkets(Stage10).However,beforetheinvestmentsinproductioncapacityarelikelytobemadetoreachStage8,thereneedstobesomebasisforexpectingthatpotentialratesandlevelsofadoptioninprimaryandsecondarymarketsinStages9and10aresignificantenoughtogeneratereasonableeconomicreturn.ThispreliminaryassessmentofpotentialmarketsforNSC-basedsensorsisaimedatprovidingNSC-participantswithatleastbasicinformationtheycanusetoassessthesizeandlikelydevelopmentofprimaryandsecondarymarketsforNSC-basedsensors.ThiscorrespondstoexaminingfactorsthatarelikelytodeterminetheslopeofthetechnologymarketdevelopmentcurveinStage8(markedBinFigure1)andwheremarketsmaybeexpectedtoleveloffinStage9and10(markedCinFigure1).

1 2 3 4 5 6 7 8 9 10

Market

Stage2015

1. Proofofconcept2. Basicscienceandengineering3. Initialexperimentation(Laboratory)4. Testingandvalidation

(Pilots/Demonstrations)5. Limitedcommercialproduction6. Earlyadoption(Limitedmarkets)7. Standardizationofproductionmethods8. Scale-upofproduction/supplycapacity9. Adoption(Growthofprimarymarkets)10. Diffusion/Expansion(Growthof

secondarymarkets)

A=Startofcommercialproduction(Stage5)andearlyadoption(Stage6).B=Rateoftechnologyadoption(Annual%increaseinadoption/marketdemand)C=Leveloftechnologyadoption(Final%adoption/levelofmarketdemand)

A

B

C

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

8

TheinformationpresentedherecannotbeusedtodeterminehowquicklythesetechnologieswillpassthroughStages4,5,6and7andreachStage8wheresensormarketsstarttodevelopandinvestmentsinsensortechnologiesstarttoyieldaneconomicreturn.However,otherNSC-basedinitiativesbeingundertakenoverthenexttwoyearsareaimedspecificallyatreducingthetimeandcostsassociatedwithmovingthesesensortechnologiesthroughthemostdifficultperiodofnewtechnologydevelopment(i.e.,Stages3,4,5,and6),andcreatingmorecertaintyabouthowmuchsensordemandcanbeexpectedatStages9and10.

Section 3 Market Overview

Market Types and Drivers Preliminaryinterviewsidentifiedseveraldifferenttypesofpotentialmarketsfornutrientsensorsthatcanbecategorizedgenerallyasbeingresearch-driven,regulation-driven,ordrivenbydemandtoimproveoperationalefficienciesandreducecostsinindustrialfacilities,suchaswaterresourcerecoveryfacilitiesordrinkingwatertreatmentplants.Forpurposesofcharacterizingthesemarketsandtheirlikelyadoptionrates,weassumed:

(1) marketdriversassociatedwithresearcharebasedonthedemandforinformationtounderstandanddescribenutrientproblemsandfindsolutions;

(2) marketdriversassociatedwithregulationarebasedondemandfornutrientmeasurementstodesignregulations,assessandcomparepractices,monitorcompliance,andtargetenforcement;and

(3) marketdriversassociatedwithprivatesectormarketsarebasedontheuseofnutrientsensorstomakeoperationsmoreefficientorreduceuncertaintyorcostsand/ormeetrequirementstoverifyandreportaboutcompliancewithwaterqualityornutrienttreatment/dischargeregulations.

Market Segments Withineachgeneralmarkettype-government,research,andindustry-weidentifiedseveraldistinctmarketsegmentsforNSC-basednutrientsensortechnologiesandusedavailabledataandresultsfrompreliminaryinterviewstoexaminethreefactorsthatwilldeterminetheirpotentialsize:

(1) themaximumnumberofentitiesinthemarketsectorthatmightbuy,(2) typicalnumbersofunitsthatwouldbepurchasedbyentitiesthatdobuy;and(3) rangesofpossibleadoptionrates(i.e.,thepercentofpotentialbuyerswhocanbe

expectedtobuy)Withineachmarketsegment,actualadoptionrateswillbedeterminedbytwofactors:hownutrientmeasurementscanbeusedtoimprovedecisionsinwaysthatreducecostsorrisksorincreasesomemeasureofbenefits(e.g.,revenues,productivity,nutrientdischargereductions,waterqualityimprovements,ecosystemservices);anddifferencesbetweenthecostofgeneratingnutrientmeasurementsusingNSC-basedsensortechnologiesandthecostofothermethods.NSCsensortargetfeatures(e.g.accuracy,precision,deploymentlength,etc.)were

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

9

developedwithinputfromprimarilyresearchandmonitoringmarketsegments.Intime,moreinformationwillbecomeavailableabouthowcloseNSC-basedtechnologiescometomeetingneedsinvariousmarketsegments—andhowflexiblethesensorsareforusesoutsideofintendedmarketsegmenttargets.Thisinformationcouldthenbeusedinsurveysandinterviewsofpotentialbuyerstoprovideabasisforassessinglikelyratesandlevelsofadoptionineachmarketsegment.Fornow,however,wedecidedtostartwithinformationaboutthepotentialsizeofvariousmarketsegmentsanduseabroadrangeofpossiblelevelsofadoptionwithineachofthem,including5%(low),25%(medium),and75%(high).Forexample,publisheddatafor2014indicatethattherearemorethan16,000wastewatertreatmentfacilitiesorwaterresourcerecoveryfacilities(WRRFs)treatingsewagewaterintheUnitedStates.Morethan500oftheseWRRFstreatmorethantenmilliongallonsofwastewaterperdayandcurrentlymeasurenutrientsintreatmenttankstomanageinternalwaterflowandtreatmentoperations.Duringinterviews,representativesofgroupsthatrepresenttheselargeWRRFswhowerepresentedwithavailableinformationaboutNSC-basedtechnologycharacteristicsindicatedthatatapriceof$5,000peruniteachoftheselargeWRRFsmightpurchase10to20units.ThatwouldimplythatlargeentitieswithintheWRRFmarketsegmentmightrepresentamarketfor5,000to10,000unitsorabout$25to$50million.Ifthelevelofadoptioninthismarketsegmentturnsouttobe5%,25%,or75%(low,mediumorhighusingourstandards),thismarketsegmentwouldbeproportionatelysmallerat250to500units(low),1,250to2,500units(medium),or3,750to7,500units(high).ItshouldbepossibletodevelopreasonableestimatesoflikelyadoptionratesandmarketsegmentsizesoncemoreinformationisavailableaboutNSC-basedtechnologiestofocusinterviewsoflikelybuyers.

Section 4 Preliminary Market Assessment

Survey of Government/University Users In2014,AmericanUniversity’sCenterforEnvironmentalPolicyconductedanindependentstudyofthepotentialnutrientsensormarket(Marsh2014).Toassessuserneedsandgainaninitialunderstandingofthepotentialresearchandmonitoringmarket,aquestionnairewasdistributedtoprofessionalsintheacademic,Federalandstategovernment,non-profit,andcorporatecommunities.Keyfindingsfromquestionnairerespondentsincludethefollowing:

• Ninety-twopercentofrespondentspreferredsensorsthatworkinfreshwater,buttherewasalsodemandforsensorsthatworkinbrackish,marine,andotherenvironments,with20%ofrespondentsneedingsensorstooperateinafullrangeofsalinities.

• Morethan75%ofrespondentsindicatedthattherewasdemandforarangeofnutrientsensorsfornitrateandnitrite;ammoniumandammonia,totalnitrogenandtotalphosphorus,andsolublereactivephosphorus.Howeverthebiggestinterest(93%)wasinnitrateandnitritesensors.

• Costwascitedasakeyfactorthatwilldeterminedemand,withthemajorityofrespondentsindicatingthatapricepointunder$5,000wouldmakethesensorsaffordabletomanylikelygovernment/universityusers.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

10

Analysis of Potential Demand by Market Segment Thepotentialsizeofmarketsfornewtechnologiescanbeestimatedbydeterminingthenumbersofentitiesinvariousmarketsegmentsthatcouldbebuyers,andthenprojectinglevelsofadoptionineachmarketsegment(e.g.thepercentofpotentialbuyerswhowillactuallymakepurchases).Wheredataareavailable,ratesandlevelsofadoptionofatechnologycanoftenbebasedonestimatesofhowpotentialbuyersineachmarketsegmentcanusethetechnologytoreducecostsorrisks,orincreasesomemeasureofbenefits.ForuserswhoarerequiredtocollectandreportnutrientdataandcanuseNSC-basedtechnologiestolowercostresultingcostsavingscanprovideabasisforattachingamonetarymeasureofvaluetothesenewtechnologies.Insomecases,thesecostsavingscanbeusedtopredictadoptionratesandmarketdevelopmentfornewtechnologiesbyprojectingpaybackperiodsorreturnsoninvestmentthatusersinvariousmarketsegmentscanexpectwhentheypurchasethenewtechnology.Currently,however,nutrientsensorsprovideinformationthatisusedmostlytomakedecisionsthatgeneratepublicbenefits(e.g.,improvedwaterquality)thatcannotbetranslatedeasilyintomonetarymeasuresofvalueandcannotbeusedeffectivelytopredicthowmanybuyersexistinvariousmarketsegmentsandtheir“willingnesstopay”.Afterusinggenerallyavailablestatisticstoidentifythenumberofentitiesineachmarketsegment(e.g.,businesses,governmentagencies,researchinstitutions),weaskedintervieweesfamiliarwiththesemarketsegmentsgeneralquestionsabouthowtheuseofsensorsmightreducecostsand/orrisksorincreasesomemeasureofbenefitsfromtheperspectiveofdecision-makersineachmarketsegment.Answerstothesegeneralquestionsandsomequantitativeestimatesofmarketpotentialofferedbyintervieweesformedthebasisofourpreliminaryestimatesofpotentiallevelsofadoptioninvariousmarketsegments(seeAppendixforsummaryofinterviews).

Overview of Interview Results Preliminaryinterviewswithmorethan30representativesofdifferentmarketsegmentsindicatedthatlikelyratesandultimatelevelsofadoptionineachmarketsegmentaredifficulttoprojectatthepresenttimeforthefollowingreasons:

• Thetechnologiesarenotyetfullydeveloped.Demandinvariousmarketsegmentswilldependincriticalwaysonspecificproductcharacteristicsthathavenotyetbeendetermined.

• Fewindustrialorhouseholdsectorsusenutrientrelatedinformationtomakedecisionsthathavethepotentialtoreducecostsorrisks,orincreasebenefitsotherthanthoseassociatedwithdemonstratingcompliancewithgovernmentregulations.

• Althoughawarenessofnutrientproblemsandtheneedforregulatingnutrientdischargesisgrowing,thenatureofnutrient-relatedregulations,theirimplementationandenforcement,andcompliancemonitoringandreportingrequirementsarenotfullydeveloped.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

11

Results Table1presentspreliminaryestimatesofpotentialsizesofU.S.marketsforin-waternutrientsensorsbasedontheapproximatenumberofpotentialbuyersineachmarketsegment,interview-basedestimatesofthenumberofunitsthatmightbepurchasedbyindividualbuyersineachmarketsegments,andlow,mediumandhigh(5%,25%,and75%)levelsofadoption.Basedonthispreliminaryandverycrudecharacterizationofpotentialdemand,thepotentialmarketforin-waternutrientsensorsacrossallmarketsegmentsintheU.S.rangesfrom24,000to30,000ata25%adoptionrate.Atanaveragemarketpriceof$5,000perunitthisconstitutesapotentialU.S.marketof$120millionto$150million.NSCtargetfeaturesfornutrientsensortechnologiesweredeterminedbasedoninputfromrepresentativesofprimarilyresearchandmonitoringmarketsegments.Therefore,itispossiblethatsensorsdevelopedaspartoftheNSCmaylackfeaturesdesirableforcertainothermarketsegments(e.g.,aquaculture).Itispossible,therefore,thateventhelowadoptionrateestimatesforsomemarketsegmentsareoverlyoptimistic.Additionally,intervieweesfromsomemarketsegments(e.g.,non-profit)expressedinterestinpotentiallysharingsensors.Ifsensorsharingiswidespreadinthosemarketsegments,adoptionrateinthosesegmentswouldbesomewhatlower.InadditiontoU.S.markets,thesesensorshavepotentialforeignmarketsthatarelikelytobeatleastaslargeas,andmaybemanytimeslarger,thanU.S.markets.However,thispreliminaryreviewfocusedonlyonU.S.markets.DatatoprovideevenpreliminaryestimatesofpossibleorlikelyratesandlevelsofadoptionandmarketpenetrationofNSC-basedsensorsinvariousforeignmarketsegmentsarenotavailableatthistime.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

12

Table1.Estimatesofpotentialnutrientsensormarket

MarketSegmentNumberofentities

Potential#to

purchase

OverallMarketPotential(100%

Adoption)

LevelofAdoptionIllustration

5% 25% 75%Industry-LargeWRRFs(>10MGD) 533 20 10,660 533 2,665 7,995

Industry-MediumWRRFs(1-9MGD) 2,665 10 26,650 1,333 6,663 19,988

Industry-SmallWRRFs(<1MGD) 13,057 2 26,114 1,306 6,529 19,586

Industry–DrinkingWaterFacilities 419a 1to3 419to1,257 21to63 105to314 314to943

Industry–Other(e.g.,NPDESpermitholders) 3,487b 1to2 3,487to6,974 174to349 872to1,744 2,615to5,230

Commercial–Aquaculture 3,093c 1 3,093 155 773 2,320

Commercial–Agriculture(operationswithfertilizer

expenses) 1,011,896 1to2 3,272to6,543(SeeAgriculturalMarketssection)

Commercial–Hydroponics/aquaponics 71c 1 71 4 18 53

Government–Federalresearchandmonitoring NA 700d 700 35 175 525

Government–Stateresearchandmonitoring 51 3to13e 153to663 8to33 38to166 115to497

Government–Localresearchandmonitoring 5,904f 1to2 5,904to11,808 295to590 1,476to2,952 4,428to8,856

Academicresearch–e.g.NAML/OBFSand/orLTER 500g

10 5,000 250 1,250 3,750

Non-profits(e.g.,RiverKeepers) 1,200h 1to2 1,200to2,400 60to120 300to600 900to1800

TOTAL 86,723to101,933 7,445to11,313 24,135to30,391 65,860to79,086

aThereare419CommunityWaterSystemsintheUSthateachserveapopulation>100,000.Thesesystemsserve46%oftheUSpopulation(USEPA2013a).

Thereareapproximately4,000CWSservingpopulationsof10,000-99,999;wehavenotestimatedsensoradoptionforthesesmallersystems,althoughsome

maybeinterestedinusingthistechnology.bAccordingtoEPA,thereare6,685majordischargers(>1MGD)withindividualorgeneralNPDESpermits.Thisvaluerepresentsthetotallesslargeand

mediumWRRFs(USEPA2015a).c2013CensusofAquaculture(USDA2013)dWebelievethistobeaconservativeestimateforfederallyoperatedresearchprograms.Thisvalueisbasedoninterviewswithfederalagencypersonnel,but

doesnotnecessarilycapturethefullbreadthoffederalprogramsthatcouldutilizethesesensors(i.e.,NOAA,EPA,USGS).Programsfundedbutnotoperated

byNSF,NOAA,orotheragenciesarecapturedelsewhere(i.e.,academicresearch,non-profits,etc.).eThisistheaveragenumberofNsensorsandPsensorslikelytobepurchasedoverthenext5yearsperstateaccordingtotherespondentsintheACWA

survey.fThisvalueisthetotalnumberofNandP-relatedTMDLs(EPA2015b).P=3,714;N=2,190.gBillicketal.,2013.hRoughestimatebasedon:129WaterkeepersintheUS(WaterkeeperAlliance2015),plusanywherefromafewdozentoafewhundredwatershed

associationsperstate,pluslarge,well-fundedNGOslikeTNC,CBF,TroutUnlimited,etc.Theestimateisbasedon20watershedassociations/state+

RiverKeepers+largeNGOs≈1200.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

13

Agricultural markets – A special case The2012CensusofAgricultureestimatedatotalof1,011,896farmsoperatingintheU.S.withfertilizer-relatedexpenses,andthat,nationwide,fertilizer-relatedexpensesmakeup8.7%ofoverallfarmexpenses(USDA2014).Morethan327,000operations(32.3%)spend$10,000ormoreonfertilizerannually(withalmost72,000operationsspending$100,000ormore).Byallowingthemonitoringoftheamountofnutrientsthatrunofffarmfieldsintoadjacentwaterbodies,theuseofaffordable,accuratein-waternutrientsensorshasthepotentialtohelpfarmersapplyfertilizersmoreefficientlyandresultincost-savingsaswellaswaterqualityimprovements.However,manymethodsotherthanin-waternutrientsensorscanbeusedtogenerateinformationaboutin-soilnutrients,nutrientuptakebycrops,andnutrientrunoffinordertoadjustfertilizerapplications,optimizecropgrowth,managefertilizercosts,andreduceedge-of-fieldnutrientrunoff.Asaresult,itisnotpossibleatthistimetopredicthowmanyfarmsmaybesituatedinwaysthatmakein-waternutrientmonitoringuseful,ortopredicthowmanyfarmersmightpurchaselow-costin-waternutrientsensorsiftheywereavailable.However,itisreasonabletoexpectthatatleastasmallportionofU.S.agriculturaloperationswithfertilizerexpensesmaypurchaseorfinancethepurchaseofoneormoreNSC-basednutrientsensorsoncetheybecomeavailable,especiallyifthesensorswereabletobeusedtodocument“creditable”nutrientdischargereductionsaspartofnutrientcredittradingprograms.Forsakeofillustration,assumethat1%ofoperationswithgreaterthan$10,000inannualfertilizerexpenseswillpurchaseoneortwosensorstoimprovefertilizerapplicationdecisions.Thislevelofadoptionwouldresultinthesaleof3,272to6,543unitswhich,ataunitpriceof$5,000,wouldrepresentamarketsegmentworth$16.4millionto$32.7million.

Section 5 Long-term Market Outlook Theprevioussectionfocusedonpotentialmarketsforin-waternutrientsensorsbasedontheirexpectedcapacitytooutcompeteothermethodsofmeasuringnutrientsinexistingU.S.markets,andthelikelihoodthattheirreliabilityandlowcostwillcausethoseexistingU.S.marketstogrow.Inconventionaleconomicterms,thesereflectbothoutwardmovementsalongthedemandcurveinexistingmarkets(demandincreasingbecauseofdeclinesinprice)aswellasanexpectedupwardshiftinthedemandcurveinthosemarkets(moredemandatanygivenprice).However,manyintervieweesindicatedthattheybelievedtheavailabilityofreliable,lowcostin-waternutrientsensorswillresultinthedevelopmentoftotallynewandpotentiallylargemarkets.Forexample,undersection303(d)oftheCleanWaterAct,allstatesmustdeveloplistsofimpairedwaterbodies(i.e.,thosethatdonotmeettheirdesignatedusecriteriaduetooneormorepollutants),anddevelopTMDLs(TotalMaximumDailyLoads)forrelevantpollutantsbeingdischargedintothesewaterbodies.Ofthe68,496TMDLscurrentlybeingdevelopednationwide,6,047specifylimitsonnutrientdischarges(USEPA2015b).Asaresult,manystatesandcountiesarebeingrequiredtodescribewhatchangesinlandandwateruseandother

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

14

managementpracticestheyplantoundertaketomeettheirallocatednutrientdischargereductiontargetsandshowthattheyareorwillbeeffective.IntheChesapeakeBaywatershed,forexample,anoverallTMDLfortheBaywasestablishedbyEPAinDecember2010thatsetsoverallannuallimitsof185.9millionpoundsofnitrogenand12.5millionpoundsofphosphorusenteringthewatershed(USEPA2013b).ThisoverallTMDL,whichistobeachievedby2025,wassubsequentlydividedinto92TMDLsforspecificriverbasins.Thesevenjurisdictionsthatmakeupthewatershed(Delaware,Maryland,NewYork,Pennsylvania,Virginia,WestVirginia,andWashington,DC)haveeachdevelopedWatershedImplementationPlans(WIPs),andassignedspecificnutrientdischargereductiongoalstoindividualcountiesand/orsectors(e.g.,wastewater,agriculture,forestry,etc.).OnesignificantproblemfacingcountygovernmentsandotherjurisdictionsintheregionthathavedevelopedoraredevelopingWIPsisthatthecostofimplementingthemhasbeenestimatedformanyjurisdictionstobeinthehundredsofmillionsorevenbillionsofdollars.AspartofitsPhaseIIWIP,forexample,Marylandestimatedin2012thatthecostofachievingitstargetnitrogen,phosphorus,andsedimentreductionsby2025wouldbeabout$14.4billiondollars(UniversityofMarylandetal.2012).ArelatedproblemiswidespreaduncertaintyaboutestimatesofWIPimplementationcostsbecauseofsignificantuncertaintyaboutwhattypesofprojectsinwhatlocationswillbemosteffectiveatreducingnutrientdischargesandhelpingachieveTMDLtargets.Onecauseofuncertaintyaboutcost-effectiveprojectstoachieveTMDLtargetsisthefactthatthehighcostofmeasuringnutrientshasresultedinmostjurisdictionsusingestimatesoftheeffectivenessofnutrientreductionoptions(e.g.,bestmanagementpracticesorBMPs)thatarebasedongenerallyaccepted“BMPefficiencies.”TheseBMPefficiencieswereoftenestimatedbasedonaveragesiteconditionsandlandscapecontextsacrossthewatershedoronmodelingresultsratherthanlocation-specificinformationfromwithineachjurisdiction(seeStateandLocalResearchandMonitoringProgramsintheAppendixformoreinformation).ThehighcostofobtainingnutrientmeasurementshasalsoresultedinstatesandcountiesnothavingsufficientdatatojustifyandvalidatethebasisforestablishinginnovativenutrientdischargetreatmentandoffsetandcredittradingprogramsthatcouldbeusedtoreducethecostofmeetingTMDLnutrientdischargetargets.Havinglocation-specificnutrientdatatodeterminewhereBMPsaremostcost-effectiveandleastcost-effectiveratherthanusingaveragevaluesoveralllocationsormodelresultshasthepotentialtoresultincountiesandstatesachievingsignificantcostsavingsandmakingitmorelikelythattheywillbeabletoachieveTMDLtargets.

Potential cost savings - the 1% rule Basedonpreliminaryinterviews,itisreasonabletoassumethatstateandcountygovernmentscouldusemorereliable,low-cost,location-specificnutrientmeasurementstoidentifycost-effectivewaysofmeetingTMDLtargets,validatetheresultsoftheirnutrientdischargereductionefforts,anddesignandmanageotherlocation-specificwaterqualityandhabitatimprovementprojects.However,sincepotentialcostsavingsfromusingsensorscannotbemeasuredatthistime,itisnotpossibletopredictifandwhengovernmentagenciesmaydecide

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

15

topurchasesensorsortopurchasenutrientmeasurementdataprovidedbycontractorswhowillproducethemusingNSC-basedsensors.Ratherthanignorethisuncertainbutsignificantlong-termmarketpotentialitseemsreasonabletouseaconventionalruleofthumbthathasbeenusedinmanysimilarsituations,whichisthatsignificantimprovementsininformationthatformthebasisofproductionandinvestmentdecisionscanbeexpectedtoresultincostsavingsequaltoabout1%(Nordhaus1986).Forexample,ifinvestmentsrequiredtomeettheStateofMaryland’snutrient-relatedTMDLtargetsaccountforabouthalfofthestate’sestimatedWIPcosts,orabout$7billionovertenyears,applyingthis1%ruleimplies,hypothetically,thataveragecostsavingsassociatedwithimprovementsinin-waternutrientmeasurementstohelptarget,design,andvalidatenutrientdischargereductionswouldbeworthabout$70million.Hypothetically,similarcostsavingsmightbeexpectedinotherstatesintheBaywatershedandinotherwatershedsacrosstheU.S.whereinvestmentsoftensofbillionsofdollarswillbemadeoverthenexttenyearsorsotomeetnutrient-relatedTMDLtargets.The1%costsavingsexercisedescribedaboveobviouslyprovidesnohardpredictionaboutlong-termin-waternutrientsensormarkets,andabsolutelynoevidencethatthesearchforlesscostlywaystoimplementWIPsandachieveTMDLgoalswillresultinsignificantnewmarketsfornutrientmeasurementsorNSC-basednutrientsensors.However,itdoesprovidesomecontextforconsideringthepotentialimpactofpotentiallong-termdriverofmarketsfornutrientsensors.Ataunitpriceof$5,000forNSC-basedsensors,itisreasonabletoexpectthatmanygovernmentagencieswilldeterminethatpurchasingthemandusingthemtoimprovethemixofmanagementpracticesbeingusedtomeetTMDLtargetswillresultinsignificantcostsavings.InmanycasesthiswillresultinapositiveeconomicreturnfrominvestinginNRC-basedsensors.Interviewssuggestthatthisformsthebasisofahighlyfavorablelong-termoutlookforthesesensorsintheseregulation-drivenU.S.markets.Similarnutrientpollutionproblemsaroundtheworldindicatethatsimilarmarketdriversmayresultinsignificantlong-termmarketpotentialoutsideoftheU.S.

Potential Cost Savings – Using Cost-effectiveness and Incremental Cost Analysis BecauseWIPswillbecostlytoimplement,mostjurisdictionsintheChesapeakeBaywatershedandelsewherethataredevelopingWIPswillbeusingsometypeofcost-effectivenessanalysis(CEA)tocompareoptions,andsometypeofincrementalcostanalysis(ICA)todeterminehowtoprioritizeoptionsinordertominimizecostsastheyattempt,overtime,tomeettheirnutrientdischargereductiontargets.ForplanningpurposesmostofthesejurisdictionswillhavesomestandardmeasuresoftheunitcostsofBMPs(e.g.,costperacreorstreammileorleveloftreatment)andwillusethemwith“BMPefficiencies”toassessandcomparethecost-effectivenessofBMPoptions.However,withinastateandwithincounties,theeffectivenessofimplementinganyparticularBMP(e.g.,%reductioninnutrientdischarges)willrangearoundstandardmeasuresof“BMPefficiencies”

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

16

withBMPsundertakenatfavorablesitesachievinggreaterthanaverageresults,andatunfavorablesitesachievinglowerthanaverageresults.Ifinformationisavailabletoselectthemostfavorablesitesfirst,the“marginal”costofimplementinganygivenBMPwillincreasefrombelowaveragetoaboveaverageasaBMPisappliedatmoresites.Asaresult,havinginformationaboutlocationswhereBMPscanbeexpectedtobemoreorlesseffectivecanresultintheselectionofamorecost-effectiveormore“optimal”mixofBMPsforimplementingcountyWIPS.UseofChallenge-basednutrientsensorsmightalsoindicatethatBMPsaredemonstrablymoreefficientatcertaintimesorduringcertainweatherconditions.ThisisillustratedinFigure2aandb,whichpresentsoverlappingmarginalcostcurvesforthreeBMPs.TheindividualcostcurvesforeachBMPshowthemappliedfirstatfavorablesiteswithrelativelylowcosts,andthenbeingappliedatlessfavorablesiteswithincrementallyhighercosts.AsFigure2aillustrates,itispossible,andinsomecaseslikely,thatapplyingBMPswithhigheraverageunitcostsatsomesiteswithespeciallyfavorableconditionsthatmakethemmoreeffectivewillbemorecost-effectivethanapplyingsomeotherBMPwithamuchloweraverageunitcostatsomedifficultandrelativelycostlysite.ThedashedcurveonFigure2aconnectsthelowestcostcombinationofBMPsforachievingincrementallyhigherlevelsofnutrientdischargereductionandrepresentstheleastcost“expansionpath”orwhatisoftencalledan“incrementalcosteffectivenesscurve.”Estimatingthiscurve,whichdepictsthemostcost-effectivewaytomeetTMDLtargets,requiresmeasuringdifferencesinhowsiteconditionsandlandscapecontextsinfluencetheeffectivenessofvariousBMPsatreducingnutrientdischarges.Estimatingthisleastcostincrementalcostcurveandjustifyinginvestmentsthataredeterminedtobeonthiscurverequiresmorelocation-specificnutrientmeasurementsthanaregenerallyavailableatthecurrenttime.ThecurvepresentedinFigure2bdepictsthecombinationofleastcostoptionsdepictedbythethickcurveinFigure2a.Thisisthe“optimalexpansionpath”or“cost-effective/incrementalcostcurve”forusingBMPstoachieveanyparticularlevelofnutrientdischargereduction.BasedonincreasingmarginalcostsofreducingnutrientdischargesusingeachtypeofBMP,asshowninFigure2a,thiscurvecanbeexpectedtoinvolveamixofBMPsthatincludessomewithrelativelyhighaveragecostsimplementedatfavorablesiteswherecostsarenotonlybelowaverage,butlowerthanthecostofimplementingaBMPwithloweraverageunitcostthatcanonlybeappliedatarelativelyexpensivesite.Figure2billustratesthecostsavingsofnotrelyingonaverageortypicalBMPefficienciesandhowlocation-specificnutrientmeasurementscanbeusedtoreducethecostofachievingvariousnutrientdischargereductiontargets.BMPswithcombinationsofcostsandnutrientreductionsthatfallabovetheincrementalcostcurve(e.g.,BMPX)arewastefulbecauseanotheroption(e.g.,BMPA)isalowercostwaytoachievethesamelevelofnutrientreduction.ProjectsthatfallbelowthecurveinFigure2baredesignatedasunattainablebecauseifaprojectwasavailablethatachievedthesameincrementalreductioninnutrientdischargesasaprojectonthecurveatalowercost,itwouldreplacethatprojectonthecurveandtheprojectcurrentlyonthecurvewouldbeabovethecurveandclassifiedaswasteful.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

17

CEAandICAarestandardandwidelyacceptablemethodsforassessingandcomparingoptionsforachievingenvironmentalgoalsinsituationswhereitisnotpossibletouseconventionalcostbenefitanalysis(BCA)becausethebenefitsofachievingthoseenvironmentalgoalscannotbemonetized.(Robinsonetal.1995;BrandrethandSkaggs2002;U.S.ArmyCorpsofEngineers2015).ThepointoftheillustrationsinFigures2aand2bisthathavinglocation-specificnutrientmeasurementstoimprovehowBMPoptionsareassessedandcompared(e.g.,location-specificBMPefficiencies)canbeexpectedtoallowsignificantlygreaterprecisionwhenmeasuringandcomparingthecost-effectivenessofalternativeurbanandruralBMPs.Thiscanbeexpectedtoresultinfewerprojectsthatarewasteful(abovethecurve)beingchosenandfewerprojectsthatareunattainable(belowthecurve)beingattempted.ItisnotunreasonabletoexpectthatindividualcountiescouldsavemillionsortenstohundredsofmillionsinWIPimplementationcostsiftheyperformCEAandICAbasedonmorereliablenutrientmeasurementsthantheyhavenow.Thisshouldprovideabasisforassessingtheirwillingnesstopayforin-situnutrientsensorsiftheymeettheNSC-challengeandbecometheleastcostwayofgeneratingreliablelocation-specificnutrientmeasurements.Ingeneral,futuremarketsforin-waternutrientsensorswilldependonhowtheinformationtheyprovidecanbeusedtoimproveprivatesectorandpublicsectordecisionsinwaysthatreducecostsand/orrisksorincreasesomemeasureofbenefits.Thetypesofdecisionsthatmaybeimprovedasaresultofhavingsensor-basednutrientinformationdiffersignificantlyfromonewatershedtoanotherandamongmarketsegmentsanddifferamongpotentialuserswithineachmarketsegment.Insomecases,nutrientmeasurementsmightbeusefulbythemselvestoimprovedecisions,forexamplewhenmonitoringtoassessandcomparehowalternativenutrienttreatmentmethodsareperforming.Inothercases,usingthemtoimprovedecision-makingmayrequiretheinformationtheyprovidetobeintegratedwithotherinformation,forexamplewithdatathatcanbeusedtolinknutrientmeasurestoflowrates,treatmentlevels,rainfall,orproximitytopotentialsourcesortreatments.ValueofInformation(VOI)analysisisawell-developedfieldofeconomicresearch(McCauley2005;Haganetal.2009).Showinghownutrientsensor-basedinformationcanhelpdecision-makersselectcost-effectivenutrientreductionprojectsandavoidchoosingwastefulprojectsorattemptingunattainableprojects,asillustratedinFigures2aand2b,isafairlytypicalapplicationofVOIanalysis.OnceNSC-basednutrientsensorsaremorefullydevelopedandproven,itwillbepossibletoexaminethetypesofrelationshipsdepictedinFigure2a,usethemtoestimateanincrementalcostcurveasshowninFigure2b,anduseresultingestimatesofcostsavingsassociatedwithusingsensorstoestimatelikelysizeofmarketsfortheinformationthesesensorsprovideandprojecthowquicklytheyarelikelytodevelop.BasedonthecurrentNSCscheduleitshouldbepossibletoperformthistypeofVOIanalysisandhelpassessandpromotemarketsforNSC-basedtechnologiesasearlyasthespringof2016.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

18

Figure2a.Cost-effectiveexpansionpathforseveralnutrientreductionBMPs

Figure2b.Costeffective/incrementalcostcurve

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

19

References BillickI.,IBabb,B.Kloeppel,J.C.Leong,J.Hodder,J.Sanders,andH.Swain.2013.FieldStationsandMarineLaboratoriesoftheFuture:AStrategicVision.NationalAssociationofMarineLaboratoriesandOrganizationsofBiologicalFieldStations.Availableonlineat:www.obfs.org/fsml-futureBrandreth,B.andL.L.Skaggs.2002.LessonsLearnedfromCostEffectivenessandIncrementalCostAnalyses:FinalReport.U.S.ArmyCorpsofEngineersInvestmentandManagementDecisionMakingResearchProgram.IWRReport02-R-5.Availableonlineat:http://www.iwr.usace.army.mil/Portals/70/docs/iwrreports/02r5cost_eff.pdfChesapeakeBayProgram.2015.ProtocolfortheDevelopment,Review,andApprovalofLoadingandEffectivenessEstimatesforNutrientandSedimentControlsintheChesapeakeBayWatershedModel.Availableonlineat:http://www.chesapeakebay.net/documents/CBP_BMP_Expert_Panel_Protocol_WQGIT_approved_7.13.15.pdfHagan,P.,D.KingandE.Price.2009.Increasinguseandgrowingvalueofoceanobservingsystemsinfisheries:withillustrationsfromtheU.S.Mid-Atlantic(MARCOOS)region.Marsh,AnneS.2014.IdentifyingMarketSpecificationsforAffordableNutrientSensorTechnology:UserNeedsStudy.Availableonlineat:http://www.american.edu/spa/cep/projects/upload/Sensor-Needs-Report_Final.pdfMacauley,Molly.2005.TheValueofInformation:ABackgroundPaperonMeasuringtheContributionofSpace-DerivedEarthScienceDatatoNaturalResourceManagement.RFFDiscussionPaper05-26.Nordhaus,WilliamD.1986."TheValueofInformation,"inRichardKrasnow,ed.,PolicyAspectsofClimateForecasting(Washington,DC,ResourcesfortheFuture),RFFProceedings,March4,129-134.Robinson,Ridgley,WilliamHansenandKennethOrth.1995.EvaluationofEnvironmentalInvestmentsProceduresManualInterim:CostEffectivenessandIncrementalCostAnalysis.U.S.ArmyCorpsofEngineersWaterResourcesSupportCenter,InstituteforWaterResourcesReport95-R-1.Availableonlineat:http://planning.usace.army.mil/toolbox/library/IWRServer/95r01.pdfSchueler,Tom,CeceliaLaneandBillStack.2014.RecommendationsoftheExpertPaneltoDefineRemovalRatesfortheEliminationofDiscoveredNutrientDischargesfromGreyInfrastructure.Availableonlineat:http://www.chesapeakebay.net/documents/GREY_INFRASTRUCTURE_Expert_Panel_Report_FINAL_LONG.pdf

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

20

U.S.ArmyCorpsofEngineersChicagoDistrict.2015.BubblyCreek,SouthBranchoftheChicagoRiver,IllinoisIntegratedFeasibilityReportandEnvironmentalAssessment.Availableonlineat:http://www.lrc.usace.army.mil/Portals/36/docs/projects/bubblycreek/Bubbly_Creek_NEPA%20public%20comment%20report_14%20Apr%202015.pdfUSDA.2013.2013CensusofAquaculture.NationalAgriculturalStatisticsService.Availableonlineat:http://www.agcensus.usda.gov/Publications/2012/Online_Resources/Aquaculture/USDA.2014.2012CensusofAgricultureQuickStats.Availableonlineat:http://quickstats.nass.usda.gov/USEPA.2013a.FiscalYear2011DrinkingWaterandGroundWaterStatistics.OfficeofWater.March2013.Availableonlineat:http://water.epa.gov/scitech/datait/databases/drink/sdwisfed/upload/epa816r13003.pdfUSEPA.2013b.FactSheet:ChesapeakeBayTotalMaximumDailyLoad(TMDL):DrivingActionstoCleanLocalWatersandtheChesapeakeBay.Availableonlineat:http://www.epa.gov/reg3wapd/pdf/pdf_chesbay/BayTMDLFactSheet8_26_13.pdfUSEPA.2015a.ActiontowardsLimitingTotalNitrogen,TotalPhosphorus,andTotalInorganicNitrogenLoadsfromNPDES-PermittedFacilities.Availableonlineat:http://www2.epa.gov/nutrient-policy-data/action-towards-limiting-total-nitrogen-total-phosphorus-and-total-inorganicUSEPA.2015b.NationalSummaryofImpairedWatersandTMDLInformationwebsite.Availableonlineat:http://iaspub.epa.gov/waters10/attains_nation_cy.control?p_report_type=TUniversityofMaryland,MarylandDepartmentofPlanning,MarylandDepartmentofAgriculture,MarylandDepartmentoftheEnvironment,andMarylandDepartmentofNaturalResources.2012.Maryland’sPhaseIIWatershedImplementationPlanfortheChesapeakeBayTMDL.Availableonlineat:http://www.mde.state.md.us/programs/Water/TMDL/TMDLImplementation/Pages/FINAL_PhaseII_WIPDocument_Main.aspxWaterkeeperAlliance.2015.WaterkeeperAlliancewebsite.http://waterkeeper.org

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

21

Appendix: Interview Notes Thesectionsbelowprovidebriefdescriptionsofsomeoftheinterviewsweconductedaspartofthisproject.

Industry Market Segments Apotentiallysignificantmarketsegmentfornutrientsensorsincludesindustrialwatertreatmentfacilities,includingwaterresourcerecoveryfacilities(WRRFs)treatingsewage;drinkingwatertreatmentplants;andothersourcesofnutrientdischargesthatarecoveredbyNPDESpermits.Waterresourcerecoveryfacilitiesrepresentperhapsthelargestmarketfornutrientsensorswithdemandbasedonbothpermitcomplianceandreportingrequirementsandinternalprocesscontrolpurposes.TheestimatesprovidedinTable1shouldbeusedwithcaution,however,becauseourinitialinterviewswithWWRFrepresentativesrevealedarangeofopinionsaboutpotentialusesand/oreffectivenessofin-waternutrientsensorsintheseoperations.OneseniormanagerofamajorWRRF(treatingmorethan10milliongallonsperday)suggestedthatnutrientsensorsmeetingchallengerequirementswouldhavehugepotentialnotonlyforregulatorycompliance,butalsoforinternalprocesscontrol.Currently,theWRRFthisindividualmanagesconductson-siteanalysisofnutrientdatacollectedusingprobesthatcostabout$60,000andrequireexpensivemaintenance.IfChallenge-basedsensorsprovetohavethelinearrangeandanti-biofoulingmechanismsrequiredbytheseapplications,theywouldnotonlyreduceup-frontandmaintenancecosts,butwouldsavesignificantoperatortime,freeingupthatstafftimetofocusmoreeffectivelyonprocesscontrol.SeveralcontactsandintervieweesassociatedwithWRRFnotedthattherewillbearangeofpotentiallevelsofadoptionbasedongeography,withsomeareasofthecountry,suchastheGreatLakesandChesapeakeBaywatersheds,likelytohavemoreregulatorydriversofdemandthanotherpartsofthecountry.Onemanagernotedthatnon-coastalorGreatLakesareasofthecountrywithWRRFsreleasingdischargesintosmaller,moresensitivebodiesofwatermighthavehigherincentivetogathermoretimelyinformationforprocesscontrolpurposesthanWRRFsoperatinginotherareaswherereceivingwaterbodiesarelarger,havestrongtidalflushes,orcontainhabitatsandecosystemsthataregenerallylesssensitivetonutrientdischarges

Drinking Water Faci l it ies Thedrinkingwatertreatmentsectorisdifficulttocharacterize,foranumberofreasons.Nitrateisabigconcernformanydrinkingwaterfacilitiesinvariousareasofthecountry,includingonesusinggroundwaterorsurfacewatersources,aselevatedlevelsofnitratehavebeenlinkedtoblue-babysyndrome.Inotherareas,elevatedphosphoruslevelshaveresultedinharmfulalgalbloomsaffectingdrinkingwatersupply.Whilerelativelylargesystemsthatprovidewatertopopulationsof100,000ormore(morethan400systemsnationwide)aretypicallytreating

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

22

surfacewater,therearemanymorerelativelysmallfacilities(morethan4,000nationwide)providingservicetopopulationsinthe10,000to99,000range,whichtypicallyusegroundwatersources.Nutrientmonitoringneedsdiffersignificantlybetweenthesetwogroupsandwithineachgroupbasedonregionaldifferencesinlandscapeconditionsandregulatorycontexts.Oneexecutiveofalargemulti-locationfacilitytreatingsurfacewaterinaMidweststatenotedthatdatafromChallenge-basedsensorsdeployednearthesefacilitieswouldbeagreatsupplementtodatatheyalreadyobtainfromUSGSsensorslocatedupstream.WatertestedbytheseUSGSsensorshasatraveltimeofthreetoeightdaysbeforeitreachestreatmentfacilities.Additionalsensorsincloserproximitytothefacilitiesandonselectedtributarieswouldhelpcharacterizeabroaderrangeoffacility-basedwaterqualitycontroloptions.Thepotentialforuseofsensorswithinthefacilitiesthemselvesdependstoalargedegreeonthetypeofwatertreatmentthatistakingplace.Reverseosmosistreatment,forexample,wouldnotrequiresensors,asthetreatmentremovesnitrate,butothertreatmentmethodswouldbenefitfromlocationspecificnutrientmeasurementswithintankstohelpoptimizewaterflowandtreatment.Useofsensorsforgroundwatermonitoringmightincreasedemandinthismarketsegment,butanindustryexecutivepointedoutthatthisdependstoalargedegreeonregulatorychanges,asgroundwaterhaslargelybeenleftalonebyregulators.

Commercial Market Segments Interviewswithrepresentativesofsectorswithpotentialcommercialapplicationsforin-waternutrientsensorsrevealedavarietyofpotentialuses.Oneintervieweewasaresearcherworkingonthedesignandoperatingproceduresforoysteraquaculture.Henotedthatcurrentlyoysteraquacultureisconsideredbyfederalregulatorstobea“ClassIIIBMP”andinordertogeneratemarketablecreditstosellinanutrientcredittradingprogramwouldneedto“moveup”toa“ClassIBMP”.TheintervieweesawpotentialforoystergrowerstouseNSC-basedsensorstoverifytheirnutrientdischargereductionsandthenutrientremovalpropertiesofoystersinordertoachievethisdesignationchangewhichwouldfacilitatethedirectinvolvementofoysteraquacultureinthistypeoftradingandgeneratenewincomesourcesforaquaculturebusinesses.Individualswhorepresentdifferentpartsofthecommercialfinfishaquacultureindustrywerealsointerviewed.Priortotheseinterviews,weenvisionedtwopotentialusesofNSC-basedsensorsinaquacultureoperations:monitoringwaterqualityforfishhealthandimproveproductquality,andmonitoringdischargetomeetregulatoryrequirements.Inmostaquaculturefarms,however,dissolvedoxygenandammonianeedtobemonitored,butnitrateisnotasmuchofaconcern.Dischargepracticesvarywithdifferenttypesoffarms(e.g.,ponds,recirculatingsystems,etc.)andgovernment-mandatedmonitoringandreportingrequirementsvaryindifferentregionsoftheU.S.Thereisanaquaculture-basedmarketforthetypeofin-waternutrientsensorsbeingdevelopedaspartoftheChallenge,butpredictingthesizeofthismarketisverydifficultatthepresenttime.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

23

Twopeoplewereinterviewedregardingpotentialuseofin-waternutrientsensorsinhydroponicandaquaponicsapplications.Althoughtheoverallmarketinthesesectorsissmall,bothintervieweessawpotentialusesforNSC-basedsensors.Inahydroponicoperationwherefertilizerisstoredinlargetanks,nutrientlevelsarecurrentlyestimatedthroughelectricalconductivity.Auniversityresearcherspeculatedthatmorefrequentandaccuratemeasuresofnutrientconcentrationcouldyieldmoregrowthandabetterqualityproduct,therebyhavingapositiveimpactonprofits.Aquaponicsiscurrentlyasmallbutrapidlydevelopingindustrysectorandpotentialsensormarket.Oneinterviewee,amemberofanationalaquaponicsassociation,indicatedthatinafewyears,whengovernmentfoodsafetyauditstandardsforthissectorarefinalized,theaquaponicssectorcouldgrowsignificantlyasfarmerslooktodiversifytheiroperationsinwaysthatmitigatetheuncertainimpactsofchangesinprecipitationregimesandfloodthreatsthatareexpectedtoaccompanyclimatechange.

Government Market Segments

Federal Research and Monitoring Programs Federalresearchandmonitoringprograms,suchasthoseconductedbyUSGS,EPA,andNOAA,representasignificantsourceofpotentialdemandforNSC-basedsensors.Oneintervieweenotedinparticularthatthelowerpricepointtargetedbythechallengeiscritical,notonlyforFederalprograms,butforacademicandnon-profitinstitutionsaswell.Manypotentialusesofthesesensorsforresearchandmonitoringbyuniversities,non-profitsandfor-profitcompanieswillalsobefundedbyfederalgrantsandcontracts.

State and Local Research and Monitoring Programs Withmorethan6,000nutrientTMDLsnationwide,thereisanincreasingneedforstateandlocaljurisdictionsinareassubjecttoTMDLs,suchasthoseintheChesapeakeBaywatershed,togainabetterunderstandingofnutrientsources.OneexpertintheChesapeakeBayregionemphasizedthatfindingandremovingorreducingsourcesofnutrientdischargesmayhaveTMDL-creditbenefitsforregulatedcommunities.Anexampleofhownutrientmeasurementsareusedtomakedeterminationsaboutlevelsofnutrientremovalsandthe“creditworthiness”associatedwithparticulartypesofprojectsisanOctober2014recommendationoftheChesapeakeBayProgram’s“ExpertPaneltoDefineRemovalRatesfortheEliminationofDiscoveredNutrientDischargesfromGreyInfrastructure”.(Schueleretal.2014).TheChesapeakeBaywatershedisoneofthemostactiveregionsofthecountryintermsofTMDLdevelopment,andcanbeviewedasamodelforotherregions,andforhowChallenge-basedsensorsmighthelpinformongoingrefinementofwatershedcleanupmodelsandbestmanagementpractices(BMPs).TheChesapeakeBayProgram(CBP)WaterQualityGoalImplementationTeam(WQGIT)isresponsibleforapprovingloadingestimatestoquantifyexpectedamountsofnutrients(nitrogenandphosphorus)orsedimentloadstowaterfromspecificlandusesorpointsources.TheCBPhasdevelopedaprotocol(CBP2015)thatoutlinesspecificproceduresforitsbest-management-practiceExpertPanelstofollowsotheprocessisconsistent,transparent,andscientificallydefensible.

NutrientSensorChallengeEconomicWhitePaperACTMS-2015-01

24

Theprotocolnotesthatchangesinestimatedloadsfromaparticularpieceoflandcanoccurinanumberofways,including:1)Achangeinthelanduse(e.g.forestinsteadofgrassland),2)anadjustmentbasedonanestimateofeffectivenessofaBMP,3)ameasuredreductionindirectloadtothelanduse,and4)ameasuredreductionfromatreatmentprocess.TheCBPusestheseeffectivenessestimatesandmeasuresofdirectloadreductionstomodifyestimatesofexistingbaselineloadingforparticularlandusesandpractices.TheWQGITisresponsibleforapprovingtheloadingratereductions,andpercentageadjustmentstotheserates,usedintheChesapeakeBayWatershedModel(CBWM).The2014ChesapeakeBayWatershedAgreementincludesthecommitmenttomeettwo-yearmilestonesthatacceleratethepaceofChesapeakeBayrestoration,andtheneedtoquantifyimpactsofpracticestobeusedinWatershedImplementationPlans(WIPs)toachieveTMDLallocationtargets.

Other Market Segments Academicresearchersinterviewedforthisprojectwere,ingeneral,excitedbytheprospectofNSC-basedproductsandhowtheycouldbeusedtoidentifythesourcesandimpactsofwaterqualityproblemsandfindcost-effectivesolutions.Morethanoneacademicresearcherwasoptimisticthatthemarketamongtheirpeerswouldbestrong,indicatingthatataunitpriceoflessthan$5,000eachofthemmightpurchaseasmanyas10NSC-basedsensorsaspartoftheresearchgrantstheycurrentlymanage.However,withoutdoingsomeresearchtheywerenotwillingtoprovideestimatesabouthowlargetheoverallresearchmarketwaslikelytobe.AresearcherintheChesapeakeBaywatershedindicatedthattheavailabilityofsensorsthatcantakesamples,regardlessofweatherconditions,willgreatlyreduceuncertaintyabouthowprojectsaffectnutrientdischargesandimprovegeneralunderstandingofhowwatershedsystemswork.Forexample,inlargestormevents,itisgenerallyunderstoodthatnutrientconcentrationschangerapidly.However,becauseresearcherscannotsafelytakewatersamplesatsomelocationsexceptbeforeandafteraseverestormthe“snapshots”ofconditionstheyareabletocollecttellonlypartofthestory.AlthoughthisresearcherbelievedthepotentialresearchmarketforNSC-basesensorswouldbelarge,hewas,understandably,unwillingtopredicthowlarge.