powerpoint summary of chapters 23-25

55
PowerPoint Summary of Chapters 23-25 • Use this PowerPoint along with the outline notes • If a term appears in bold and is not defined, be sure to go look on the text for it • Refer back to the text for any additional info you would like to have • Have fun!

Upload: susan-waters

Post on 01-Jan-2016

34 views

Category:

Documents


1 download

DESCRIPTION

PowerPoint Summary of Chapters 23-25. Use this PowerPoint along with the outline notes If a term appears in bold and is not defined, be sure to go look on the text for it Refer back to the text for any additional info you would like to have Have fun!. Chapter 23 Reproductive System. Meiosis - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: PowerPoint Summary  of Chapters 23-25

PowerPoint Summary of Chapters 23-25

• Use this PowerPoint along with the outline notes

• If a term appears in bold and is not defined, be sure to go look on the text for it

• Refer back to the text for any additional info you would like to have

• Have fun!

Page 2: PowerPoint Summary  of Chapters 23-25

Chapter 23Reproductive System

• Meiosis– A form of cell division specific to gametes that

results in only half the number of original chromosomes (fig 21-1)

– Stem cells (46 chromosomes) divide into functional gametes which only have 23 chromosomes

– For males, this process doesn’t start until puberty and continues throughout the rest of their life

• Once started, males will produce 500,000 spermatozoa per day.

Page 3: PowerPoint Summary  of Chapters 23-25

• Spermatogenesis – creation of sperm– A single stem cell divides twice to produce

four spermatozoa (sperm cell)– This process occurs along the nearly half mile

of seminiferous tubules in each testis– The seminiferous tubules drain into the

epididymus. There spermatozoa mature up to 2 weeks in the super coiled 23 ft of tubule.

– The next part of the pathway is the ductus deferens (vas deferens) that runs from the posterior of each testis to a single ejaculatory duct.

• Sperm can be stored in the ductus deferens for several months

Page 4: PowerPoint Summary  of Chapters 23-25

• Spermatogenesis – (cont’d)– Accessory glands add to the seminal fluid at

the ejaculatory ducts and proximal end of the urethra.

• Seminal Vesicles• Prostate Gland• Bulbourethral

(see fig 23-1 for location of these glands)

– What are the functions of semen?

Page 5: PowerPoint Summary  of Chapters 23-25

• Spermatogenesis – (cont’d)– The urethra is the final path for seminal fluid

as it travels through the penis and is ejaculated out of the body

• A typical ejaculate is 2 to 5 ml of semen and contains 50-100 million sperm per ml

– Interstitial cells between the seminiferous tubules produce the hormone testosterone.

• This production increase dramatically after puberty in the presence of FSH and LH

– Refer back to Chapter 12 about the regulation and production of these hormones

Page 6: PowerPoint Summary  of Chapters 23-25
Page 7: PowerPoint Summary  of Chapters 23-25

• Oogenesis – formation of an egg (ovum)– Stem cells during prenatal development divide

twice to produce an ovum with 23 chromosomes• Each female is born with nearly 2 million ovum, but by

the time they will start being released at puberty, the number withers down to ~200,000. All are stored in a pair of ovaries.

– Levels of FSH and LH stimulate the development and release

• Even so, she will only release less than 400 in a lifetime. One per month, alternating from the right or left ovary.

• This process will end with menopause.

Page 8: PowerPoint Summary  of Chapters 23-25

• Oogenesis – formation of an egg (ovum)– One ovum from the left or right ovary is ovulated

into the fimbriae of the 5 inch uterine tube• Cilia in the tube draw the ovum towards the uterus; a

trip that takes 3-4 days

– This cycle usually lasts about 28 days, but can be longer or shorter per individual

• Increased LH levels stimulate the development of a follicle, which will then release its ovum in 14days

• Fertilization needs to occur in the first 48 hrs after ovulation or the ovum will disintegrate in the uterus and be flushed out during menstration.

• If fertilizations does occur, then the cycle is stopped until after birth

Page 9: PowerPoint Summary  of Chapters 23-25
Page 10: PowerPoint Summary  of Chapters 23-25

• Read both the menstrual cycle which starts on page 466

• Review fig. 23-13 which summarizes the hormonal events and uterus development for this cycle.

• Read the Hot Topic (Box 23-3) and Birth Control Strategies on pages 468 and 469

• Be familiar with the types of cancer of this system – Prostatic, Testicular, Breast, Endometrial,

Ovarian, Cervical

Page 11: PowerPoint Summary  of Chapters 23-25

Chapter 24Development

• Begins at fertilization, or conception and ends at birth– Gestation lasts approximately 38 weeks

• Prenatal development is divided into two stages– Embryo for the first two months– Fetus from the ninth week to birth

Page 12: PowerPoint Summary  of Chapters 23-25

• Fertilization– Fusion of egg and sperm– Each contain 23 chromosomes to form a

zygote containing 46 chromosomes

– 200 million sperm are released into the vagina, 10,000 make it into the uterine tube, and about 100 may actually make it to the egg.

– Penetration of the egg by a single sperm allows the chromosomes to combine

Page 13: PowerPoint Summary  of Chapters 23-25
Page 14: PowerPoint Summary  of Chapters 23-25

Gestation

• Average prenatal period is 38 weeks or 266 days (divided into three trimesters)

• First Trimester– 40% of the eggs that are fertilized produce

embryos that survive the first trimester– Embryo formation

• Zygote undergoes rapid cell divisions called cleavage

• By day 5, the cells have entered the uterus, and developed into a blastocyst

Page 15: PowerPoint Summary  of Chapters 23-25

• First Trimester continued– Implantation

• About day 7, the blastocyst adheres to the surface of the uterus and will become completely embedded within its membrane

– The outer cells of the blastocyst develops into the placenta

• The placenta begins secreting human chorionic gonadotropin (hGC) which signals the corpus luteum to maintain production of estrogens and progesterone

– This hormone maintains a functional endometrial lining

• The inner cell mass of the blastocyst becomes organized into three germ layers that will form different body tissues

Page 16: PowerPoint Summary  of Chapters 23-25

• First Trimester continued

– Placenta (fig 24-2)• Extensions from the chorion extend into maternal

tissue where chorionic blood vessels develop• These chorionic villi enlarge as the heart starts

beating and extend further into the endometrium where they will come in close proximity of maternal blood vessels

• The vessels develop into two umbilical arteries and a single umbilical vein

• The chorionic villi provide the surface area for the exchange of gasses, nutrients and wastes between maternal and fetal blood flow.

Page 17: PowerPoint Summary  of Chapters 23-25

• First Trimester continued– Placenta (cont’d)

• Also releases hormones (progesterone and estrogen) which will take over for the declining corpus luteum

• Prevents menstration, prepares mammary glands to produce milk, and prepare the body for delivery

• The following slide shows embryos at different stages and an early fetus– Interesting note: Picture b is during a phase

where we don’t look too much different from fish or chicken embryo

Page 18: PowerPoint Summary  of Chapters 23-25
Page 19: PowerPoint Summary  of Chapters 23-25

• Second and Third Trimester

– The framework for the major organ systems have formed by the start of the second trimester

• The fetus grows from ~1oz to 1.4lbs

– Those organ systems become mostly functional in the third trimester

• The fetus gains most its weight and shoots up to an average of 7lbs

Page 20: PowerPoint Summary  of Chapters 23-25

Changes

• The fetus is totally dependant on the mother’s organ systems– That means that the

mother has to increase all her norms to provide proper nutrition to the developing fetus

• Increase CV activity, blood volume, Respiratory Rate, appetite, and excretion

Page 21: PowerPoint Summary  of Chapters 23-25

• Early contractions of uterine smooth muscle are weak, short and painless– Late in development rising estrogen levels increase

smooth muscle sensitivity and stimulate an rise in oxytocin levels.

– Oxytocin increases the force and frequency of contractions in response to a stretch in the uterine cervix

– Uterine tissues also produce prostaglandins that increase contractions as well

• Typically at 9 months, these changes lead to labor contractions that continue until delivery has been completed.

Changes

Page 22: PowerPoint Summary  of Chapters 23-25

Stages of Labor (Parturition)

• First Stage – Cervix dilates and the fetus begins to slide

down the cervical canal– Labor contractions are once every 10 to 30

min and at some point the amnion will rupture releasing amniotic fluid (“water break”)

• Second Stage– Starts after the cervix has dilated completely

and concludes when the fetus emerges from the vagina

– Time varies but usually lasts two hours or less

Page 23: PowerPoint Summary  of Chapters 23-25

Stages of Labor (Parturition)

• Third Stage– This stage ends with the ejection of the placenta

(“afterbirth”) and an associated blood loss of 500-600ml.

• Along with the placenta, the amniotic sac membranes, and the umbilical cord (except the part attached to the baby which forms the umbilicus) are ejected

• Fourth Stage– The period the body controls the bleeding after the

birth– Involves uterine contractions and repair of an

episiotomy, if conducted.

Page 24: PowerPoint Summary  of Chapters 23-25

Stages of Labor• An episiotomy can be performed to

prevent perineal tearing if the vaginal opening is too small– This procedure enlarges the vaginal opening

by placing an incision through the perineal musculature between the vagina and anus. It can be repaired with sutures after delivery

• A Cesarean (C) section can be performed if complications arise– Here the abdominal wall is opened and a 6-7

inch incision is made in the uterus to allow the head (the widest part) to pass through

Page 25: PowerPoint Summary  of Chapters 23-25

Multiple Births• New stats on births reveals that twins occur 1 in

100 births and with African-Americans, the rate is greater (1 in 77)

• Fraternal twins are created when two eggs are released and fertilized at the same time. May or may not be the same gender.

• Identical twins are produced when the fertilized zygote cells split apart during development. The offspring’s genetic makeup is exactly the same.– Fraternal twins are twice as common as identical

twins and are increasing with the practice of fertility medicine.

Page 26: PowerPoint Summary  of Chapters 23-25

Genetics and InheritanceChapter 25

• Genetics is the study of heredity, or how different traits are inherited.

• Families have similar traits because they are passed on from generation to generation through their chromosomes

Page 27: PowerPoint Summary  of Chapters 23-25
Page 28: PowerPoint Summary  of Chapters 23-25

Genes and Chromosomes

• Chromosomes contain DNA (Chapter 2 if you forgot)

– No cell uses every bit of its genetic information

– Genes are functional segments of DNA

• Every somatic cell carries copies of the 46 original chromosomes that were in the zygote– Except gametes / RBCs

figure 2

Page 29: PowerPoint Summary  of Chapters 23-25

Genes and Chromosomes

• Genotype – Chromosomes and their component genes

• Phenotype – physical expression of the genotype

►Arrangement of nucleotide bases – ATGCGCCCCATA or AGCCGCATAGCG…

►Hair color, skin tone, vision, bone structure

* The genotype dictates the phenotype

Page 30: PowerPoint Summary  of Chapters 23-25

• A gene’s position on a chromosome is called a locus

– The locus helps map the DNA strand to indicate which section is responsible for certain traits

• Each DNA strand has a “partner” within the nucleus

– This pairing is referred to as Homologous Chromosomes, with one strand coming from paternal DNA and the other from maternal DNA

Page 31: PowerPoint Summary  of Chapters 23-25

Karyotyping

• a sample of amniotic fluid is taken (amniocentesis) and fetal DNA is analyzed

• a Karyotype displays homologous pairs of chromosomes

Page 32: PowerPoint Summary  of Chapters 23-25

• Sampling procedures can be dangerous to the fetus and mother– Amniocentesis is only performed when known

risk factors are present • I.e. Family history, age complications, drug user, etc.

– Amniotic fluid has to be sufficienct enough to be taken without implication to the fetus

• Usually at a gestational age of 14 weeks• Results take several weeks

Page 33: PowerPoint Summary  of Chapters 23-25

Patterns of inheritance

• Somatic cells contain 23 pairs of chromosomes– All 23 are Homologous

chromosomes– 22 pair of autosomal and

one pair of sex chromosomes

Page 34: PowerPoint Summary  of Chapters 23-25

• Various forms of a gene are called alleles• Homozygous if homologous chromosomes

carry the same alleles - AA, or aa• Heterozygous if homologous chromosomes

carry different alleles - Aa• Alleles are either dominant

– Always expressed in the phenotype– Usually represented by a capital letter (A)

• or recessive – Expressed only when both alleles are present– Usually represented by a lowercase letter (a)

Page 35: PowerPoint Summary  of Chapters 23-25

• Incomplete Dominance– Phenotype that is different from phenotypes of

homozygous for either allele– Example: Sickle cell– Recessive trait (s) that causes RBCs to fold

• ss: individual has the sickle cell disorder

• Ss: individual has RBCs that fold only when tissue O2 levels drop

Page 36: PowerPoint Summary  of Chapters 23-25

• Codominance– Heterozygous allele that shows both traits in

its phenotype– Example: Blood type

• IA: antigen A present• IB: antigen B present• i: no antigen present

• ii = Type O• IB IB or IB i = Type B• IA IA or IA i = Type A• IA IB = Type AB

Page 37: PowerPoint Summary  of Chapters 23-25

• Teratogens – factors that disrupt normal development by

damaging cells, altering chromosome structure, or by changing the pattern of gene activation and expression.

– Examples are nicotine, radiation, and alcohol– Fetal alcohol syndrome (FAS) produces

developmental defects caused by mothers who drink during pregnancy

• Number 1 cause of mental retardation in the U.S.

Page 38: PowerPoint Summary  of Chapters 23-25

Punnett square diagram predicts probabilities of traits

A = normal color, a = albino (see next slide)

Page 39: PowerPoint Summary  of Chapters 23-25

• In diagram A, a homozygous dominate male mates with a homozygous recessive female– The probability of them having offspring with

normal pigment is 100% (all are heterozygous dominant)

• In diagram B, a heterozygous dominant male mates with a homozygous recessive female– The probability that they will have normal

pigment offspring is 50%, the other 50% have albinism

Page 40: PowerPoint Summary  of Chapters 23-25

Inheritance

• Simple inheritance – Phenotypic characteristics are determined by

interactions between single pair of alleles

• Polygenic inheritance– Phenotypic characteristics are determined by

interactions among alleles on several genes

Page 41: PowerPoint Summary  of Chapters 23-25
Page 42: PowerPoint Summary  of Chapters 23-25

Inheritance

• More than 1200 inherited conditions have been identified that are linked to 1 or 2 abnormal alleles for a single gene

Page 43: PowerPoint Summary  of Chapters 23-25
Page 44: PowerPoint Summary  of Chapters 23-25

Sources of Individual Variation

• Genetic recombination– Gene reshuffling, common, creates variations

within a gene pool

• Crossing over and translocation (fig next slide)

– Occurs during meiosis– May produce abnormal chromosomes

• The production of chromosomes with extra or missing segments

• Most result in miscarriages but some result in developmental disorders

Page 45: PowerPoint Summary  of Chapters 23-25

Crossover and Translocation

Page 46: PowerPoint Summary  of Chapters 23-25

• Spontaneous mutations– Random errors in DNA replication where extra

or missing code occurs– Many of these errors are hidden as the

recessive trait, and some don’t make it past the embryo stage

– Heterozygous for the abnormal trait would be a carrier

Page 47: PowerPoint Summary  of Chapters 23-25

Sex-Linked Inheritance

• Sex chromosomes are X chromosome and Y chromosome– Male = XY– Female = XX– X chromosome carries X-linked (sex linked)

genes• Affect somatic structures• The X chromosome is longer therefore no

corresponding alleles on Y chromosome (i.e. no competition for traits)

Page 48: PowerPoint Summary  of Chapters 23-25

Sex-linked Punnett

Page 49: PowerPoint Summary  of Chapters 23-25

Human Genome Project

• Mapped ~24,000 of our genes– Including some responsible for inherited

disorders

click for more Human Genome info

click for DNA sequence list

Page 50: PowerPoint Summary  of Chapters 23-25

DNA Map

Page 51: PowerPoint Summary  of Chapters 23-25

Genetic Disorders

• Down Syndrome– Most common chromosomal

abnormality– Caused by an extra copy of

chromosome #21– Marked by mental retardation of

various levels and specific common physical features

– Most die early of cardiovascular problems or develop neurological problems as they age

– Incidence increases as the age of the mother being impregnated increases after age 35.

• Mistakes caused during meiosis– Extra copies or missing pieces of DNA

Page 52: PowerPoint Summary  of Chapters 23-25

Genetic Disorders• Klinefelter Syndrome

– Male with an extra X chromosome– Reduces testosterone production so testis fail to

mature, individuals are sterile, and breasts enlarge

• Turner Syndrome– Female with a single X chromosome– Therefore a chromosome short– Causes an absence of development at puberty,

ovaries are non-functional, and estrogen production is insignificant.

– Will require hormone injections to develop adult female characteristics

Page 53: PowerPoint Summary  of Chapters 23-25

Ectopic (“displaced”) Pregnancies

• Normal implantation occurs in the endometrial lining of the uterus, ectopics implant somewhere else.

• 95% implant in the uterine tube which cannot expand like the uterus.– The developing embryo ruptures the tube which

causes internal bleeding and a risk to the mother– In some cases, the embryo can continue to develop

full term and with surgical removal at birth

• Incidence increases with regular douching or uterine tube infection

Page 54: PowerPoint Summary  of Chapters 23-25
Page 55: PowerPoint Summary  of Chapters 23-25

Placenta Problems

• Placenta Previa– Implantation occurs in the lower portion of the uterus– The placenta then may form near or over the cervical

opening which increases the risk of tearing and bleeding out

– Treatment includes bed rest for the mother and a scheduled C section when gestation has reached a safe point

• Abrupto Placentae– Placenta tears away from the uterus after the fifth

month of gestation– Internal bleeding may lead to maternal anemia or

shock– Fetal mortality is between 30 and 100%