polígonos: triángulos, cuadriláteros y polígonos regulares

18
56 Polígonos: triángulos, cuadriláteros y polígonos regulares E Cúpula del British Museum. ÍNDICE DE CONTENIDOS 1 Triángulos. 2 Cuadriláteros. 3 Polígonos regulares. 5. Polígonos: triángulos, cuadriláteros y polígonos regulares sta unidad didáctica trata del estudio de los polígonos (del griego polys= mucho y gonia=ángulo). Aun siendo el triángulo la figura más sencilla, ya que es el polígono de menor número de lados, es la más importante, puesto que los polígonos de cualquier número de lados, incluidos los cuadriláteros, se pueden descomponer en triángulos. De esta forma, pueden utilizarse las construcciones de estos en la resolución tanto de cuadriláteros como de polígonos.

Upload: phungthu

Post on 08-Jan-2017

317 views

Category:

Documents


14 download

TRANSCRIPT

Page 1: Polígonos: triángulos, cuadriláteros y polígonos regulares

56

Polígonos: triángulos,cuadriláteros ypolígonos regulares

E

Cúpula del British Museum.

ÍNDICE DECONTENIDOS

1 Triángulos.

2 Cuadriláteros.

3 Polígonos regulares.

5. Polígonos: triángulos, cuadriláteros y polígonos regulares

sta unidad didáctica trata del estudio de los polígonos (del griego polys= mucho y gonia=ángulo).

Aun siendo el triángulo la figura más sencilla, ya que es el polígono de menor número de lados,

es la más importante, puesto que los polígonos de cualquier número de lados, incluidos los cuadriláteros,

se pueden descomponer en triángulos. De esta forma, pueden utilizarse las construcciones de estos en

la resolución tanto de cuadriláteros como de polígonos.

Page 2: Polígonos: triángulos, cuadriláteros y polígonos regulares

1.1. Rectas y puntos notables de un triánguloAdemás de los elementos básicos, vértices, lados y ángulos (estudiados

el curso anterior), se deben conocer los siguientes elementos notables:

• Cevianas.

• Mediatrices. Circuncentro.

• Bisectrices interiores. Incentro.

• Bisectrices exteriores. Exincentros.

• Medianas. Baricentro.

• Alturas. Ortocentro.

Cevianas (Fig. 1)Son los segmentos que unen un vértice con un punto cualquiera del

lado opuesto.

MediatricesSon las mediatrices de los lados. Se cortan en un mismo punto deno-

minado circuncentro (Cc), que es el centro de la circunferencia cir-

cunscrita. Dependiendo del tipo de triángulo, el circuncentro se en-

cuentra en el interior si el triángulo es acutángulo (Fig. 2), en el pun-

to medio de la hipotenusa si es rectángulo (Fig. 3), o en el exterior

si es obtusángulo (Fig. 4).

57

Desarrollo de contenidos

5. Polígonos: triángulos, cuadriláteros y polígonos regulares

TRIÁNGULOS1

B C

CevianasA

Fig. 1

Fig. 2

Fig. 4Fig. 3

A

B C

Cc

A

B C

Cc CcA

B C

Page 3: Polígonos: triángulos, cuadriláteros y polígonos regulares

585. Polígonos: triángulos, cuadriláteros y polígonos regulares

Bisectrices• Interiores (wa, wb, wc ) (Fig. 5).

Las bisectrices de los ángulos interiores del triángulo se cortan en

el punto I, incentro, que es el centro de la circunferencia inscrita.

Los segmentos de bisectriz desde el vértice hasta el punto de corte

con el lado opuesto se designan por wa=AWa, wb=BWb y wc=CWc.

• Exteriores (Fig. 6).Las bisectrices de los ángulos exteriores del triángulo se cortan,

dos a dos, en los puntos Ia, Ib e Ic, centros de las circunferencias

tangentes a un lado y a la prolongación de los otros dos. A estas

circunferencias se les denomina exinscritas, de radios Ra, Rb y Rc.

Fig. 5

Wb

Wa

Wc

A

CB Ta

Tc

Tb

I

wc

waw b

Medianas (ma , mb , mc ) (Fig. 7)Son los segmentos que unen un vértice con el punto medio del lado

opuesto. Se cortan en G, llamado baricentro, que es el centro de

gravedad, del triángulo. El baricentro divide a las medianas en dos

partes, una doble que la otra.

Alturas (ha , hb , hc )

Altura es la distancia desde un vértice al lado opuesto del triángulo.

Las alturas se dibujan trazando las perpendiculares desde cada vértice

al lado opuesto. Las tres alturas se cortan en un punto (H) denominado

ortocentro (Fig. 8). Obsérvese que si el triángulo es rectángulo

(Fig. 9), el ortocentro coincide con el vértice del ángulo recto, y si

el triángulo es obtusángulo (Fig. 10), el ortocentro es exterior al

triángulo.

Fig. 6

A

B C

Ib

Ic

Ia

Rb

Ra

R c

B

Fig. 7

Fig. 8 Fig. 9 Fig. 10

A

M c

BM aC

M b

G

mc

ma

mb

AG=2/3 m a , GMa=1/3 m a

BG=2/3 m b , GMb=1/3 m b

CG=2/3 m c , GMc=1/3 m c

A

BC

hb

h c

h a

H

H=A

C

b=h c

c=hb h a

A

B

C

H

hb

h a

hc

Page 4: Polígonos: triángulos, cuadriláteros y polígonos regulares

p-b

595. Polígonos: triángulos, cuadriláteros y polígonos regulares

1.2. Relaciones métricas en los triángulos

Relación de los segmentos determinados por los puntos detangencia de la circunferencia inscrita con los lados del triánguloPartimos de la circunferencia inscrita al triángulo ABC (Fig. 11), cuyos

puntos de tangencia son Ta, Tb y Tc. Los seis segmentos en que los

puntos de tangencia dividen a los lados, son iguales dos a dos y su-

man el perímetro del triángulo, 2p.

ATc=ATb, BTc=BTa, CTb=CTa

La suma de tres distintos sumarán el semiperímetro p.

p=ATb+CTb+BTa, como ATb+CTb=b, p=b+BTa, BTa=BTc=p-b

Análogamente:

ATc=ATb=p-a, CTb=CTa=p-c

B

A C

I

TaTc

Ibp-a p-c

Fig. 11

Relación de los segmentos determinados por los puntos detangencia de las circunferencias exinscritas con los lados deltriánguloTengamos ahora en cuenta la circunferencia exinscrita al lado a, cuyos

puntos de tangencia son A', B' y C' (Fig. 12). Se puede observar que

AB'=AC', donde AC'=c+BC' y AB'=b+CB'. Como BC'=BA' y CB'=CA'

se puede poner AC'+AB'=(BA'+CA')+b+c= a+b+c=2p. Por tanto,

AC'=AB'=p. Un análisis similar se puede hacer con los otros dos lados

y sus circunferencias exinscritas.

«La distancia desde un vértice hasta los puntos de tangencia de la

circunferencia exinscrita al lado opuesto, en la prolongación de los

otros dos, es igual al semiperímetro p»

Segmentos determinados por los puntos de tangencia de lascircunferencias inscrita y exinscritas en los lados del triánguloEn la figura 13 se han dibujado el triángulo ABC y sus circunferencias

inscrita y exinscritas, con sus respectivos puntos de tangencia. Además

de las relaciones estudiadas en los puntos anteriores, se cumplen las

siguientes:

• Distancia entre los puntos de tangencia de circunferencias exinscritas

sobre las prolongaciones de un mismo lado:

.

• Distancia entre los puntos de tangencia de las circunferencias inscri-

ta y exinscrita sobre un mismo lado:

.

• Distancia entre dos puntos de tangencia contiguos de circunferencias

exinscritas sobre un lado y su prolongación:

.

o distancia entre dos puntos de tangencia contiguos, uno de una

circunferencia exinscrita en la prolongación de un lado y otro de

la inscrita sobre el mismo lado:

.

Fig. 13

B

A C

Ia

C'

B'

A'

b p-b

pp-

c

p

c

Fig. 12

Ib

Ic

C

A

Ia

I

B

G

L

H

J

FE

D

M

K

Tc

Tb

Ta

MK=a+b, GJ=a+c, DF=b+c

LTc=a-b, HTb=a-c, ETa=b-c

ML=GH=a, DE=KL=b, JH=FE=c

JTb=KTc=a, FTa=MTc=b, DTa=QTb=c

Page 5: Polígonos: triángulos, cuadriláteros y polígonos regulares

Si se conocen la bisectriz y la potencia, se pueden hallar los segmentos

MWa y MA por aplicación de potencia del punto F respecto de la

circunferencia de diámetro Wa (Fig. 16). Para su construcción, dibujar

dos segmentos perpendiculares de valores x y wa con un origen

común J. Dibujando la circunferencia de diámetro wa y uniendo F

con el centro O, se obtienen los segmentos MWa y MA.

5. Polígonos: triángulos, cuadriláteros y polígonos regulares60

Relación entre las bisectrices y los ladosEn el triángulo ABC (Fig. 14) se ha llevado sobre la prolongación del

lado b un segmento CM=a. También se han dibujado la bisectriz del

ángulo C (wc) y el segmento BM. El triángulo BCM es isósceles, sus

ángulos iguales valen C/2, por tanto, los segmentos BM y CWc son

paralelos. Aplicando el teorema de Tales, se establece:

AWc/BWc=AC/MC o AWc/BWc=b/a

«La bisectriz de un triángulo divide al lado opuesto en dos segmentos

proporcionales a los lados concurrentes con ella»

wc

A C

B

Wc

M

C/2

aC

/2

b a

Fig. 14

Relación entre los segmentos de bisectrices (Wa, Wb,Wc), loslados y la circunferencia circunscritaLa bisectriz de un ángulo de un triángulo corta a la circunferencia

circunscrita en el punto medio del arco que abarca el lado opuesto.

En la figura 15, la bisectriz del ángulo A corta al arco BC en su punto

medio M. La mediatriz del lado a también pasa por M. Si se establece

una inversión en la que el lado BC y la circunferencia circunscrita sean

figuras inversas, el centro de inversión es el punto M y la potencia

de inversión es MB=MC. Los puntos A y Wa son inversos.

MWa • MA=MC • MC

Esta propiedad se emplea para la construcción de algunos casos de

triángulos, como a,A,Wa.

Fig. 15

Fig. 16

A

B C

M

Wa

Cc

wa

x

F J

O wa

x

MA=MWa+AWa

MWa

^ ^

^

^

^

Page 6: Polígonos: triángulos, cuadriláteros y polígonos regulares

615. Polígonos: triángulos, cuadriláteros y polígonos regulares

1.3. Triángulos órtico, complementario y suplementarioEl triángulo órtico de otro ABC dado, es aquel que tiene por vértices

los pies de las alturas (Ha, Hb y Hc) del primero (Fig. 17). Si el triángulo

es acutángulo, las bisectrices del órtico coinciden sobre las alturas

del triángulo ABC. En este caso, el ortocentro del triángulo coincide

con el incentro de su órtico.

Se denomina triángulo complementario de otro ABC dado, al que

resul-ta de unir los puntos medios Ma, Mb y Mc de los lados de aquel

(Fig. 18). Los lados del complementario son paralelos a los del prime-

ro, y de valor la mitad.

Se denomina triángulo suplementario de otro dado al que se obtie-

ne dibujando paralelas a los lados por los vértices opuestos respectivos.

En la figura 18, el triángulo ABC es suplementario del MaMbMc. Por

tanto, si un triángulo es complementario de otro, este es suplemen-

tario del primero.

1.4. Segmento y circunferencia de EulerEn el triángulo ABC (Fig. 19) se han dibujado su circuncentro (Cc),

su baricentro (G) y su ortocentro (H).

El segmento de Euler tiene por extremos el ortocentro H y el

circuncentro Cc. Contiene siempre al baricentro G, de tal forma que

GCc=1/3 HCc.

La circunferencia de Euler tiene por centro el punto medio (O) del

segmento de Euler, y su radio es la mitad del de la circunferencia cir-

cunscrita. La circunferencia de Euler también es conocida con el

nombre de circunferencia de los nueve puntos, por contener a

los pies de las alturas (Ha, Hb y Hc), a los puntos medios de los lados

(Ma, Mb y Mc) y a los puntos medios de los segmentos que unen los

vértices con el otocentro (Fa, Fb y Fc).

Fig. 17

Fig. 18

Fig. 19

A

BHaC

Hb

Hc

H

A

C B

Mb

Ma

Mc

MaMb=c/2

MaMc=b/2

MbMc=a/2

A

B

C

CcH

G

Ma

Mb

Mc

Hb

Ha

Hc

GCc=1/3HCc

GH=2/3HCc

O

Fc

Fa

Fb

Page 7: Polígonos: triángulos, cuadriláteros y polígonos regulares

5. Polígonos: triángulos, cuadriláteros y polígonos regulares62

1.5. Construcción de triángulosPara construir un triángulo se necesitan tres datos. Si el triángulo tie-

ne una condición particular (isósceles o rectángulo) un dato es implíci-

to, y si tiene dos condiciones particulares (equilátero o rectángulo

isósceles), son dos los datos implícitos.

Los casos que se estudian en este curso incluyen elementos notables;

por tanto, es necesario conocerlos, así como sus propiedades y saber

aplicarlas.

Como en todo ejercicio de geometría, a la hora de resolver un triángu-

lo, es conveniente hacer una figura de análisis en la que se suponga

el problema resuelto, identificar los datos y deducir el procedimiento

geométrico que lleva a la solución.

Equivalencias de datosAlgunas parejas de datos son equivalentes para construir un triángulo.

Algunos ejemplos son los siguientes:

• a, b = a+b, a-b = a+b, a:b. En todos los casos se pueden deducir

a y b.

• a, B = a, hc = B, hc (Fig. 20).• a, A = a, R = A, R (Fig. 21).• A, b:c = A, B (Fig. 22).

En triángulos rectángulos:

• a = 2ma = 2R (Fig. 23).• B = b:c (Fig. 24).

A

C B

aB

h c

h c

Fig. 20

Fig. 21

Dibujando el ángulo A y dos lados proporcionales a b y c, se obtiene un triángu-

lo AB'C' semejante al buscado.

Fig. 22

Si la relación es b:c=m:n, se puede dibujar un triángulo AB'C' semejante al

pedido, con lo cual se conocen los ángulos agudos.

Fig. 24

A

B

C

B'

C'm

n

B

CA

A

C B

B

BB'C'

A

C Ba

A

Arco capaz Aº sobre a

0

R

Fig. 23

A

C Ba

ma

0

R

^

^

^

^

^

^

^

^

^ ^^ ^

^ ^ ^

^

Page 8: Polígonos: triángulos, cuadriláteros y polígonos regulares

635. Polígonos: triángulos, cuadriláteros y polígonos regulares

Fig. 25

B

A C

Construcción de triángulos escalenos• Datos: a, c, hb (Fig. 25).

ca

hb

Fig. 26

• Datos: a, B, mc (Fig. 26).Dibujar el lado a=BC y el ángulo B. Llevar mc desde C para obtener

Mc. Por simetría, se halla A.

B C

A

Mc

a

B

mc

Fig. 27

• Datos: ma, mb, ha (Fig. 27)Dibujar la altura ha. Con centro en A y radio ma se dibuja un arco

que pasa por Ma. Con centro A y radio 2ma/3 se halla el baricentro

G. Con centro en G y radio 2/3 mb, se obtiene B.

Ma

A

C B

G

ha

2/3 mb

2/3

ma

ma

Fig. 28

• Datos: a, c, mc (Fig. 28)Dibujar el lado a=BC. Con centro en C y radio 2 mc, y con centro

en B y radio c, se dibujan dos arcos que se cortan en P. CBPA es

un romboide de lados a y c. Por paralelas se halla A.

C B

A

a

Mc

P2 m c

c

• Datos: a, B, hb (Fig. 29).Dibujar el lado a=BC y el arco capaz de 90º sobre BC. Con radio

hb y centro B se dibuja un arco que corta al arco capaz en Hb, pie

de la altura hb. La recta que une C con Hb pasa por A.

a

B C

A

B

Hb

Fig. 29

hb

• Datos: a, B, 2p (Fig. 30).Dibujar el lado a=BC y el ángulo B. Llevando el semiperímetro p

desde B sobre los lados del ángulo B se obtienen los puntos de

tangencia sobre la circunferencia exinscrita del lado b. Dibujarla.

La recta tangente desde C a esa exinscrita, contiene al lado AC.

B

A

BC

Ib

O

Fig. 30

p

a

p

^^

^

^

^

^^

^

^

Page 9: Polígonos: triángulos, cuadriláteros y polígonos regulares

5. Polígonos: triángulos, cuadriláteros y polígonos regulares64

• Datos: A, mb, mc (Fig. 32).Dibujar la mediana mb=BMb y sobre ella el arco capaz de Aº. La

circunferencia homotética de la del arco capaz, con centro de ho-

motecia B y razón 1/2, es el lugar geométrico de los puntos medios

del lado AB. La distancia desde el baricentro G a Mc es mc/3.

• Datos: A, ma, mb (Fig. 31).Dibujar la mediana mb=BMb, y, sobre ella el arco capaz de Aº. El

arco de centro el baricentro G y radio 2ma/3, corta al arco capaz

en A. Hay dos posibles soluciones en un caso general.

Figura de análisis

ma

Ma

• Datos: ma, mb, mc (Fig. 33).En la figura de análisis se puede observar que haciendo una trasla-

ción paralela de dos medianas, se obtiene un triángulo de lados

iguales a las tres medianas. Dibujado el triángulo de lados ma, mb

y mc que tiene por vértices P, C y Mc, se puede obtener el baricentro

G del buscado. Deshaciendo la traslación paralela de las medianas

y llevando 2/3 de una, se obtiene otro vértice (A en este caso). El

vértice B se obtiene por simetría de A respecto de Mc.

Mc

B

mb

Amb

ma

mc

GMb

C

P

• Datos: ha, hb, hc (Fig. 34).Dibujando tres segmentos con el mismo origen P, de longitudes

iguales a las alturas dadas (PM=ha, PR=hb y PS=hc) y la circunferencia

que pasa por sus extremos M, R y S, se obtienen los puntos N, Q

y T en los tres segmentos o en sus prolongaciones. Por potencia

del punto P respecto de la circunferencia se puede escribir PM•PN

= PQ•PR = PS•PT. Como el área del triángulo es igual a la mitad

del producto del lado por su altura, y es constante para cada lado

y su correspondiente altura (a•ha=b•hb=c•hc), los segmentos PN, PQ

y PT son proporcionales a los lados. Dibujar un triángulo A'B'C' de

lados PN, PQ y PT. Por semejanza se obtiene el pedido.

Fig. 31

B

C

A

Mb

Dos soluciones

A

Arco capaz Aº

G

O

2/3

ma

2/3 mb

Fig. 32

Mb BG

A

C

Mc

Arco capaz Aº

O

O'

1/3

mc

2/3 mb

Fig. 33

C

Mb

ma

Mc

mc

B

G

Ma

mbA

P

2/3 mc

2/3 ma

Fig. 34

P

S T

Q

MN

R

A'

C=C'

PQ

ha'

PN

PT

A

B' B

PQ=C'A'

PT=A'B'

PN=C'B'

ha

^

^

Page 10: Polígonos: triángulos, cuadriláteros y polígonos regulares

655. Polígonos: triángulos, cuadriláteros y polígonos regulares

Fig. 35 Fig. 37

Fig. 36 Fig. 38

• Datos: A, ma, ha (Fig. 35).Dibujar una recta horizontal y sobre una perpendicular a ella llevar

ha, obteniendo A. Con centro en A y radio ma se dibuja un arco

que pasa por Ma (punto medio del lado a). Si se dibuja otra vez

ma a continuación de AMa, se obtiene A'. ABA'C es un romboide,

cuyo ángulo en C vale 180º-Aº. El arco capaz de 180º-Aº pasa por

C. Por simetría, se halla B.

hama

ma

A

A'

B CMa

Arco capaz180º-Aº

• Datos: mc, ha, hb (Fig. 36).El romboide ACBP tiene los lados AP y BC separados ha, la diagonal

CP es 2mc y la distancia entre los lados AC y BP es hb. Dibujar

dos rectas paralelas horizontales separadas ha. Situar el vértice C

en un punto arbitrario de una de ellas. Dibujando un arco de centro

C y radio 2mc, se tiene P. Dibujar la circunferencia de radio hb y

centro C. La tangente a ella desde P contiene al lado BP del rombo,

así obtenemos B. El lado CA se obtiene por paralelismo.

C

P

B

A

2mc

hb

Mc

hb

ha

• Datos: a, A, Ra (Fig. 37).Dibujar dos semirrectas que formen Aº. En la bisectriz de ese ángulo

estarán I, centro de la circunferencia inscrita e Ia, centro de la circun-

ferencia exinscrita de radio Ra que se puede dibujar. Llevando des-

de B' la distancia a se obtiene Tb, punto de tangencia de la circun-

ferencia inscrita sobre el lado b. Dibujar la inscrita de centro I. La

recta tangente común a las circunferencias inscrita y exinscrita di-

bujadas, contiene al lado a del triángulo.

p

Ia

A

B

C

I

Tb B'a

Ra

• Datos: ha, ma, a=2b (Fig. 38).Dibujar una recta horizontal y sobre una perpendicular a ella llevar

ha, obteniendo A. Con centro en A y radio ma se dibuja un arco

que pasa por Ma. La mediatriz de AMa pasa por C (b=CMa=a/2).

A

ha

ma

B CMa

b

^

^

Page 11: Polígonos: triángulos, cuadriláteros y polígonos regulares

5. Polígonos: triángulos, cuadriláteros y polígonos regulares66

Construcción de triángulos isósceles

a=b‡c

A=B‡C

• Datos: b, hc (Fig. 40).

• Datos: hc, 2p (Fig. 41).Dibujar una horizontal y levantar un segmento perpendicular HcC

de valor la altura. Medir p sobre la horizontal desde Hc, se obtiene

M. La mediatriz de CM pasa por A.

• Datos: hc, hb (Fig. 42).Dibujar dos rectas paralelas (s, t) separadas hb y su paralela media

(u). Tomar un punto C arbitrario en una de las paralelas, haciendo

centro en él y con radio hc se dibuja un arco que corta a la paralela

media en Hc. La perpendicular a hc por Hc contiene al lado AB.

• Datos: B, hb (Fig. 43).Dibujar dos rectas que formen Bº. Con centro en el punto B, vértice

de ese ángulo, dibujar el arco de radio hb. La tangente a este,

paralela a r, contiene al lado AC.

• Datos: mb, hb (Fig. 44).Dibujar el segmento mb=BMb. Medir 2/3 de su valor desde B para

hallar el baricentro G. El arco capaz de 90º sobre mb contiene al

pie de la altura, Hb. La perpendicular a hb por Hb contiene al

lado AC. Llevando 2/3 mb desde el baricentro sobre esa perpendi-

cular, se tiene el vértice A. C es el simétrico de A respecto de Mb.

C

A B

Fig. 39

Fig. 40

hc

C

B A

b

hc

B A

C

Hc

M

Fig. 41

p

Fig. 42

tB

A

u

s

Hc

C

hb

hb

/ 2

Fig. 43

B A

C

BB

r

hb

MbBmb G

A

C

Hbhb

2mb / 3

hb

Fig. 44

2mb / 3

^ ^ ^

hc

^

^ ^

Page 12: Polígonos: triángulos, cuadriláteros y polígonos regulares

675. Polígonos: triángulos, cuadriláteros y polígonos regulares

Fig. 45 Fig. 48

Fig. 46 Fig. 49

Fig. 47 Fig. 50

• Datos: a, mb (Fig. 45).Una vez dibujado el lado a=BC, se dibuja su mediatriz para hallar Ma.

Con centro en C y radio el lado a, y con centro en Ma y radio mb, se

dibujan dos arcos que se cortan en A.

Ma

CB

A

a

a

mb

• Datos: B, mb (Fig. 48).Dibujar un triángulo BA'C' semejante al buscado. Dibujar su mediana

y compararla con la dada.

B AA'

C'

C

Mb

mb

• Datos: r, hb (Fig. 46).Dibujar dos rectas paralelas (s y t) distantes hb y su paralela media

(u). Dibujar una circunferencia de centro I y radio r tangente a una

de las paralelas exteriores. El punto de interseción Mc, de la circun-

ferencia inscrita con la paralela media, es el punto medio del lado

desigual. La recta McI contiene al vértice C. La tangente a la inscrita

en Mc contiene al lado desigual.

A

B

C

t

u

s

Mc

I

hb

hb

/ 2

• Datos: b, ha (Fig. 49).Sobre el cateto b se dibuja el arco capaz de 90º. Llevar la altura ha

hasta obtener Ha. La recta CHa pasa por B.

A

B

b

Ha

C

ha

a= hipotenusa

b, c= catetos

Construcción de triángulos rectángulos

B A

C

R

• Datos: a, mb (Fig. 50).Dibujar la hipotenusa y su arco capaz de 90º. La semicircunferencia

de diámetro CMa es el lugar geométrico de los puntos medios del

lado b. El arco de centro B y radio mb corta en Mb a la semicircun-

ferencia anterior. Uniendo C con Mb se tiene el lado b.

B

Mb

a

A

Ma

Cmb

^

Page 13: Polígonos: triángulos, cuadriláteros y polígonos regulares

5. Polígonos: triángulos, cuadriláteros y polígonos regulares68

Fig. 51 Fig. 53

• Datos: ha, mb (Fig. 51).Dibujar dos rectas paralelas separadas ha y su paralela media. To-

mar un punto B arbitrario en una de las paralelas, haciendo centro

en él, y con radio mb se dibuja un arco que corta a la paralela me-

dia en Mb. El arco capaz de 90º sobre BMb pasa por A (dos solucio-

nes).

Fig. 52 Fig. 54

• Datos: Rb, 2p (Fig. 52).Dibujar dos rectas perpendiculares que se cortan en A y trazar la

circunferencia de radio Rb tangente a ambas. Desde el punto Tc,

llevar el semiperímetro p, se obtiene B. Midiendo p desde B hasta

la circunferencia exinscrita, se tiene Ta. La tangente BTa contiene

a la hipotenusa BC.

• Datos: c, wa (Fig. 53).Dibujar el lado AB=c y una perpendicular por A. Trazar la bisectriz

del ángulo de 90º y medir sobre ella wa, teniendo Wa. Uniendo

B con Wa, se dibuja la hipotenusa.

• Datos: b, wc (Fig. 54).Se dibuja la bisectriz wc=CWc. Dibujar el arco capaz de 90º sobre

wc y trazar con centro C un arco de radio b, que pasa por A y por

su simétrico X respecto a wc. Las rectas AWc y CX se cortan en B.

A

C

B

Ib

Tc

Ta

p

p

R b

C Wcwc

A

X

B

b

B

Mb

A A

C Cmb

ha

ha

/ 2

c

C

A B

Wa

wa

Page 14: Polígonos: triángulos, cuadriláteros y polígonos regulares

695. Polígonos: triángulos, cuadriláteros y polígonos regulares

Como un cuadrilátero se puede descomponer en dos triángulos, las

propiedades y construcciones de triángulos se pueden aplicar a la

construcción de cuadriláteros.

2.1. Construcción de paralelogramos• Dibujar un rectángulo conociendo su perímetro 2p, y el ángulo

que forman sus diagonales, α (Fig. 55).1º El ángulo que forman la diagonal AC

y el lado AB es δ=90º-α/2.

2º Dibujar AM=p y por M una recta que forme 45º, la cual corta

en C a la que forma δ con AB.

CUADRILÁTEROS2

Fig. 55

• Dibujar un rombo conociendo su lado l y el ángulo agudo A (Fig. 56).1º Dibujar dos semirrectas de origen A, que formen Aº.

2º Llevando el lado desde A se tienen los vértices B y D.

3º Por paralelismo se obtiene el vértice C.

Fig. 56

• Dibujar un romboide conociendo sus lados AB y BC, y el ángulo

que forman sus diagonales, α (Fig. 57).1º Dibujar el arco capaz de α sobre AM=2 AB.

2º Desde el vértice B, punto medio de AM, se traza el arco de

radio BC, que corta al arco capaz en C.

3º Por paralelas, se obtiene D.

Fig. 57

Fig. 58

δ=90- α /2 45º

A B M

CD

α

0

p

A

A B

CD

I

2AB

A B

CD

α α

Arco capaz α

M

BC

A

Arco capaz D

0

D

B

CBD/2

AC

• Dibujar un romboide conociendo las dos diagonales AC y BD, y el

ángulo obtuso D (Fig. 58).1º Dibujar el arco capaz de D sobre la diagonal AC.

2º Con centro en O, punto medio de AC, se traza el arco de

radio BD/2, que corta al arco capaz en D.

3º Por paralelas, se obtiene B.

^

^

^

Page 15: Polígonos: triángulos, cuadriláteros y polígonos regulares

• Dibujar un romboide conociendo h=distancia entre AB y CD, la

diagonal AC y el ángulo α que forman las diagonales (Fig. 59).1º Dibujar dos rectas paralelas separadas h.

2º Haciendo centro en un punto A arbitrario de una de las rec-

tas, se dibuja un arco de radio la diagonal que corta a la otra

recta en C.

3º Dibujar por 0, punto medio de AC, una recta que forme αº

con AC que pase por B y por D.

5. Polígonos: triángulos, cuadriláteros y polígonos regulares70

Fig. 59

Fig. 60

• Dibujar un trapecio isósceles circunscriptible dados, el perímetro

2p, y el radio de la circunferencia inscrita, r (Fig. 61).1º En un cuadrilátero circunscriptible son iguales las sumas de

lados opuestos; por tanto, cada lado no básico mide p/2.

2º Dibujar dos paralelas separadas 2r y una circunferencia tan-

gente a ellas.

3º Dibujando dos segmentos de valor p/2 con extremos en am-

bas paralelas, y trazando tangentes a la circunferencia,

paralelas a ellos, se obtienen los cuatro vértices del trapecio.

Fig. 61

Fig. 62

A

D C

B

0

α

AC

h

A B

CD

I

r

A B

CD

0

M

N

p/2 p/2

r

A B

CD

0

h R

R

BC

2.2. Construcción de trapecios• Dibujar un trapecio rectángulo circunscriptible, conociendo su base

mayor AB y el radio de la circunferencia inscrita, r (Fig. 60).1º Dibujar una circunferencia de radio r.

2º Dibujar tres rectas tangentes a ella, dos horizontales y otra

vertical, que se cortan en los vértices A y D.

3º Medir la base mayor para obtener B.

4º La tangente a la circunferencia inscrita desde B contiene al

lado oblicuo BC.

• Dibujar un trapecio conociendo el radio R de la circunferencia cir-

cunscrita, el lado no básico BC y la altura h (distancia entre bases)

(Fig. 62).1º Dibujar dos rectas paralelas separadas h.

2º Con centro en un punto cualquiera C de una de ellas, dibujar

el arco de radio BC, se obtiene el vértice B.

3º Para hallar el centro de la circunferencia circunscrita, hacer

centros en B y C con radio R; se cortan en 0.

4º La circunferencia circunscrita pasa por los otros dos vértices

A y D.

5º Por ser inscriptible, el trapecio es isósceles.

Page 16: Polígonos: triángulos, cuadriláteros y polígonos regulares

2.3. Construcción de trapezoidesEn la figura 63, partiendo del trapezoide ABCD, haciendo una do-

ble traslación paralela de la diagonal AC y una traslación paralela de

la diagonal BD, se obtiene el paralelogramo BNMD, en el cual los

segmentos que unen C con sus vértices son los lados del trapezoide

(BC y CD) o iguales a ellos (CM=AD y CN=AB).

Los ángulos que forman estos segmentos entre sí son iguales a los

del trapezoide ABCD. Esta transformación se utiliza para resolver al-

gunos casos de trapezoides.

715. Polígonos: triángulos, cuadriláteros y polígonos regulares

Fig. 63

Fig. 64

Figura de análisis

Fig. 65

Fig. 66

• Dibujar un trapezoide dadas las diagonales, el ángulo α que forman

y dos lados contiguos AB y BC (Fig. 64).1º Dibujar el paralelogramo ANMC de lados las diagonales y

ángulo α.

2º Dibujar el triángulo ABC del que se conocen los tres lados.

3º Haciendo una traslación paralela del segmento AN=diagonal BD,

se tiene esa diagonal en posición, y, con ella, el vértice D.

• Dibujar un trapezoide conocidos el lado AB, los ángulos A, B, C,

y el perímetro (Figs. 65 y 66).En la figura 65 se hace un análisis del problema.

Si se llevan CB y DA en la prolongación de CD, se tiene la suma de

los tres lados, diferencia 2p-AB.

Los ángulos que forman MB y NA con MN son C/2 y D/2 respectiva-

mente.

1º En la figura 66 se dibujan los datos MN, C/2 y D/2.

2º A continuación se dibujan dos semirrectas que formen ángulos

iguales a C y D.

3º Dibujar un ángulo A en paralelo a su posición final y llevar

JK=AB.

4º Haciendo una traslación paralela de JK se tienen los vértices

A y B.

5º Por último, por paralelas, se obtienen los vértices C y D.

A C

D

B N

M

AC

AB

ADD

B

α

α

0

A

C

N

M

0

BD

α

BC

AB

A B

MC

DN

D/2

C/2

BC+CD+AD

A

B

CDN M

AB

J

KA

DD/2 C

C/2

BC+CD+AD

^ ^ ^

^ ^

^ ^^

^^

^ ^

^

^ ^

^ ^

Page 17: Polígonos: triángulos, cuadriláteros y polígonos regulares

5. Polígonos: triángulos, cuadriláteros y polígonos regulares72

Las propiedades de los polígonos regulares, así como las construcciones

(inscritos en la circunferencia, dado el lado y estrellados), se trataron

en el libro Dibujo Técnico I.

Propiedades especiales de algunos polígonos regulares«El lado de un pentágono regular es áureo de su diagonal» (Fig. 67).

POLÍGONOS REGULARES3

Los segmentos AC=BD=...=d son diagonales.

Los lados son AB=BC=CD=...=l

Los triángulos MBC y ABC son semejantes. Se puede escribir:

El triángulo AMB es isósceles, AB=AM e iguales a MD.

Como MB=BD-MD=AC-AM=d-l:

forma de la proporción áurea.

Fig. 69

Fig. 68

Fig. 67

«El lado de un decágono regular inscrito en una circunferencia es

áureo del radio de esta» (Figs. 68 y 69).Los segmentos 0A=0B=...=R son radios de la circunferencia circunscrita

y los lados son AB=BC=CD=...=l (Fig. 68).En la figura 69 se dibuja un detalle del triángulo 0ED de la figura68. Se ha dibujado también el segmento EM=ED.

Los triángulos 0DE y EDM son semejantes. Se puede escribir:

Como el triángulo 0EM es isósceles, se cumple que 0M=ME iguales

a DE. Como MD=0D-MD=R-l:

que es la forma de la proporción áurea.

A B

C

D

E

0

M

36º

72º

36º36º

72º36º

A B

C

D

E

FG

H

I

J

0

72º

36º

144º

0D

E

M

36º36º

72º

36º

AC

BC=

BC

MB;

dl

=l

MB

dl

=l

MB; d

l= l

(d-l)

OD

ED=

ED

MD;

Rl

=l

MD

Rl

=l

MD; R

l= l

(R-l)

Page 18: Polígonos: triángulos, cuadriláteros y polígonos regulares

Actividades complementarias

■ 1 Estudiar las formas del triángulo órtico de un triángulo rec-

tángulo y otro obtusángulo (Figs. 70 y 71). ¿Qué relación hay en-

tre los ortocentros e incentros de unos y otros?

735. Polígonos: triángulos, cuadriláteros y polígonos regulares

Fig. 70

Fig. 71

A B

C

■ 2 Deducir la relación entre los lados de los cuadrados inscrito

y circunscrito a una misma circunferencia (Fig. 72).

Fig. 72

B'A'

D' C'

C

BA

D

0

L4'

L4

R

■ 3 Estudiar las formas de la circunferencia y segmento de Euler

en un triángulo rectángulo y en otro obtusángulo.

■ 4 En la figura 73 se representan un triángulo equilátero ABC,

un triángulo rectángulo isósceles ACD, y un pentágono regular

ADEFG. Se pide:

a) Deducir, sin recurrir al dibujo, el ángulo BAG.

b) Dibujar el conjunto sabiendo que el segmento AB=32 mm.

c) Dibujar la circunferencia que pasa por el ortocentro de ABC, el

baricentro de ACD y por el punto medio de la apotema del

pentágono correspondiente al lado FG.

Fig. 73

■ 5 Deducir, en función de los ángulos A, B y C de un triángulo,

los ángulos que forman las alturas, cuando:

a) Sea un triángulo acutángulo.

b) Sea un triángulo rectángulo.

c) Sea un triángulo obtusángulo.

B

C

D

A E

FG

^ ^ ^

A B

C