piezoelectricity and ferroelectricity phenomena and … · piezoelectricity and ferroelectricity...

61
Piezoelectricity and ferroelectricity Phenomena and properties Prof.Mgr.Jiří Erhart, Ph.D. Department of Physics FP TUL

Upload: phamphuc

Post on 27-Jul-2018

258 views

Category:

Documents


3 download

TRANSCRIPT

Piezoelectricity andferroelectricityPhenomena and properties

Prof.Mgr.Jiří Erhart, Ph.D.

Department of Physics FP TUL

FPM - Piezoelectricity 1 2

What is the phenomenon about?

• Metallic membrane with„something strange“

• LEDs flash, why?

J.Erhart: Demonstrujeme piezoelektrický jev, Matematika, fyzika, informatika 20 (2010) 106-109

3

History

1880, 1881- Pierre a Jacques Curie, discovery of piezoelectricity, tourmaline and quartz

1917– A.Langevin – ultrasound generation, sonar

1921– ferroelectricity - J.Valasek: Piezoelectricity and allied phenomena in Salt, Phys.Rev. 17 (1921) 475

1926– W.Cady – frequency stabilization of oscillator circuit by the quartzresonator

1944-1946– USA, SSSR, Japonsko – BaTiO3 ferroelectric ceramics

1954– B.Jaffe et al – PZT ceramics

60. léta– LiNbO3 and LiTaO3 single crystals

70.léta– ferroelectric polymer PVDF

80.léta– piezoelectric composites

90.léta– domain engineering in PZN-PT, PMN-PT single crystals

FPM – Piezoelectricity 1

4

Predecessors of piezoelectricity

Pyroelectricitytourmaline = lapis electricus

(Na,Ca)(Mg,Fe)3B3Al6Si6(O,OH,F)31

Franz Ulrich Theodor Aepinus

(1724 – 1802) – polar phenomenon

David Brewster – “pyroelectricity” 1824

pyros=oheň

Tourmaline crystal. Carl Linnaeus (1707 – 1778)

David Brewster (1781 – 1868)

FPM - Piezoelectricity 1

5

Pyroelectricity

A.C.Becquerel William Thomson (Lord Kelvin)

first pyroelectricity measurement first pyroelectricity theory

1828 1878, 1893

Antoine César Becquerel (1788 –1878)

William Thomson, Lord Kelvin (1824 – 1907)

θ∆∆ ⋅⋅⋅⋅==== pPS

FPM - Piezoelectricity 1

6

Piezoelectricity discovery

Tourmaline crystal, 18808.4.1880Société minéralogique de France24.8.1880Académie des Sciences

Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes rendus de l’Académie des Sciences 91: 294; 383.

Curie J, Curie P (1881) Contractions et dilatations produites par des tensions électriques dans les cristaux hémièdres à faces inclinées. Comptes rendus de l’Académie des Sciences 93: 1137-1140.

Pierre Curie (1859 – 1906)

Paul-Jacques Curie (1856 – 1941)

TdP ⋅⋅⋅⋅====∆

FPM - Piezoelectricity 1

7

Phenomenon properties

• Linear phenomenon, charge is independent from crystal length, it depends on the electrode area

• Phenomenon exists due to crystal anisotropy (polar axes), amorphous materials are not piezoelectric

Curie’s principleSymmetry elements of external field must be included in the

phenomenon symmetry.

Crystal under the influence of external field exhibits only symmetry elements common to the symmetry of crystal itself and of the external field.

Example: mechanical pressure along [111] direction exerted on the cubic crystal with m3msymmetry causes symmetry reduction of deformed crystal to 3m symmetry class

FPM - Piezoelectricity 1

FPM - Piezoelectricity 1 8

Piezoelectricity

Direct phenomenon mechanical pressure→ electrical chargeConverse phenomenon electric field→ mechanical deformation

It is limited to certain crystallographic symmetry classes (20 from 32 classes)

Example: SiO2 (quartz) symmetry32

23,34,26,6,622,6,6,3,32,3

,24,4,422,4,4,2,222,,2,1

mmmmm

mmmmmm

FPM - Piezoelectricity 1 9

Measurement technique

Direct phenomenon (Brothers Curie)

• Thompson’s electrometer

• Null method ∆Q=V∆C(Daniel’s cell – 1.12V, 1836)

FPM - Piezoelectricity 1 10

Measurement technique

Converse phenomenon (Brothers Curie)

• Holtz’s machine (induction electricity, HV)

• Strain measured by the direct effect,

optically

FPM - Piezoelectricity 1 11

Piezoelectricity origin

Brothers Curie – molecular theory

Charges generated at the compression (a) and tension (b) of quartz crystal basic unit

FPM - Piezoelectricity 1 12

First theory and application of piezoelectricity

Tensor analysis developed for the crystal anisotropy description 1890

Woldemar Voigt: Lehrbuch der Kristallographie, Teubner Verlag 1910

First application – electrometer, radioactivity study (Maria Skłodowska-Curie)

Woldemar Voigt (1850 –1919)

Curie’s electrometer Maria Skłodowska-Curie (1867 – 1934)

FPM - Piezoelectricity 1 13

Coupled field phenomena

Heckmann’s

diagram

Piezoelectricity

jTijii

iiE

ETdD

EdTsS

εµµ

λµλµλ

+=

+=

jTijii

iiD

DTgE

DgTsS

βµµ

λµλµλ

+−=

+=

Jonas Ferdinand Gabriel Lippmann (1845 –1921)

FPM - Piezoelectricity 1 14

Ferroelectricity

Joseph Valasek, 1920, Rochelle Salt NaKC4H4O6.4H2O

Valasek J (1921) Piezoelectricity and allied phenomena in Rochelle salt. Phys. Rev. 17: 475-481

Joseph Valasek (1897-1993)

Hysteresis loop of Rochelle Salt – dry crystal, 0oC

FPM - Piezoelectricity 1 15

Electromechanical phenomena

Direct conversion between mechanical andelectrical energy

• Linear effects – Piezo- and Pyroelectricity• Nonlinear effects - Ferroelectricity,

Electrostriction

Analogy in magnetic materials• Piezomagnetic properties, magnetostriction, magnetoelectric effect, etc.

FPM - Piezoelectricity 1 16

Crystallographic constraints for piezoelectricity

Noncentrosymmetric classes (except of 432)

20 piezoelectric crystallographic classes

• Polar classes (10) – singular polar axis

• Polar-neutral classes (10) – multiple polar axes

mmmmmmmm 6,6,3,3,4,4,2,,2,1

23,34,26,622,6,32,24,422,4,222 mmm

FPM - Piezoelectricity 1 17

Equations of state

Example: piezoelectricity

kTikii

kkE

ETdD

EdTsS

ε+=

+=

νν

µνµνµ

kTikii

kkD

DTgE

DgTsS

β+−=

+=

νν

µνµνµ

kSikii

kkE

ESeD

EeScT

ε+=

−=

νν

µνµνµ

kSikii

kkD

DShE

DhScT

β+−=

−=

νν

µνµνµ

FPM - Piezoelectricity 1 18

Piezoelectric coefficients

Different coefficients due to the choice of independent variables

FPM - Piezoelectricity 1 19

Material property anisotropyd33 surface

PS[001]T

PbTiO3 – 4mm

d33l33+(d31+d15)l3(l12+l22)l1=sin(θ)cos(φ), l2=sin(θ)sin(φ), l3=cos(θ)d33= 83.7, d31= -27.2, d15= 60.2 [pC/N]

Maximum 83.7pC/N for θ = 0o, i.e. [001]C

FPM - Piezoelectricity 1 20

Material property anisotropyd33 surface

BaTiO3 – 4mm

d33l33+(d31+d15)l3(l12+l22)l1=sin(θ)cos(φ), l2=sin(θ)sin(φ), l3=cos(θ)d33= 90, d31= -33.4, d15= 564 [pC/N]

PS[001]T

Maximum 224pC/N for θ = 51o

90pC/N for [001]C221pC/N for [111]C

FPM - Piezoelectricity 1 21

Pyroelectricity

Direct effectTemperature change → electric chargeConverse effect(electrocaloric effect)Electric field → heat generation or absorptionAnisotropy

Example: Lithium tetraborate Li2B4O7, symmetry 4mm

FPM - Piezoelectricity 1 22

Crystallographic constraints for pyroelectricity

Polar symmetry classes (10) – singular polar axis

Pyroelectric polarization of material (dipole moment) – polar axis direction

mmmmmmmm 6,6,3,3,4,4,2,,2,1

FPM - Piezoelectricity 1 23

Electrostriction

• Nonlinear effectDeformation proportionalto the square ofelectric field

• No constraints on the material symmetry, effect exists in all materials

FPM - Piezoelectricity 1 24

Electrostriction

Nonlinear equations of state

Without crystallographic limits!

All materials exhibit electrostrictive properties

lkijklkkijij PPQEdS ++++====

FPM - Piezoelectricity 1 25

Electrostriction in cubic materials

Electrostrictive coefficients Q11, Q12, Q44

====

21

31

32

23

22

21

44

44

44

111212

121112

121211

6

5

4

3

2

1

00000

00000

00000

000

000

000

PP

PP

PP

P

P

P

Q

Q

Q

QQQ

QQQ

QQQ

S

S

S

S

S

S

FPM - Piezoelectricity 1 26

Ferroelectricity

Spontaneous dipole moments= pyroelectricity with switchable polarization

Electric analogy of permanent magnets

Characteristic properties• Ferroelectric domains and domain walls

• Hysteresis loop D-E (S-E)

FPM - Piezoelectricity 1 27

Hierarchy of electromechanical phenomena

Piezo-

Pyro-

Ferro-

SiO2, GaPO4, AlPO4, ...

Li 2B4O7, ...

BaTiO3, PbTiO3, PZT, KNbO3, TGS, KDP, ...

FPM - Piezoelectricity 1 28

Ferroelectricity

Spontaneous existence of polarization (and spontaneous strain at the same time)

- structural phase transition

Ferroelectric/ferroelastic domains

- orientation domain states

Domain walls

Hysteresis

FPM - Piezoelectricity 1 29

BaTiO3 – paraelectric phase

Perovskite structure

A2+

B4+

O2-

FPM - Piezoelectricity 1 30

BaTiO3 – ferroelectric phase

Several orientation states exist for the spontaneous polarization

mm4

mm3

m32mm

FPM - Piezoelectricity 1 31

Domains, domain walls

Domain – space continuous region with the same orientation of the spontaneous dipole moment (polarization)

Domain walls– interfaces between domains• Charged walls• Neutral walls

Ferroelectric domains exist in ferroelectric phasePhase transition – Curie temperature TC

FPM - Piezoelectricity 1 32

D-E a S-E hysteresis loops

T. Liu, C. S. Lynch: Domain engineered relaxor ferroelectric single crystalsContinuum Mech. Thermodyn. 18 (2006) 119–135

FPM - Piezoelectricity 1 33

Remanent polarization

PS, Pr, EC coercive field

FPM - Piezoelectricity 1 34

Mechanismof domain reorientation

FPM - Piezoelectricity 1 35

Remanent deformation

Ferroelasticity in ferroelectric materials

FPM - Piezoelectricity 1 36

Domains in BaTiO3 ceramics

Domain structure evolution during heating of BaTiO3 ceramics over the Curie temperature

(a) Temperature gradient parallel to the domain walls(b) Temperature gradient perpendicular to the domain walls

Sang-Beom Kim, Doh-Yeon Kim:J. Am. Ceram. Soc., 83 [6] 1495–98 (2000)

mmmm 43 →

FPM - Piezoelectricity 1 37

Domains in BaTiO3 ceramics

Etched surface of BaTiO3 ceramicsa) Herringbone and chessboard patternb) Band structure of DW’s, domains continuously cross the grain

boundariesG.Arlt, P.Sasko: J.Appl.Phys. 51 (1980) 4956-4960

mmmm 43 →

FPM - Piezoelectricity 1 38

Ferroic phases

Feroelectrics

LiNbO3

KNbO3

BaTiO3

Pb5Ge3O11

KIO3

Structural phase transitionsParent phase (e.g. paraelectric)→ ferroic phase

FerroelasticsAgNbO3

NaNbO3

Pb3(PO4)2

mm 33 →

23 mmmm →

mmmm 43 →

36 →

mm →3

mmmmm →3

mm /23 →

FPM - Piezoelectricity 1 39

Material property anomalies

Dielectric permittivity, spontaneous polarization, etc.

BaTiO3

FPM - Piezoelectricity 1 40

Material property anomalies

Piezoelectric coefficient

LiTaO3

FPM - Piezoelectricity 1 41

Landau-Ginzburg-Devonshire theory

Power expansion of thermodynamic potential

Equilibrium and stability

Equilibrium phase transition parameter value

420 4

1)(

21

),( βηηαΦηΦ +−+= CTTT

0,02

2>>>>

∂∂∂∂∂∂∂∂====

∂∂∂∂∂∂∂∂

ηηΦΦ

0)( 300 ====++++−−−−====

∂∂∂∂∂∂∂∂ βηηα

η CTTΦ

<<<<

−−−−−−−−±±±±

>>>>====

CC

C

TTTT

TT21

0 )(

0

βαη

FPM - Piezoelectricity 1 42

2nd order phase transition

Without hysteresis

FPM - Piezoelectricity 1 43

1st order phase transition

Hysteresis

FPM - Piezoelectricity 1 44

Curie – Weiss law

Dielectric permittivity temperature dependence

FPM - Piezoelectricity 1 45

Spontaneous strain vs. spontaneous polarization

Generally (for normal ferroelectrics)

Example for the ferroelectric species

jiijklkl PPQS ====

xymmmm →/4

=

21

31

31

23

21

21

66

44

44

333131

131112

131211

6

5

4

3

2

1

00000

00000

00000

000

000

000

S

SS

SS

S

S

S

P

PP

PP

P

P

P

Q

Q

Q

QQQ

QQQ

QQQ

S

S

S

S

S

S

),,( 311 SSSS PPPP =

FPM - Piezoelectricity 1 46

Experimental characterization of spontaneous deformation

Lattice constants measured by X-Ray diffraction

• In parent phase(extrapolation down to the ferroic phase)

• In ferroic phase

General formula for the components of strain tensor

J.L.Schlenker, G.V.Gibbs, M.B.Boisen, Jr.: Acta Cryst. A34 (1978) 52-54

LB Tables III/16a

FPM - Piezoelectricity 1 47

Bi4Ti3O12

8 ferroelectric DS4 ferroelastic DS

Pa>>Pc

xymmmm →/4

ctetr

atetr

btetr

bmon

cmon

amon

FPM - Piezoelectricity 1 48

Bi4Ti3O12

Spontaneous deformation/polarization (components in the parent phase coordinate system)

),,(),,(

),,(),,(

),,(),,(

),,(),,(

)(

)(

)(

)(

caa

VIII

caa

VII

caa

VI

caa

V

caa

IV

caa

III

caa

II

caa

I

PPPPPPPP

SSS

SSS

SSS

S

PPPPPPPP

SSS

SSS

SSS

S

PPPPPPPP

SSS

SSS

SSS

S

PPPPPPPP

SSS

SSS

SSS

S

−−−−====−−−−−−−−====

−−−−−−−−−−−−−−−−−−−−−−−−

====

−−−−−−−−====−−−−====

−−−−

−−−−====

−−−−−−−−−−−−========

−−−−−−−−

====

−−−−−−−−====−−−−====

−−−−−−−−====

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

21

331313

131112

131211

4

331313

131112

131211

3

331313

131112

131211

2

331313

131112

131211

1

FPM - Piezoelectricity 1 49

Domain wall orientation

Example for Bi4Ti3O12Domain state pair S(1) (P(1), P(2)) and S(2) (P(3),P(4))

Two perpendicular domain wallsCharged wall (010) W-wallNeutral wall (10K) S-wall

0122122 ====−−−−====−−−− jiijij dsdsSSdsds )()()( )()()()(

023

12

131 ====−−−− dsds

S

Sds )(

12

13

S

SK −=

FPM - Piezoelectricity 1 50

Domain wall orientations in Bi4Ti3O12

S(1)

P(1),P(2)

S(2)

P(3),P(4)

S(3)

P(5),P(6)

S(4)

P(7),P(8)

S(1)

P(1),P(2)

N/A (010)

(10-K)

(1-10)

(001)

(100)

(01K)

S(2)

P(3),P(4)

N/A (100)

(01-K)

(110)

(001)

S(3)

P(5),P(6)

N/A (010)

(10K)

S(4)

P(7),P(8)

N/A

FPM - Piezoelectricity 1 51

Domain wall types

W-walls

� W∞ - arbitrary wall orientation

� Wf – fixed crystallographic domain wall orientation

S-walls (“strange” walls, W’-walls)

� S1 – PS direction

� S2 – bijk and Qijkl

� S3 – PS direction, bijk and Qijkl

� S4 – PS direction and magnitude, bijk and Qijkl

� S5 – PS magnitude, bijk and Qijkl

FPM - Piezoelectricity 1 52

Permissible domain wall pairs

W∞ - arbitrary domain wall orientation

WfWf – fixed domain wall orientation

WfS – fixed and „strange“ walls

SS – pair of „strange“ walls

R – walls are not permissible

J.Fousek, V.Janovec: J.Appl.Phys. 40 (1969) 135

J.Sapriel: Phys.Rev. B12 (1975) 5128

J.Erhart: Phase Transitions 77 (2004) 989-1074

FPM - Piezoelectricity 1 53

Antiferroelectricity

Dipole moments are partially compensated

Switching possible

at higher fields

E

FPM - Piezoelectricity 1 54

Electromechanical coupling coefficient

Energy transfer efficiency between mechanical andelectrical energy via piezoelectric effect

FPM - Piezoelectricity 1 55

Electromechanical coupling

W.Heywang, K.Lubitz, W.Wersing (edts.): Piezoelectricity, Springer Verlag 2008

TEs

dk

3333

2332

33 ε=

FPM - Piezoelectricity 1 56

Electromechanical coupling coefficients

Different modes

Transversal thickness-shear

thickness radial

TEs

dk

3311

2312

31 ε=

TEs

dk

1155

2152

15 ε=

SDtc

ek

3333

2332

ε=

)(

2

121133

2312

EETpss

dk

+=

ε

FPM - Piezoelectricity 1 57

Dielectric losses

Permittivity – complex values

Dissipated power = energy loss during 1s''' εεε j−−−−====

( )

)'''(

'''1

''''''

)'''(

'

)'''(

''

22

22

2

22

22

CC

jCC

CjZ

jCCd

SjC

CC

ICj

CC

ICIZIUP

C

C

+−==

−=−=

+−

+==⋅=

ωω

εε

ωω

'''

)tan(εεδ =

FPM - Piezoelectricity 1 58

Mechanical losses

Elastic properties – complex compliance

Mechanical quality Qm

''' jsss −−−−====

22

1

effT

mm

kCZfQ

π====

FPM - Piezoelectricity 1 59

Young’s modulus and elastic coefficients

Examples for 4mm symmetry

Mechanical pressure Mechanical deformation

33332213111333

33132211111222

33132212111111

ScScScT

ScScScT

ScScScT

++=++=++=

1111

1111

11

1133

3333

3333

3311

11

1122

1122

3333

3322

11

1111

1111

1

1

1

TY

TY

TY

S

TY

TY

TY

S

TY

TY

TY

S

σσ

σσ

σσ

−−=

−−=

−−=

FPM - Piezoelectricity 1 60

Young’s modulus

Matrix form c-1=s

s11=1/Y11

s33=1/Y33

2133311

2131211331211

11]2)()[(

ccc

ccccccY

−+−=

1211

213

33332

cc

ccY

+−=

FPM - Piezoelectricity 1 61

Thank you for your attention!