physics behind mammography

52
Physics behind Mammography Asterios Ntais | Radia8on & Ma:er

Upload: asterios-ntais

Post on 14-Oct-2014

306 views

Category:

Documents


4 download

DESCRIPTION

A presentation about breast cancer, mammography and physics

TRANSCRIPT

Page 1: Physics Behind Mammography

Physics  behind  

Mammography  

Asterios  Ntais  |  Radia8on  &  Ma:er    

Page 2: Physics Behind Mammography

Breast  Cancer  

•  is  a  malignant  tumor  which  starts  in  the  8ssues  of  the  breast  

•  caused  by  abnormal  and  irregular  prolifera8on  of  abnormal  cells  in  body  8ssues  

•  it  is  one  of  the  most  frequently  cancers  worldwide  

•  first  in  incidence  among  the  female  popula8on  •  more  than  one  in  eight  women  are  diagnosed  during  their  life  8me  

Page 3: Physics Behind Mammography

The  main  types    of  Breast  Cancer  •  lobular  carcinoma  starts  in  the    lobules,  which  produce  milk  

•   ductal  carcinoma  starts  in  the  tubes  (ducts)  that  deliver  milk  to  the  nipple  

•  other  areas  of  the  breast,  but  it  is  very  rare  

1:  Chest  wall  2:  Pectoralis  muscles    

3:  Lobules  4:  Nipple  

           

5:  Areola  6:  Milk  duct  7:  Fa:y  8ssue  

8:  Skin    

Page 4: Physics Behind Mammography

Tests  used  to    diagnose  breast  cancer  

•  Mammography:  it  is  used  to  find  tumors  and  determine  if  they  are  cancerous  or  non-­‐cancerous  

•  Breast  Ultrasound:  uses  sound  waves  to  iden8fy  if  the  lump  is  solid  or  fluid-­‐filled  

•  CT  Scan:  to  explore  if  the  breast  cancer  has  spread  

Page 5: Physics Behind Mammography

Tests  used  to    diagnose  breast  cancer  

•  Molecular  Breast  Imaging  -­‐  MBI:  a  nuclear  medicine  technique  cheaper  than  MRI  

•  Breast  MRI:  to  receive  addi8onal  informa8on  and  aWer  mammography  

•  Breast  Biopsy              •  Self  Breast  ExaminaAon  

Page 6: Physics Behind Mammography

Mammography  

•  is  a  type  of  radiographic  examina8on  used  on  the  breasts  

•  is  a  screening  method  which  plays  an  important  role  in  prognosis  and  in  early  diagnosis  

•  is  the  most  sensi8ve  technique  for  detec8ng  non-­‐palpable  lesions    

•  uses  low  energy  X-­‐Rays  (20-­‐30  KeV)  

Page 7: Physics Behind Mammography

Mammography  

•  it  is  a  challenging  imaging  task  because  the  breast  is  composed  completely  of  soW  8ssues  

•   the  connec8ve  8ssue,  glandular  8ssue,  fa:y  8ssue  and  skin  have  very  similar  a:enua8on  coefficients  (li:le  subject  contrast)  

•  it  tries  to  image  blood  vessels,  ducts  and  micro-­‐calcifica8ons  (diameter  =  100  μm)  

•  it  needs  a  reasonable  radia8on  dose    

Page 8: Physics Behind Mammography

Mammography  •  is  a  low-­‐cost  method  •  low  radia8on  procedure    

•  has  the  sensi8vity  to  detect  breast  cancer  at  early  stage  

 *early  detec8on  of  a  

malignant  tumor  gives  the  best  chance  for  

successful  treatment  

Page 9: Physics Behind Mammography

Screening  Mammography  

•  it  is  used  to  iden8fy  cancer  and  it’s  more  simple.  Requires  craniocaudal  (CC)  and  mediolateral  oblique  (MLO)  views  of  each  breast  

   

Page 10: Physics Behind Mammography

Screening  Mammography  

CC  view  for  leW  breast  

MLO  view  for  leW  breast  

Page 11: Physics Behind Mammography

DiagnosAc  Mammography  

•  evaluate  abnormali8es  when  there  are  symptoms  

•  it  is  more  complex  •  it  requires  addi8onal  views,  addi8onal  X-­‐Rays  projec8ons  

•  needs  magnifica8on  views  •  needs  different  angles  and  spot  compression  views  

Page 12: Physics Behind Mammography

ADenuaAon  of  Breast  Tissue  

•  normal  8ssues  and  cancerous  8ssues  have  small  a:enua8on  differences  

•  a:enua8on  differences  are  highest  at  very  low  X-­‐Ray  energies  (10  –  15keV)    

•  a:enua8on  differences  are  poor  at  higher  energies  (>35  keV)  

•  low  X-­‐ray  energies  give  the  op8mal  differen8al  a:enua8on  between  the  8ssues  

Page 13: Physics Behind Mammography

ADenuaAon  of  Breast  Tissue  

A:enua8on  of  breast  8ssues  as  a  func8on  of  energy  

The  Essen8al  Physics  of  Medical  Imaging    (2nd  Edi8on)  

Page 14: Physics Behind Mammography

A  typical  mammography  

unit  

*  Film  /  Screen  (Analog)  *  CCD  –  Flat  Panel  (Digital)  

Page 15: Physics Behind Mammography

X-­‐RadiaAon  

•  X-­‐rays  are  created  by  taking  energy  from  electrons  and  conver8ng  it  to  photons  with  appropriate  energies  

•  the  quan8ty  (exposure)    and  the  quality  (spectrum)  can  be  controlled  by  adjus8ng  the  electrical  quan88es  (KeV,  mA)  

 

Page 16: Physics Behind Mammography

X-­‐Ray  Tube    •  it  consists  of  an  electron  vacuum  tube  with  two  electrodes  

•  the  cathode  with  -­‐  usually  dual  –  filaments  •  the  filaments  are  inside  the  focusing  cup  (nega8ve  charge)  

•  the  anode  with  dual  track  (i.e.  Mo/Rh)  target  •  when  a  high  current  is  applied  to  the  filaments,  outer-­‐shell  (K-­‐shell)  electrons  are  ejected  and  accelerate  from  the  cathode  to  anode  

Page 17: Physics Behind Mammography

X-­‐Ray  Tube  

•  the  e-­‐  will  travel  at  half  of  the  speed  of  light  (≈1.5x108  m/s)  

•  with  very  small  resistance  (vacuum)  •  a  li:le  energy  will  be  lost  •  the  focusing  cup  controls  the  size  and  the  shape  of  the  beam  

 

Page 18: Physics Behind Mammography

X-­‐Ray  Tube  

•  when  the  projec8le  electrons  strike  the  target,  only  1%  of  their  Kine8c  Energy  is  converted  to  X-­‐rays  

•  the  rest  99%  produces  heat  at  the  anode  •  modern  mammography  units  have  rota8ng  anodes  in  order  to  allow  higher  tube  currents  in  very  short  8mes  

•  finally  the  heat  produced  is  not  confined  in  a  single  area  

Page 19: Physics Behind Mammography

Efficiency  of  X-­‐Ray  producAon  Efficiency  of  X-­‐Ray  producAon                

     *in  mammography  is  used  low  tube  voltage  (keV)  –  low  efficiency  of  producJon  

where:  i:  tube  current    V:  Voltage  Z:  atomic  number  

k:  constant    

Pbeam = kZV2i

Pel =Vi

Efficiency = PbeamPel

Efficiency = kZV2i

Vi= kZV

Page 20: Physics Behind Mammography

X-­‐Ray  Tube  

•  mammography  units  are  manufactured  by  Molybdenum  (Z=42),  Rhodium  (Z=45)  or  Tungsten  (Z=74)  targets  matched  with  appropriate  filters  

•  these  targets  have  a  high  mel8ng  point    

•  they  have  different  atomic  numbers  (Z)  

Page 21: Physics Behind Mammography

X-­‐Ray  Tube  

•  these  elements  have  different  emission  spectrum  

•  Molybdenum  (Mo)produces  characteris8c  X-­‐Ray  peaks  at  17.5  and  19.6  keV  

•  Rhodium  (Rh)  produces  characteris8c  X-­‐Ray  peaks  at  20.2  and  22.7  keV  

Page 22: Physics Behind Mammography

Filters  installaAon  

•  depend  on  the  anode  and  are  used  to  achieve  op8mal  energy  spectra  

•  a  k-­‐edge  filter  is  used  •  a  filter  is  made  in  layers    •  a  filter  uses  two  or  more  materials  which  match  each  other  in  their  absorbing  abili8es  

•  filters  increase  the  penetra8on  of  beam  •  reduce  the  exposure  8me    •  reduce  the  dose  

Page 23: Physics Behind Mammography

CombinaAons  of  Targets  and  Filters  

•  a  Mo  target  with  Mo  filter  is  used  for  thick  breast  

•  a  Mo  target  with  Rh  filter  is  used  for  imaging  thicker  and  denser  breasts  

•  a  Rh  target  with  Rh  filter  gives  the  highest    effec8ve  energy  beam  (thickest  and  densest  breasts)  

Page 24: Physics Behind Mammography

X-­‐Ray  Spectrum  

1.  X-­‐ray  Spectrum  from  Mo/Mo   2.  X-­‐ray  Spectrum  from  Rh/Rh  

Page 25: Physics Behind Mammography

Half  Value  Layer  (HVL)    

•  is  the  thickness  of  any  given  material  where  the  50%  of  the  incident  energy  has  been  a:enuated    

•  depends  on  kVp,  compression  thickness,  tube  filtra8on,  target  material  and  tube’s  age  

•  increases  with  higher  kVp  and  higher  atomic  number  of  targets  and  filters  

•  is  approximately  1  –  2  cm  in  the  breast  8ssues  

Page 26: Physics Behind Mammography

Collimator  

•  is  a  device  that  narrows  the  X-­‐Rays    •  it  cause  the  direc8on  of  mo8on  to  become  more  aligned  in  a  specific  direc8on  

•  determines  the  X-­‐Ray  beam  area  •  increases  the  resolu8on  but  reduces  intensity    

Page 27: Physics Behind Mammography

Photon  InteracAons  with  MaDer  

•  in  this  energy  range  we  have  the  photoelectric  effect  and  sca:ering  processes  

•  elas8c  sca:ering  leaves  no  energy  and  produces  no  signal  

•  inelas8c  (Compton)  sca:ering  reduces  the  available  image  contrast  and  resul8ng  in  the  loss  of  spa8al  resolu8on  

•  the  photoelectric  effect  is  the  dominant  interac8on  (below  22keV)  

 

Page 28: Physics Behind Mammography

Image  Quality  

•  mono-­‐energe8c  X-­‐rays  are  op8mal  choice  to  achieve  high  subject  contrast  at  a  low  radia8on  dose  

•  polychroma8c  beam  gives  high  energy  X-­‐rays  in  the  bremsstrahlung  spectrum  and  reduce  the  subject  contrast    

•  or  low  energy  X-­‐rays  in  the  bremsstrahlung  spectrum  which  have  small  penetra8on  and  require  more  dose  without  providing  a  be:er  image  

Page 29: Physics Behind Mammography

Image  quality  

nA=n0  e-­‐μz    

nB=n0  e-­‐μ(z-­‐a)-­‐μ’a    

Page 30: Physics Behind Mammography

Image  Quality  

•  for  mono-­‐energe8c  X-­‐ray  beam:  

nA=n0  e-­‐μz    (Path  A)  

where:  §  n0  is  the  average  number  of  X-­‐rays  incident  on  the  breast,    

§  z  is  its  thickness  §  μ  is  the  X-­‐ray  a:enua8on  coefficient  of  the  8ssue  

 

Page 31: Physics Behind Mammography

Image  Quality    

nB=n0  e-­‐μ(z-­‐a)-­‐μ’a    (Path  B)    where:  §  n0  is  the  average  number  of  X-­‐rays  incident  on  the  breast,    

§  z  is  its  thickness  §  μ  is  the  X-­‐ray  a:enua8on  coefficient  of  the  8ssue  §  where  a  is  the  thickness  of  the  structure  in  the  direc8on  of  travel  of  the  X-­‐rays.    

Page 32: Physics Behind Mammography

Image  Quality  

•  the  signal  difference  produced  by  the  presence  of  the  structure  is:  

SD=  nA  –  nB    

•  the  resultant  radia8on  contrast  is:  Crad  =  (nA  –  nB)/(nA  +  nB)  

     

   

Page 33: Physics Behind Mammography

Image  Quality  

•  low  energy  photons  deliver  the  maximum  possible  subject  contrast  

•  the  presence  of  sca:er  reduces  the  available  image  contrast  

•  it  is  possible  to  minimize  the  sca:er  by:  §  Compression  

§  An8-­‐Sca:er  Grids  § Magnifica8on  

Page 34: Physics Behind Mammography

Image  Quality  

•  the  maximum  contrast  with  sca:er  is:  

•  where  the  S:  amount  of  sca:er  •  where  the  P:  amount  of  primary  radia8on  •  where  the  S/P:  is  the  sca:er  to  primary  ra8o    

Cprimary+scatter =Cprimary

1+ ScatterdPrimary

=Cprimary

1+ SP

Page 35: Physics Behind Mammography

Compression  Plates  

•  there  is  a  large  varia8on  in  the  size  and  composi8on  of  the  female  breast  

•  compression  is  necessary  for  the  examina8on  •  it  tries  to  press  the  breast  in  order  to  reduce  the  volume  

•  be:er  image  quality    •  lower  exposure  dose  

Page 36: Physics Behind Mammography

Image  Detectors  

•  image  receptors  must  provide  enough  spa8al  resolu8on,  radiographic  speed  and  image  contrast  

•  there  are  two  types  of  mammography  units  •  analog  detectors  (film  /  screen)  –  older  technology  

•  digital  detectors  (CCD  –  flat  panels)  

Page 37: Physics Behind Mammography

Film  /  Screen  Detectors  

•  in  this  method  the  the  image  is  captured,  displayed  and  archived  with  film  

•  mammography  film  /  screens  are  more  advanced  than  the  conven8onal  detectors  

•  it  has  a  high  spa8al  resolu8on  (20  line  pairs  per  millimeter)  

•  it  can  demonstrate  micro-­‐calcifica8ons  very  well  •  it  has  high  contrast  (very  crucial  for  mammography)    

Page 38: Physics Behind Mammography

Film  /  Screens  

•  mammography  casse:es  are  made  of  low-­‐a:enua8on  carbon  fiber    

•  have  a  single  hd  phosphor  screen  in  contact  with,  but  behind  the  emulsion  film  

•  gadolinium  oxysulphide  (Gd2O2S)  is  mostly  used  for  the  fluorescent  screen  –  rare  earth  phosphor  

•  this  screen  gives    a  green  light  emission  and  it  is  needed  green  sensi8ve  film  emulsions  

Page 39: Physics Behind Mammography

Film  /  Screen  Detectors  

•  in  this  case  the  film  is  situated  near  to  the  X  ray  tube    

•  most  interac8ons  of  X  -­‐  photons  occur  at  the  top  of  the  screen    

•  most  of  the  interac8ons  are  near  the  ac8ve  film  emulsion    

•  the  generated  visible  light  photons  have  less  travel  path  to  the  film  

Page 40: Physics Behind Mammography

Film  /  Screen  Detectors  

•  this  configura8on  brings  the  point  of  produc8on  the  light  photons  emi:ed  by  the  phosphor  as  close  as  possible  to  the  emulsion  

•  a  smaller  path  to  travel  reduces  the  lateral  spread  and  increases  the  spa8al  resolu8on  

 *  the  design  of  the  screen  takes  into  account  the  

resolu8on,  the  dose  and  the  noise    

Page 41: Physics Behind Mammography

Film  /  Screen  Detectors  Problems  

•  if  the  phosphor  thickness  increases,  it  absorbs  more  X-­‐Ray  photons  

•  the  un-­‐sharpness  become  worse  because  of  the  larger  lateral  spread  of  the  light  photons  

•  lateral  spread  can  be  reduced  by  the  addi8on  of  dyes  to  the  phosphor  –  but  it  is  increasing  the  dose    

Page 42: Physics Behind Mammography

Film  /  Screen  Detectors  Problems  

•  the  performance  of  screen  /  film  detectors  is  limited  because  of  the  film  emulsion  

•  it  has  a  non-­‐liner  response  to  the  light  photons    

•  it  shows  a  flat  varia8on  with  exposure  at  high  and  low  points  

•  they  increase  the  noise    •  there  is  a  limited  dynamic  range  (40:1)  

Page 43: Physics Behind Mammography

Film  /  Screen  Detectors  Problems  

•  there  is  no  op8on  for  post-­‐processing  and  op8miza8on  

•  imbalance  between  dynamic  range  and  contrast  resolu8on  

•  Loss  and  damage  of  films  

Page 44: Physics Behind Mammography

Film  /  Screen  Detectors  Problems  

Digital  Mammography:  an  overview  Mahadevappa  Mahesh,  MS,  PHD  

Page 45: Physics Behind Mammography

Digital  Mammography  

•  uses  full  field  –  of  view  –  digital  receptors  •  post-­‐processing  capability  of  the  images  •  permit  computer-­‐aided  detec8on  (CAD)  •  it  has  linear  response  over  a  wide  range  of  X-­‐Ray  intensi8es  

•  low  system  noise  •  wide  dynamic  range  (1000:1)  •  dynamic  image  manipula8on  

Page 46: Physics Behind Mammography

Digital  Mammography  

•  there  are  two  types  of  design  of  flat  panels  detectors    

•  Indirect  Capture  (IC)  •  Direct  Capture  (DC)  

Page 47: Physics Behind Mammography

Indirect  Capture  (IC)  

•  it  is  the  earliest  design  •  it  is  a  two-­‐step  process  •  step  1:  X  -­‐  photons  absorbed  within  fluorescent  material  such  as  cesium  iodide  (CsI)  and  visible  light  photons  generated  

•  step  2:  the  light  photons  interact  with  photo-­‐diodes  

•  there  are  two  layers  of  arrays:  the  photo-­‐diode  array  and  the  Thin  Film  Transistor  (TFT)  array    

Page 48: Physics Behind Mammography

Indirect  Capture  (IC)  

•  IC  designs  has  problems  like  film/screens  systems    

•  there  is  light  spread  problem  •  thicker  fluorescent  screens  reduce  spa8al  resolu8on    

•  the  photo-­‐diode  and  transistor  arrays  are  not  transparent  to  X  photons,  unlike  film    

 

Page 49: Physics Behind Mammography

Direct  Capture  (DC)  

•  has  a  single-­‐step  process  in  produc8on  of  the  image  signals  

•  uses  a  photo-­‐conduc8ve  layer  •  the  X-­‐Ray  photons  are  directly  captured  by  the  photoconductor  

•  the  photoconductor  converts  absorbed  X-­‐Rays  directly  to  a  digital  signal    

Page 50: Physics Behind Mammography

Different  approaches  of    Digital  Mammography  

•  1.  Slot  scanning  with  scin8llators  and  CCD  arrays  

•  2.  a  single    flat-­‐  panel  scin8llator  and  an  amorphous  silicon  diode  array  

•  3.  a  flat  panel  a-­‐Se  array  •  4.  8led  scin8llators  with  fiber-­‐op8c  tapers  and  mosaic  CCD  arrays  

•  5.  photos8mulable  phosphor  plates  (computed  radiography)  

Page 51: Physics Behind Mammography

Analog  and  digital  mammograms  of  a  dense  breast      

a)  Analog  image  demonstrates  poor  penetra8on  in  the  dense  region.    

(b)  Digital  image  has  improved  contrast,  shows  a  suspicious  mass  more  clearly,  and  allows  be:er  visualiza8on  of  peripheral  8ssue  and  the  skin  line.        

Page 52: Physics Behind Mammography

References  •  The  Essen8al  Physics  of  Medical  Imaging,  2nd  edi8on,  

Bushberg  –  Seibert  –  Leidholdt  –  Boone  •  Biomedical  Imaging  Processing,  Deserno  Th.  •  Digital  Mammography,  Bick  U.  –  Diekmann  F.  •  The  physics  of  Radiology,  4th  edi8on,  Johns  –  Cunningham  •  Digital  Mammography:  an  overview,  Mahadevappa  Mahesh  •  Physical  principles  of  mammography,  D.  R.  Dance  •  Physics  of  Mammography:  Image  Recording  Process,  Mar8nJ.  

Yaffe