phys 2310 engineering physics i formula sheets 2310 engineering physics i formula...phys 2310...

13
PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter 2 Units for SI Base Quantities Quantity Unit Name Unit Symbol Length Meter M Time Second s Mass (not weight) Kilogram kg Common Conversions 1 kg or 1 m 1000 g or m 1 m 1 Γ— 10 6 1 m 100 cm 1 inch 2.54 cm 1 m 1000 mm 1 day 86400 seconds 1 second 1000 milliseconds 1 hour 3600 seconds 1 m 3.281 ft 360Β° 2 rad Important Constants/Measurements Mass of Earth 5.98 Γ— 10 24 kg Radius of Earth 6.38 Γ— 10 6 m 1 u (Atomic Mass Unit) 1.661 Γ— 10 βˆ’27 kg Density of water 1 / 3 or 1000 / 3 g (on earth) 9.8 m/s 2 Density Common geometric Formulas Circumference = 2 Area circle = 2 Surface area (sphere) = 4 2 Volume (sphere) = 4 3 3 Volume (rectangular solid) =βˆ™βˆ™β„Ž = βˆ™ β„Ž Velocity Average Velocity = = βˆ† βˆ† 2.2 Average Speed = 2.3 Instantaneous Velocity = lim βˆ†β†’0 βˆ† βˆ† = 2.4 Acceleration Average Acceleration = βˆ† βˆ† 2.7 Instantaneous Acceleration = = 2 2 2.8 2.9 Motion of a particle with constant acceleration = 0 + 2.11 βˆ† = 1 2 ( 0 + ) 2.17 βˆ† = 0 + 1 2 2 2.15 2 = 0 2 + 2βˆ† 2.16

Upload: others

Post on 25-Jan-2020

80 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18

Chapter 1/Important Numbers

Chapter 2

Units for SI Base Quantities

Quantity Unit Name Unit Symbol

Length Meter M

Time Second s

Mass (not weight) Kilogram kg

Common Conversions

1 kg or 1 m 1000 g or m 1 m 1 Γ— 106 πœ‡π‘š 1 m 100 cm 1 inch 2.54 cm

1 m 1000 mm 1 day 86400 seconds

1 second 1000 milliseconds 1 hour 3600 seconds

1 m 3.281 ft 360Β° 2πœ‹ rad

Important Constants/Measurements

Mass of Earth 5.98 Γ— 1024 kg

Radius of Earth 6.38 Γ— 106 m

1 u (Atomic Mass Unit) 1.661 Γ— 10βˆ’27 kg

Density of water 1 𝑔/π‘π‘š3 or 1000 π‘˜π‘”/π‘š3

g (on earth) 9.8 m/s2

Density

Common geometric Formulas

Circumference 𝐢 = 2πœ‹π‘Ÿ Area circle 𝐴 = πœ‹π‘Ÿ2

Surface area (sphere)

𝑆𝐴 = 4πœ‹π‘Ÿ2 Volume (sphere) 𝑉 =4

3πœ‹π‘Ÿ3

Volume (rectangular solid) 𝑉 = 𝑙 βˆ™ 𝑀 βˆ™ β„Ž

𝑉 = π‘Žπ‘Ÿπ‘’π‘Ž βˆ™ π‘‘β„Žπ‘–π‘π‘˜π‘›π‘’π‘ π‘ 

Velocity

Average Velocity π‘‰π‘Žπ‘£π‘” =π‘‘π‘–π‘ π‘π‘™π‘Žπ‘π‘’π‘šπ‘’π‘›π‘‘

π‘‘π‘–π‘šπ‘’=

βˆ†π‘₯

βˆ†π‘‘ 2.2

Average Speed π‘ π‘Žπ‘£π‘” =π‘‘π‘œπ‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’

π‘‘π‘–π‘šπ‘’ 2.3

Instantaneous Velocity 𝑣 = limβˆ†π‘‘β†’0

βˆ†οΏ½Μ…οΏ½

βˆ†π‘‘=

𝑑π‘₯

𝑑𝑑 2.4

Acceleration

Average Acceleration π‘Žπ‘Žπ‘£π‘” =βˆ†π‘£

βˆ†π‘‘ 2.7

Instantaneous Acceleration

π‘Ž =𝑑𝑣

𝑑𝑑=

𝑑2π‘₯

𝑑𝑑2

2.8 2.9

Motion of a particle with constant acceleration

𝑣 = 𝑣0 + π‘Žπ‘‘ 2.11

βˆ†π‘₯ =1

2(𝑣0 + 𝑣)𝑑 2.17

βˆ†π‘₯ = 𝑣0𝑑 +1

2π‘Žπ‘‘2 2.15

𝑣2 = 𝑣02 + 2π‘Žβˆ†π‘₯ 2.16

Page 2: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 3

Chapter 4

Adding Vectors Geometrically οΏ½βƒ—οΏ½ + οΏ½βƒ—βƒ—οΏ½ = οΏ½βƒ—βƒ—οΏ½ + οΏ½βƒ—οΏ½ 3.2

Adding Vectors Geometrically (Associative Law)

(οΏ½βƒ—οΏ½ + οΏ½βƒ—βƒ—οΏ½) + 𝑐 = οΏ½βƒ—οΏ½ + (οΏ½βƒ—βƒ—οΏ½ + 𝑐) 3.3

Components of Vectors π‘Žπ‘₯ = π‘Žπ‘π‘œπ‘ πœƒ π‘Žπ‘¦ = π‘Žπ‘ π‘–π‘›πœƒ

3.5

Magnitude of vector |π‘Ž| = π‘Ž = βˆšπ‘Žπ‘₯2 + π‘Žπ‘¦

2 3.6

Angle between x axis and vector

π‘‘π‘Žπ‘›πœƒ =π‘Žπ‘¦

π‘Žπ‘₯ 3.6

Unit vector notation οΏ½βƒ—οΏ½ = π‘Žπ‘₯𝑖̂ + π‘Žπ‘¦π‘—Μ‚ + π‘Žπ‘§οΏ½Μ‚οΏ½ 3.7

Adding vectors in Component Form

π‘Ÿπ‘₯ = π‘Žπ‘₯ + 𝑏π‘₯ π‘Ÿπ‘¦ = π‘Žπ‘¦ + 𝑏𝑦

π‘Ÿπ‘§ = π‘Žπ‘§ + 𝑏𝑧

3.10 3.11 3.12

Scalar (dot product) οΏ½βƒ—οΏ½ βˆ™ οΏ½βƒ—βƒ—οΏ½ = π‘Žπ‘π‘π‘œπ‘ πœƒ 3.20

Scalar (dot product) οΏ½βƒ—οΏ½ βˆ™ οΏ½βƒ—βƒ—οΏ½ = (π‘Žπ‘₯𝑖̂ + π‘Žπ‘¦π‘—Μ‚ + π‘Žπ‘§οΏ½Μ‚οΏ½) βˆ™ (𝑏π‘₯𝑖̂ + 𝑏𝑦𝑗̂ + 𝑏𝑧�̂�)

οΏ½βƒ—οΏ½ βˆ™ οΏ½βƒ—βƒ—οΏ½ = π‘Žπ‘₯𝑏π‘₯ + π‘Žπ‘¦π‘π‘¦ + π‘Žπ‘§π‘π‘§ 3.22

Projection of οΏ½βƒ—οΏ½ π‘œπ‘› οΏ½βƒ—βƒ—οΏ½ or

component of οΏ½βƒ—οΏ½ π‘œπ‘› οΏ½βƒ—βƒ—οΏ½

οΏ½βƒ—οΏ½ βˆ™ οΏ½βƒ—βƒ—οΏ½

|𝑏|

Vector (cross) product magnitude

𝑐 = π‘Žπ‘π‘ π‘–π‘›πœ™ 3.24

Vector (cross product)

οΏ½βƒ—οΏ½π‘₯οΏ½βƒ—βƒ—οΏ½ = (π‘Žπ‘₯𝑖̂ + π‘Žπ‘¦π‘—Μ‚ + π‘Žπ‘§οΏ½Μ‚οΏ½)π‘₯(𝑏π‘₯𝑖̂ + 𝑏𝑦𝑗̂ + 𝑏𝑧�̂�)

= (π‘Žπ‘¦π‘π‘§ βˆ’ π‘π‘¦π‘Žπ‘§)𝑖̂ + (π‘Žπ‘§π‘π‘₯ βˆ’ π‘π‘§π‘Žπ‘₯)𝑗̂

+ (π‘Žπ‘₯𝑏𝑦 βˆ’ 𝑏π‘₯π‘Žπ‘¦)οΏ½Μ‚οΏ½

or

οΏ½βƒ—οΏ½π‘₯οΏ½βƒ—βƒ—οΏ½ = 𝑑𝑒𝑑 |

𝑖̂ 𝑗 οΏ½Μ‚οΏ½π‘Žπ‘₯ π‘Žπ‘¦ π‘Žπ‘§

𝑏π‘₯ 𝑏𝑦 𝑏𝑧

|

3.26

Position vector π‘Ÿ = π‘₯𝑖̂ + 𝑦𝑗̂ + 𝑧�̂� 4.4

displacement βˆ†π‘Ÿ = βˆ†π‘₯𝑖̂ + βˆ†π‘¦π‘—Μ‚ + βˆ†π‘§οΏ½Μ‚οΏ½ 4.4

Average Velocity οΏ½βƒ—βƒ—οΏ½π‘Žπ‘£π‘” =βˆ†π‘₯

βˆ†π‘‘ 4.8

Instantaneous Velocity οΏ½βƒ—οΏ½ =π‘‘π‘Ÿ

𝑑𝑑= 𝑣π‘₯ οΏ½Μ‚οΏ½ + 𝑣𝑦𝑗̂ + 𝑣𝑧�̂�

4.10 4.11

Average Acceleration οΏ½βƒ—οΏ½π‘Žπ‘£π‘” =βˆ†οΏ½βƒ—οΏ½

βˆ†π‘‘ 4.15

Instantaneous Acceleration

οΏ½βƒ—οΏ½ =𝑑�⃗�

𝑑𝑑

οΏ½βƒ—οΏ½ = π‘Žπ‘₯𝑖̂ + π‘Žπ‘¦π‘—Μ‚ + π‘Žπ‘§οΏ½Μ‚οΏ½

4.16 4.17

Projectile Motion

𝑣𝑦 = 𝑣0π‘ π‘–π‘›πœƒ0 βˆ’ 𝑔𝑑 4.23

βˆ†π‘₯ = 𝑣0π‘π‘œπ‘ πœƒπ‘‘ +1

2π‘Žπ‘₯𝑑2

or βˆ†π‘₯ = 𝑣0π‘π‘œπ‘ πœƒπ‘‘ if π‘Žπ‘₯=0

4.21

βˆ†π‘¦ = 𝑣0π‘ π‘–π‘›πœƒπ‘‘ βˆ’1

2𝑔𝑑2 4.22

𝑣𝑦2 = (𝑣0π‘ π‘–π‘›πœƒ0)2 βˆ’ 2π‘”βˆ†y 4.24

𝑣𝑦 = 𝑣0π‘ π‘–π‘›πœƒ0 βˆ’ 𝑔𝑑 4.23

Trajectory 𝑦 = (π‘‘π‘Žπ‘›πœƒ0)π‘₯ βˆ’π‘”π‘₯2

2(𝑣0π‘π‘œπ‘ πœƒ0)2 4.25

Range 𝑅 =𝑣0

2

𝑔sin(2πœƒ0) 4.26

Relative Motion

𝑣𝐴𝐢⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— = 𝑣𝐴𝐡⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— + 𝑣𝐡𝐢⃗⃗ βƒ—βƒ— βƒ—βƒ— βƒ— π‘Žπ΄π΅βƒ—βƒ— βƒ—βƒ— βƒ—βƒ— βƒ— = π‘Žπ΅π΄βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—βƒ—

4.44 4.45

Uniform Circular Motion

π‘Ž =𝑣2

π‘Ÿ 𝑇 =

2πœ‹π‘Ÿ

𝑣 4.34

4.35

Page 3: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 5

Chapter 6

Newton’s Second Law

General �⃗�𝑛𝑒𝑑 = π‘šοΏ½βƒ—οΏ½

5.1

Component form

𝐹𝑛𝑒𝑑,π‘₯ = π‘šπ‘Žπ‘₯ 𝐹𝑛𝑒𝑑,𝑦 = π‘šπ‘Žπ‘¦

𝐹𝑛𝑒𝑑,𝑧 = π‘šπ‘Žπ‘¦

5.2

Gravitational Force

Gravitational Force

𝐹𝑔 = π‘šπ‘” 5.8

Weight

π‘Š = π‘šπ‘” 5.12

Friction Static Friction (maximum)

𝑓𝑠,π‘šπ‘Žπ‘₯ = πœ‡π‘ πΉπ‘ 6.1

Kinetic Frictional π‘“π‘˜ = πœ‡π‘˜πΉπ‘ 6.2

Drag Force 𝐷 =1

2πΆπœŒπ΄π‘£2 6.14

Terminal velocity 𝑣𝑑 = √2𝐹𝑔

𝐢𝜌𝐴 6.16

Centripetal acceleration

π‘Ž =𝑣2

𝑅 6.17

Centripetal Force

𝐹 =π‘šπ‘£2

𝑅 6.18

Page 4: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 7

Chapter 8

Kinetic Energy

𝐾 =1

2π‘šπ‘£2 7.1

Work done by constant Force

π‘Š = πΉπ‘‘π‘π‘œπ‘ πœƒ = οΏ½βƒ—οΏ½ βˆ™ 𝑑 7.7 7.8

Work- Kinetic Energy Theorem

βˆ†πΎ = 𝐾𝑓 βˆ’ 𝐾0 = π‘Š 7.10

Work done by gravity

π‘Šπ‘” = π‘šπ‘”π‘‘π‘π‘œπ‘ πœ™ 7.12

Work done by lifting/lowering object

βˆ†πΎ = π‘Šπ‘Ž + π‘Šπ‘”

π‘Šπ‘Ž = π‘Žπ‘π‘π‘™π‘–π‘’π‘‘ πΉπ‘œπ‘Ÿπ‘π‘’ 7.15

Spring Force (Hooke’s law)

�⃗�𝑠 = βˆ’π‘˜π‘‘ 𝐹π‘₯ = βˆ’π‘˜π‘₯ (along x-axis)

7.20 7.21

Work done by spring π‘Šπ‘  =1

2π‘˜π‘₯𝑖

2 βˆ’1

2π‘˜π‘₯𝑓

2 7.25

Work done by Variable Force

π‘Š = ∫ 𝐹π‘₯𝑑π‘₯π‘₯𝑓

π‘₯𝑖

+ ∫ 𝐹𝑦𝑑𝑦𝑦𝑓

𝑦𝑖

+ ∫ 𝐹𝑧𝑑𝑧𝑧𝑓

𝑧𝑖

7.36

Average Power (rate at which that force does work on an object)

π‘ƒπ‘Žπ‘£π‘” =π‘Š

βˆ†π‘‘ 7.42

Instantaneous Power 𝑃 =π‘‘π‘Š

𝑑𝑑= πΉπ‘‰π‘π‘œπ‘ πœƒ = οΏ½βƒ—οΏ½ βˆ™ οΏ½βƒ—οΏ½

7.43 7.47

Potential Energy βˆ†π‘ˆ = βˆ’π‘Š = βˆ’ ∫ 𝐹(π‘₯)𝑑π‘₯π‘₯𝑓

π‘₯𝑖

8.1 8.6

Gravitational Potential Energy

βˆ†π‘ˆ = π‘šπ‘”βˆ†π‘¦ 8.7

Elastic Potential Energy π‘ˆ(π‘₯) =1

2π‘˜π‘₯2 8.11

Mechanical Energy πΈπ‘šπ‘’π‘ = 𝐾 + π‘ˆ 8.12

Principle of conservation of mechanical energy

𝐾1 + π‘ˆ1 = 𝐾2 + π‘ˆ2 πΈπ‘šπ‘’π‘ = βˆ†πΎ + βˆ†π‘ˆ = 0

8.18 8.17

Force acting on particle 𝐹(π‘₯) = βˆ’π‘‘π‘ˆ(π‘₯)

𝑑π‘₯ 8.22

Work on System by external force With no friction

π‘Š = βˆ†πΈπ‘šπ‘’π‘ = βˆ†πΎ + βˆ†π‘ˆ 8.25 8.26

Work on System by external force With friction

π‘Š = βˆ†πΈπ‘šπ‘’π‘ + βˆ†πΈπ‘‘β„Ž 8.33

Change in thermal energy

βˆ†πΈπ‘‘β„Ž = π‘“π‘˜π‘‘π‘π‘œπ‘ πœƒ 8.31

Conservation of Energy *if isolated W=0

π‘Š = βˆ†πΈ = βˆ†πΈπ‘šπ‘’π‘ + βˆ†πΈπ‘‘β„Ž + βˆ†πΈπ‘–π‘›π‘‘ 8.35

Average Power π‘ƒπ‘Žπ‘£π‘” =βˆ†πΈ

βˆ†π‘‘ 8.40

Instantaneous Power 𝑃 =𝑑𝐸

𝑑𝑑 8.41

**In General Physics, Kinetic Energy is abbreviated to KE and Potential Energy is PE

Page 5: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 9

Impulse and Momentum

Impulse 𝐽 = ∫ οΏ½βƒ—οΏ½(𝑑)𝑑𝑑

𝑑𝑓

𝑑𝑖

𝐽 = πΉπ‘›π‘’π‘‘βˆ†π‘‘

9.30 9.35

Linear Momentum οΏ½βƒ—οΏ½ = π‘šοΏ½βƒ—οΏ½ 9.22

Impulse-Momentum Theorem

𝐽 = Ξ”οΏ½βƒ—οΏ½ = �⃗�𝑓 βˆ’ �⃗�𝑖 9.31 9.32

Newton’s 2nd law �⃗�𝑛𝑒𝑑 =𝑑�⃗�

𝑑𝑑 9.22

System of Particles

�⃗�𝑛𝑒𝑑 = π‘šοΏ½βƒ—βƒ—βƒ—οΏ½π‘π‘œπ‘š

οΏ½βƒ—βƒ—οΏ½ = π‘€οΏ½βƒ—οΏ½π‘π‘œπ‘š

�⃗�𝑛𝑒𝑑 =𝑑�⃗⃗⃗�

𝑑𝑑

9.14 9.25 9.27

Collision

Final Velocity of 2 objects in a head-on collision where one object is initially at rest 1: moving object 2: object at rest

𝑣1𝑓 = (π‘š1 βˆ’ π‘š2

π‘š1 + π‘š2) 𝑣1𝑖

𝑣2𝑓 = (2π‘š1

π‘š1 + π‘š2) 𝑣1𝑖

9.67 9.68

Conservation of Linear Momentum (in 1D)

οΏ½βƒ—βƒ—οΏ½ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

�⃗⃗�𝑖 = �⃗⃗�𝑓

9.42 9.43

Elastic Collision

οΏ½βƒ—οΏ½1𝑖 + οΏ½βƒ—οΏ½2𝑖 = οΏ½βƒ—οΏ½1𝑓 + οΏ½βƒ—οΏ½2𝑓

π‘š1𝑣𝑖1 + π‘š2𝑣12 = π‘š1𝑣𝑓1 + π‘š2𝑣𝑓2

𝐾1𝑖 + 𝐾2𝑖 = 𝐾1𝑓 + 𝐾2𝑓

9.50 9.51 9.78

Collision continued…

Inelastic Collision π‘š1𝑣01 + π‘š2𝑣02 = (π‘š1 + π‘š2)𝑣𝑓

Conservation of Linear Momentum (in 2D)

οΏ½βƒ—βƒ—οΏ½1𝑖 + οΏ½βƒ—βƒ—οΏ½2𝑖 = οΏ½βƒ—βƒ—οΏ½1𝑓 + οΏ½βƒ—βƒ—οΏ½2𝑓

9.77

Average force πΉπ‘Žπ‘£π‘” = βˆ’

𝑛

βˆ†π‘‘βˆ†π‘ = βˆ’

𝑛

βˆ†π‘‘π‘šβˆ†π‘£

πΉπ‘Žπ‘£π‘” = βˆ’βˆ†π‘š

βˆ†π‘‘βˆ†π‘£

9.37 9.40

Center of Mass

Center of mass location π‘Ÿπ‘π‘œπ‘š =1

π‘€βˆ‘ π‘šπ‘–

𝑛

𝑖=1

π‘Ÿπ‘– 9.8

Center of mass velocity οΏ½βƒ—οΏ½π‘π‘œπ‘š =1

π‘€βˆ‘ π‘šπ‘–

𝑛

𝑖=1

�⃗�𝑖

Rocket Equations

Thrust (Rvrel)

π‘…π‘£π‘Ÿπ‘’π‘™ = π‘€π‘Ž

9.88

Change in velocity

Δ𝑣 = π‘£π‘Ÿπ‘’π‘™π‘™π‘›π‘€π‘–

𝑀𝑓 9.88

Page 6: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 10

Angular displacement (in radians

πœƒ =𝑠

π‘Ÿ

Ξ”πœƒ = πœƒ2 βˆ’ πœƒ1

10.1 10.4

Average angular velocity πœ”π‘Žπ‘£π‘” =

βˆ†πœƒ

βˆ†π‘‘ 10.5

Instantaneous Velocity πœ” =π‘‘πœƒ

𝑑𝑑 10.6

Average angular acceleration π›Όπ‘Žπ‘£π‘” =

βˆ†πœ”

βˆ†π‘‘ 10.7

Instantaneous angular acceleration 𝛼 =

π‘‘πœ”

𝑑𝑑 10.8

Rotational Kinematics

πœ” = πœ”0 + 𝛼𝑑 10.12

Ξ”πœƒ = πœ”0𝑑 +1

2𝛼𝑑2 10.13

πœ”2 = πœ”02 + 2π›ΌΞ”πœƒ 10.14

Ξ”πœƒ =1

2(πœ” + πœ”0)𝑑 10.15

Ξ”πœƒ = πœ”π‘‘ βˆ’1

2𝛼𝑑2 10.16

Relationship Between Angular and Linear Variables

Velocity 𝑣 = πœ”π‘Ÿ 10.18

Tangential Acceleration π‘Žπ‘‘ = π›Όπ‘Ÿ 10.19

Radical component of οΏ½βƒ—οΏ½ π‘Žπ‘Ÿ =𝑣2

π‘Ÿ= πœ”2π‘Ÿ 10.23

Period 𝑇 =2πœ‹π‘Ÿ

𝑣=

2πœ‹

πœ”

10.19 10.20

Rotation inertia 𝐼 = βˆ‘ π‘šπ‘–π‘Ÿπ‘–2 10.34

Rotation inertia (discrete particle system)

𝐼 = ∫ π‘Ÿ2π‘‘π‘š 10.35

Parallel Axis Theorem h=perpendicular distance between two axes

𝐼 = πΌπ‘π‘œπ‘š + π‘€β„Ž2 10.36

Torque 𝜏 = π‘ŸπΉπ‘‘ = π‘ŸβŠ₯𝐹 = π‘ŸπΉπ‘ π‘–π‘›πœƒ 10.39- 10.41

Newton’s Second Law πœπ‘›π‘’π‘‘ = 𝐼𝛼 10.45

Rotational work done by a toque

π‘Š = ∫ πœπ‘‘πœƒπœƒπ‘“

πœƒπ‘–

π‘Š = πœβˆ†πœƒ (𝜏 constant)

10.53 10.54

Power in rotational motion

𝑃 =π‘‘π‘Š

𝑑𝑑= πœπœ” 10.55

Rotational Kinetic Energy

𝐾 =1

2πΌπœ”2 10.34

Work-kinetic energy theorem βˆ†πΎ = 𝐾𝑓 βˆ’ 𝐾𝑖 =

1

2πΌπœ”π‘“

2 βˆ’1

2πΌπœ”π‘–

2 = π‘Š 10.52

Page 7: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Moments of Inertia I for various rigid objects of Mass M

Thin walled hollow cylinder or hoop about central axis

𝐼 = 𝑀𝑅2

Annular cylinder (or ring) about central axis

𝐼 =1

2𝑀(𝑅1

2 + 𝑅22)

Solid cylinder or disk about central axis

𝐼 =1

2𝑀𝑅2

Solid cylinder or disk about central diameter

𝐼 =1

4𝑀𝑅2 +

1

12𝑀𝐿2

Solid Sphere, axis through center

𝐼 =2

5𝑀𝑅2

Solid Sphere, axis tangent to surface

𝐼 =7

5𝑀𝑅2

Thin Walled spherical shell, axis through center

𝐼 =2

3𝑀𝑅2

Thin rod, axis perpendicular to rod and passing though center

𝐼 =1

12𝑀𝐿2

Thin rod, axis perpendicular to rod

and passing though end

𝐼 =1

3𝑀𝐿2

Thin Rectangular sheet (slab), axis parallel to sheet and passing though

center of the other edge

𝐼 =1

12𝑀𝐿2

Thin Rectangular sheet (slab_, axis along one edge

𝐼 =1

3𝑀𝐿2

Thin rectangular sheet (slab) about perpendicular axis through center

𝐼 =1

12𝑀(π‘Ž2 + 𝑏2)

Page 8: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 11

Rolling Bodies (wheel)

Speed of rolling wheel π‘£π‘π‘œπ‘š = πœ”π‘… 11.2

Kinetic Energy of Rolling Wheel 𝐾 =

1

2πΌπ‘π‘œπ‘šπœ”2 +

1

2π‘€π‘£π‘π‘œπ‘š

2 11.5

Acceleration of rolling wheel

π‘Žπ‘π‘œπ‘š = 𝛼𝑅 11.6

Acceleration along x-axis extending up the ramp

π‘Žπ‘π‘œπ‘š,π‘₯ = βˆ’π‘”π‘ π‘–π‘›πœƒ

1 +πΌπ‘π‘œπ‘š

𝑀𝑅2

11.10

Torque as a vector

Torque 𝜏 = π‘Ÿ Γ— οΏ½βƒ—οΏ½ 11.14

Magnitude of torque 𝜏 = π‘ŸπΉβŠ₯ = π‘ŸβŠ₯𝐹 = π‘ŸπΉπ‘ π‘–π‘›πœ™ 11.15-11.17

Newton’s 2nd Law πœπ‘›π‘’π‘‘ =𝑑ℓ⃗⃗

𝑑𝑑 11.23

Angular Momentum

Angular Momentum 𝑣ℓ⃗⃗⃗ = οΏ½βƒ—βƒ—οΏ½ Γ— οΏ½βƒ—βƒ—βƒ—οΏ½ = π‘š(οΏ½βƒ—βƒ—οΏ½ Γ— οΏ½βƒ—βƒ—βƒ—οΏ½) 11.18

Magnitude of Angular Momentum

β„“ = π‘Ÿπ‘šπ‘£π‘ π‘–π‘›πœ™ β„“ = π‘Ÿπ‘βŠ₯ = π‘Ÿπ‘šπ‘£βŠ₯

11.19-11.21

Angular momentum of a system of particles

οΏ½βƒ—βƒ—οΏ½ = βˆ‘ ℓ⃗⃗𝑖

𝑛

𝑖=1

πœπ‘›π‘’π‘‘ =𝑑�⃗⃗�

𝑑𝑑

11.26 11.29

Angular Momentum continued

Angular Momentum of a rotating rigid body

𝐿 = πΌπœ” 11.31

Conservation of angular momentum

οΏ½βƒ—βƒ—οΏ½ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

�⃗⃗�𝑖 = �⃗⃗�𝑓

11.32 11.33

Precession of a Gyroscope

Precession rate Ξ© =π‘€π‘”π‘Ÿ

πΌπœ” 11.31

Page 9: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 12

Chapter 13

Static Equilibrium

�⃗�𝑛𝑒𝑑 = 0 12.3

πœπ‘›π‘’π‘‘ = 0 12.5

If forces lie on the xy-plane

�⃗�𝑛𝑒𝑑,π‘₯ = 0, �⃗�𝑛𝑒𝑑,𝑦 = 0 12.7 12.8

πœπ‘›π‘’π‘‘,𝑧 = 0 12.9

Stress (force per unit area) Strain (fractional change in length)

π‘ π‘‘π‘Ÿπ‘’π‘ π‘  = π‘šπ‘œπ‘‘π‘’π‘™π‘’π‘  Γ— π‘ π‘‘π‘Ÿπ‘Žπ‘–π‘› 12.22

Stress (pressure) 𝑃 =𝐹

𝐴

Tension/Compression E: Young’s modulus

𝐹

𝐴= 𝐸

βˆ†πΏ

𝐿 12.23

Shearing Stress G: Shear modulus

𝐹

𝐴= 𝐺

βˆ†π‘₯

𝐿 12.24

Hydraulic Stress B: Bulk modulus 𝑝 = 𝐡

βˆ†π‘‰

𝑉

Gravitational Force (Newton’s law of gravitation)

𝐹 = πΊπ‘š1π‘š2

π‘Ÿ2 13.1

Principle of Superposition

οΏ½βƒ—οΏ½1,𝑛𝑒𝑑 = βˆ‘ οΏ½βƒ—οΏ½1𝑖

𝑛

𝑖=2

13.5

Gravitational Force acting on a particle from an extended body

οΏ½βƒ—οΏ½1 = ∫ 𝑑�⃗� 13.6

Gravitational acceleration π‘Žπ‘” =

𝐺𝑀

π‘Ÿ2 13.11

Gravitation within a spherical Shell 𝐹 =

πΊπ‘šπ‘€

𝑅3π‘Ÿ 13.19

Gravitational Potential Energy π‘ˆ = βˆ’

πΊπ‘€π‘š

π‘Ÿ 13.21

Potential energy on a system (3 particles)

π‘ˆ = βˆ’ (πΊπ‘š1π‘š2

π‘Ÿ12+

πΊπ‘š1π‘š3

π‘Ÿ13+

πΊπ‘š2π‘š3

π‘Ÿ23) 13.22

Escape Speed 𝑣 = √2𝐺𝑀

𝑅 13.28

Kepler’s 3rd Law (law of periods)

𝑇2 = (4πœ‹2

𝐺𝑀) π‘Ÿ3 13.34

Energy for bject in circular orbit

π‘ˆ = βˆ’πΊπ‘€π‘š

π‘Ÿ 𝐾 =

πΊπ‘€π‘š

2π‘Ÿ

13.21 13.38

Mechanical Energy (circular orbit)

𝐸 = βˆ’πΊπ‘€π‘š

2π‘Ÿ 13.40

Mechanical Energy (elliptical orbit)

𝐸 = βˆ’πΊπ‘€π‘š

2π‘Ž 13.42

*Note: 𝐺 = 6.6704 Γ— 10βˆ’11 𝑁 βˆ™ π‘š2/π‘˜π‘”2

Page 10: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 14

Chapter 15

Density 𝜌 =

βˆ†π‘š

βˆ†π‘‰

𝜌 =π‘š

𝑉

14.1 14.2

Pressure 𝑝 =

βˆ†πΉ

βˆ†π΄

𝑝 =𝐹

𝐴

14.3 14.4

Pressure and depth in a static Fluid P1 is higher than P2

𝑝2 = 𝑝1 + πœŒπ‘”(𝑦1 βˆ’ 𝑦2) 𝑝 = 𝑝0 + πœŒπ‘”β„Ž

14.7 14.8

Gauge Pressure πœŒπ‘”β„Ž

Archimedes’ principle 𝐹𝑏 = π‘šπ‘“π‘” 14.16

Mass Flow Rate π‘…π‘š = πœŒπ‘…π‘‰ = πœŒπ΄π‘£ 14.25

Volume flow rate 𝑅𝑉 = 𝐴𝑣 14.24

Bernoulli’s Equation 𝑝 +1

2πœŒπ‘£2 + πœŒπ‘”π‘¦ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 14.29

Equation of continuity π‘…π‘š = πœŒπ‘…π‘‰ = πœŒπ΄π‘£ = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 14.25

Equation of continuity when

𝑅𝑉 = 𝐴𝑣 = π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ 14.24

Frequency cycles per time

𝑓 =1

𝑇 15.2

displacement π‘₯ = π‘₯π‘šcos (πœ”π‘‘ + πœ™) 15.3

Angular frequency πœ” =2πœ‹

𝑇= 2πœ‹π‘“ 15.5

Velocity 𝑣 = βˆ’πœ”π‘₯π‘šsin(πœ”π‘‘ + πœ™) 15.6

Acceleration π‘Ž = βˆ’πœ”2π‘₯π‘šcos (πœ”π‘‘ + πœ™) 15.7

Kinetic and Potential Energy 𝐾 =

1

2π‘šπ‘£2 π‘ˆ =

1

2π‘˜π‘₯2

Angular frequency πœ” = βˆšπ‘˜

π‘š 15.12

Period 𝑇 = 2πœ‹βˆšπ‘š

π‘˜ 15.13

Torsion pendulum 𝑇 = 2πœ‹βˆšπΌ

π‘˜ 15.23

Simple Pendulum 𝑇 = 2πœ‹βˆšπΏ

𝑔 15.28

Physical Pendulum 𝑇 = 2πœ‹βˆšπΌ

π‘šπ‘”πΏ 15.29

Damping force �⃗�𝑑 = βˆ’π‘οΏ½βƒ—οΏ½

displacement π‘₯(𝑑) = π‘₯π‘šπ‘’βˆ’π‘π‘‘

2π‘šcos (πœ”β€²π‘‘ + πœ™) 15.42

Angular frequency πœ”β€² = βˆšπ‘˜

π‘šβˆ’

𝑏2

4π‘š2 15.43

Mechanical Energy 𝐸(𝑑) β‰ˆ1

2π‘˜π‘₯π‘š

2 π‘’βˆ’π‘π‘‘π‘š 15.44

Page 11: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 16

Sinusoidal Waves

Mathematical form (positive direction)

𝑦(π‘₯, 𝑑) = π‘¦π‘šsin (π‘˜π‘₯ βˆ’ πœ”π‘‘) 16.2

Angular wave number π‘˜ =2πœ‹

πœ† 16.5

Angular frequency πœ” =2πœ‹

𝑇= 2πœ‹π‘“ 16.9

Wave speed 𝑣 =πœ”

π‘˜=

πœ†

𝑇= πœ†π‘“ 16.13

Average Power π‘ƒπ‘Žπ‘£π‘” =1

2πœ‡π‘£πœ”2π‘¦π‘š

2 16.33

Traveling Wave Form 𝑦(π‘₯, 𝑑) = β„Ž(π‘˜π‘₯ Β± πœ”π‘‘) 16.17

Wave speed on stretched string

𝑣 = √𝜏

πœ‡ 16.26

Resulting wave when 2 waves only differ by phase constant

𝑦′(π‘₯, 𝑑) = [2π‘¦π‘š cos (1

2πœ™)] sin (π‘˜π‘₯ βˆ’ πœ”π‘‘ +

1

2πœ™) 16.51

Standing wave 𝑦′(π‘₯, 𝑑) = [2π‘¦π‘š sin(π‘˜π‘₯)]cos (πœ”π‘‘) 16.60

Resonant frequency 𝑓 =𝑣

πœ†= 𝑛

𝑣

2𝐿 for n=1,2,… 16.66

Page 12: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 17

Sound Waves

Speed of sound wave 𝑣 = √𝐡

𝜌 17.3

displacement 𝑠 = π‘ π‘šcos (π‘˜π‘₯ βˆ’ πœ”π‘‘) 17.12

Change in pressure Δ𝑝 = Ξ”π‘π‘š sin(π‘˜π‘₯ βˆ’ πœ”π‘‘) 17.13

Pressure amplitude Ξ”π‘π‘š = (π‘£πœŒπœ”)π‘ π‘š 17.14

Interference

Phase difference πœ™ =Δ𝐿

πœ†2πœ‹ 17.21

Fully Constructive Interference

πœ™ = π‘š(2πœ‹) for m=0,1,2… Δ𝐿

πœ†= 0,1,2

17.22 17.23

Full Destructive interference

πœ™ = (2π‘š + 1)πœ‹ for m=0,12 Δ𝐿

πœ†= .5,1.5,2.5 …

17.24 17.25

Mechanical Energy 𝐸(𝑑) β‰ˆ1

2π‘˜π‘₯π‘š

2 π‘’βˆ’π‘π‘‘π‘š 15.44

Sound Intensity

Intensity 𝐼 =

𝑃

𝐴

𝐼 =1

2πœŒπ‘£πœ”2π‘ π‘š

2

17.26 17.27

Intensity -uniform in all directions

𝐼 =𝑃𝑠

4πœ‹π‘Ÿ2 17.29

Intensity level in

decibels 𝛽 = (10𝑑𝐡) log (

𝐼

πΌπ‘œ) 17.29

Mechanical Energy 𝐸(𝑑) β‰ˆ1

2π‘˜π‘₯π‘š

2 π‘’βˆ’π‘π‘‘π‘š 15.44

Standing Waves Patterns in Pipes

Standing wave frequency (open at both ends)

𝑓 =𝑣

πœ†=

𝑛𝑣

2𝐿 for n=1,2,3 17.39

Standing wave frequency (open at one end)

𝑓 =𝑣

πœ†=

𝑛𝑣

4𝐿 for n=1,3,5 17.41

beats π‘“π‘π‘’π‘Žπ‘‘ = 𝑓1 βˆ’ 𝑓2 17.46

Doppler Effect

Source Moving toward stationary observer

𝑓′ = 𝑓𝑣

𝑣 βˆ’ 𝑣𝑠 17.53

Source Moving away from stationary observer

𝑓′ = 𝑓𝑣

𝑣 + 𝑣𝑠 17.54

Observer moving toward stationary source

𝑓′ = 𝑓𝑣 + 𝑣𝐷

𝑣 17.49

Observer moving away from stationary source

𝑓′ = 𝑓𝑣 βˆ’ 𝑣𝐷

𝑣 17.51

Shockwave

Half-angle πœƒ of Mach cone

π‘ π‘–π‘›πœƒ =𝑣

𝑣𝑠 17.57

Page 13: PHYS 2310 Engineering Physics I Formula Sheets 2310 Engineering Physics I Formula...PHYS 2310 Engineering Physics I Formula Sheets Chapters 1-18 Chapter 1/Important Numbers Chapter

Chapter 18

Temperature Scales

Fahrenheit to Celsius 𝑇𝐢 =5

9(𝑇𝐹 βˆ’ 32) 18.8

Celsius to Fahrenheit 𝑇𝐹 =9

5𝑇𝐢 + 32 18.8

Celsius to Kelvin 𝑇 = 𝑇𝐢 + 273.15 18.7

Thermal Expansion

Linear Thermal Expansion βˆ†πΏ = πΏπ›Όβˆ†π‘‡ 18.9

Volume Thermal Expansion βˆ†π‘‰ = π‘‰π›½βˆ†π‘‡ 18.10

Heat

Heat and temperature change

𝑄 = 𝐢(𝑇𝑓 βˆ’ 𝑇𝑖)

𝑄 = π‘π‘š(𝑇𝑓 βˆ’ 𝑇𝑖)

18.13 18.14

Heat and phase change 𝑄 = πΏπ‘š 18.16

Power P=Q/t

Power (Conducted) π‘ƒπ‘π‘œπ‘›π‘‘ =𝑄

𝑑= π‘˜π΄

𝑇𝐻 βˆ’ 𝑇𝐢

𝐿 18.32

Rate objects absorbs energy

π‘ƒπ‘Žπ‘π‘  = πœŽπœ–π΄π‘‡π‘’π‘›π‘£4 18.39

Power from radiation π‘ƒπ‘Ÿπ‘Žπ‘‘ = πœŽπœ–π΄π‘‡4 18.38

𝜎 = 5.6704 Γ— 10βˆ’8 π‘Š/π‘š2 βˆ™ 𝐾4

First Law of Thermodynamics

First Law of Thermodynamics

βˆ†πΈπ‘–π‘›π‘‘ = 𝐸𝑖𝑛𝑑,𝑓 βˆ’ 𝐸𝑖𝑛𝑑,𝑖 = 𝑄 βˆ’ π‘Š

𝑑𝐸𝑖𝑛𝑑 = 𝑑𝑄 βˆ’ π‘‘π‘Š

18.26 18.27

Note: βˆ†πΈπ‘–π‘›π‘‘ Change in Internal Energy Q (heat) is positive when the system absorbs heat and negative when it loses heat. W (work) is work done by system. W is positive when expanding and negative contracts because of an external force

Applications of First Law

Adiabatic (no heat flow)

Q=0 βˆ†πΈπ‘–π‘›π‘‘ = βˆ’π‘Š

(constant volume) W=0

βˆ†πΈπ‘–π‘›π‘‘ = 𝑄

Cyclical process βˆ†πΈπ‘–π‘›π‘‘ = 0

Q=W

Free expansions 𝑄 = π‘Š = βˆ†πΈπ‘–π‘›π‘‘ = 0

Misc.

Work Associated with Volume Change

π‘Š = ∫ π‘‘π‘Š = ∫ 𝑝𝑑𝑉𝑉𝑓

𝑉𝑖

π‘Š = π‘βˆ†π‘£

18.25

Revised 7/20/17