phased array simulation with beamforming for 5g …...• adaptive channel estimation / equalization...

45
Phased Array Simulation with Beamforming for 5G System Nash Tu AE, Keysight EEsof June, 2017

Upload: others

Post on 25-Jan-2020

48 views

Category:

Documents


6 download

TRANSCRIPT

Phased Array Simulation with Beamforming for 5G System

Nash Tu

AE, Keysight EEsof

June, 2017

Page

Agenda

• 5G and Phased Array System

• Phased Array Design Flow

• Pre-layout Simulation

SystemVue: 5G Phased Array System

• Post-layout Simulation

ADS: Butler Matrix Design

EMPro: Antenna Design

• Summary

Phased Array

Simulation with

Beamforming for 5G

System 2

Page

BTS

SCT

Multiple radio technologies• GSM/EDGE/WCDMA/HSPA/LTE

• WiFi/BT/WiGig/GNSS/5G

New waveformsLegacy OFDM enhancement

FBMC, UFMC, GFDM

Advanced signal processing• Multiple MIMO modes and Hybrid Beamforming

• Network interference suppression

• Adaptive channel estimation / equalization

Amplifier• Envelope tracking

• Digital predistortion

• Wide, multi-bands

Phased Array Network• FD-MIMO• Beamforming Algorithm• Multi-band Array Antennas

Phased Array Beamforming System (FD-MIMO)

5G and Phased Array System

Phased Array

Simulation with

Beamforming for 5G

System 3

Page

5G MIMO System

5G Picocell : Key enhancement technique

to improve system capacity

User D

ata

-6

Base

Station

User Data-2

Vertical

Beamforming

Horizontal

Beamforming

Solution for capacity demand

Phased Array

Simulation with

Beamforming for 5G

System 4

Page

Agenda

• 5G and Phased Array System

• Phased Array Design Flow

• Pre-layout Simulation

SystemVue: 5G Phased Array System

• Post-layout Simulation

ADS: Butler Matrix Design

EMPro: Antenna Design

• Summary

Phased Array

Simulation with

Beamforming for 5G

System 5

Page

I gave design specs of

‘Phased Array System’

to individual teams-

Now I received

Designed RF

component from some

teams, I have to

validate system

performance with these

Components

I have designed RF

component as per specs

given by System

Engineer – How to

validate my component

is working fine in

system?

My Antenna Design is

ready – How to validate

it’s performance in

complete system before

actual hardware

fabrication?

Design Workflow

Phased Array

Simulation with

Beamforming for 5G

System 6

Page

System DesignRF Level Simulation

RF/Antenna Designs

Circuit Level Simulation

Antenna Design

EM Simulation

• Investigate effects of specific RF

links on antenna pattern

• System level measurements

(EVM, ACPR)

Circuit and antenna affect each other.

• The antenna’s pattern changes with the input

phase and amplitude to the ports.

• The driving circuitry is affected by the input

loads of the antenna’s ports, esp. for power

amplifiers.

1

5

2

6

System Level Design

Drive Phased Array

system with modulated

signals

3

VTB

4

SystemVue ADS EMPro

RF Beamforming Network for 5G MIMO System

System Performance with actual

Circuit components

Use SystemVue VTB in ADS

Phased Array Antenna Design

EM Simulations of Antennas

Circuit Design

• RF Circuit design for

of individual

elements(PA,

LNA…) of RF link

• System Performance

with actual Circuit

components

7

RF Beamforming System : EEsof Solution form System Design to Actual Hardware Design and Validation

Phased Array

Simulation with

Beamforming for 5G

System 7

Page

Beam Forming Network – 8x8

Amplitude Input

& Phase input

Antenna Elements

Radiation pattern

Phase input

Amplitude Input

RF Beamforming System in SystemVue for Phased Array System

Phased Array

Simulation with

Beamforming for 5G

System 8

Page

Re

Im

C4 {CxToRect@Data Flow Models}

Amplifier

Gain=4 [sqrt(16)]

GainUnit=voltage

A1 {Amplifier@Data Flow Models}

Power=0 dBm [SignalPower]

Frequency=60e+9 Hz [FCarrier]

O1 {Oscillator@Data Flow Models}

ModOUT

QUAD

OUT

Freq

Phase

Q

I

Amp

FCarrier=60e+9 Hz [FCarrier]

InputType=I/Q

M2 {Modulator@Data Flow Models}

PhaseShifter

Control

I O

M3 {PhaseShifter_M@Data Flow Models}

[]

[][]

[]

[]

[][]

[]

NumCols=8 [NumOfAnt_XV]

NumRows=8 [NumOfAnt_YV]

Mode=SubArray

S1 {Splitter_M@Data Flow Models}

FBMC_Source

NumPreambleSyms=6 [NumPreambleSyms]

IdleInterval=0 s [IdleInterval]

FBMC_Source_1

• • •• • •

• • • • • •

MAPPER

ModType=QPSK [ModType]

M1 {Mapper@Data Flow Models}

1 1 0 1 0

B1 {RandomBits@Data Flow Models}

[][][]

[][]

[][]

[]

Mode=FullArray

C1 {Combiner_M@Data Flow Models}

Re

Im

R1 {RectToCx@Data Flow Models}

DeMod I

Amp

Freq

Phase

Q

FCarrier=60e+9 Hz [FCarrier]

OutputType=I/Q

D1 {Demodulator@Data Flow Models}

FBMC_EVM

Data_In

Ref

FilterOverlapFactor=4 [FilterOverlapFactor]

PilotEnable=NO [PilotEnable]

SampleRate=10e+6 Hz [BaseSampleRate]

EVM_BefDUT {FBMC_EVM}

Amplifier

Gain=(8x8) [0.04,0.032,0.043,0.037,0.04,0.041,0… [weightV]

GainUnit=voltage

M13 {Amplifier_M@Data Flow Models}

Fc

CxEnv

E1 {EnvToCx_M@Data Flow Models}

Phase=0

Factor=10000

D3 {DownSample@Data Flow Models}

Re

Im

R2 {RectToCx@Data Flow Models}

DeMod I

Amp

Freq

Phase

Q

FCarrier=60e+9 Hz [FCarrier]

OutputType=I/Q

D2 {Demodulator@Data Flow Models}

FBMC_EVM

Data_In

Ref

PilotEnable=NO [PilotEnable]

NumDataSyms=20 [NumDataSyms]

IdleInterval=0 s [IdleInterval]

OversampleRatio=Ratio 2 [OversampleRatio]

EVM_AftDUT {FBMC_EVM}

Gain=0.017 [pi/180]

G2 {Gain@Data Flow Models}

Azimuth

Value=0.524 [Azimuth]

Azimuth1 {Const@Data Flow Models}

Zenith

Value=4.712 [Zenith]

Zenith1 {Const@Data Flow Models}

Gain=0.017 [pi/180]

G1 {Gain@Data Flow Models} Beam form erWeights

OutputZ

OutputY

OutputX

Phases

M agni tudes

Weights

Zenith

Az imuth

Azimuth=0 °

DistanceX_in_Wavelengths=0.5NumElementsY=8 [NumOfAnt_YV]

Configuration=Uniform Rectangular Array

B7 {BeamformerWeights@Data Flow Models}

BeamPattern

OutputZ

OutputY

OutputX

AntennaGain

Zenith

Az imuth

Input

RotateArray=NODistanceX_in_Wavelengths=0.5

Configuration=Uniform Rectangular Array

B6 {BeamPattern@Data Flow Models} Z

M agnitude

YZenith(Theta)

XAz imuth(Phi)

MinLevel_dB=-30

CoordinateSystem=Spherical

Beam {Dynamic3D@Data Flow Models}

M ag

Zenith

(Theta)

Az imuth

(Phi)

M ain Lobes

Az imuth

M ain Lobes

Zenith

AzimuthCutAngle=30 °

AzimuthCut=YES

BeamwidthLevel=-3 dB10

MagnitudeUnit=dBiSetMainLobeDirections=NO

B3 {BeamMeasurement@Data Flow Models}

Array Antenna

Beamforming Network

5G

Communication

System Simulation

P

1

P

2

P

3

P

4

P

5

P

6

P

7

P

8

Output Ports ( to Antenna )

Input Ports

Hybrid CouplerCrossover

67

°P

ha

se

Sh

ifte

r

22

°P

ha

se

Sh

ifte

r

45

°P

ha

se

Sh

ifte

r

Complete 5G System Simulation

Phased Array

Simulation with

Beamforming for 5G

System 9

Page

Re

Im

C4 {CxToRect@Data Flow Models}

Amplifier

Gain=4 [sqrt(16)]

GainUnit=voltage

A1 {Amplifier@Data Flow Models}

Power=0 dBm [SignalPower]

Frequency=60e+9 Hz [FCarrier]

O1 {Oscillator@Data Flow Models}

ModOUT

QUAD

OUT

Freq

Phase

Q

I

Amp

FCarrier=60e+9 Hz [FCarrier]

InputType=I/Q

M2 {Modulator@Data Flow Models}

PhaseShifter

Control

I O

M3 {PhaseShifter_M@Data Flow Models}

[]

[][]

[]

[]

[][]

[]

NumCols=8 [NumOfAnt_XV]

NumRows=8 [NumOfAnt_YV]

Mode=SubArray

S1 {Splitter_M@Data Flow Models}

FBMC_Source

NumPreambleSyms=6 [NumPreambleSyms]

IdleInterval=0 s [IdleInterval]

FBMC_Source_1

• • •• • •

• • • • • •

MAPPER

ModType=QPSK [ModType]

M1 {Mapper@Data Flow Models}

1 1 0 1 0

B1 {RandomBits@Data Flow Models}

[][][]

[][]

[][]

[]

Mode=FullArray

C1 {Combiner_M@Data Flow Models}

Re

Im

R1 {RectToCx@Data Flow Models}

DeMod I

Amp

Freq

Phase

Q

FCarrier=60e+9 Hz [FCarrier]

OutputType=I/Q

D1 {Demodulator@Data Flow Models}

FBMC_EVM

Data_In

Ref

FilterOverlapFactor=4 [FilterOverlapFactor]

PilotEnable=NO [PilotEnable]

SampleRate=10e+6 Hz [BaseSampleRate]

EVM_BefDUT {FBMC_EVM}

Amplifier

Gain=(8x8) [0.04,0.032,0.043,0.037,0.04,0.041,0… [weightV]

GainUnit=voltage

M13 {Amplifier_M@Data Flow Models}

Fc

CxEnv

E1 {EnvToCx_M@Data Flow Models}

Phase=0

Factor=10000

D3 {DownSample@Data Flow Models}

Re

Im

R2 {RectToCx@Data Flow Models}

DeMod I

Amp

Freq

Phase

Q

FCarrier=60e+9 Hz [FCarrier]

OutputType=I/Q

D2 {Demodulator@Data Flow Models}

FBMC_EVM

Data_In

Ref

PilotEnable=NO [PilotEnable]

NumDataSyms=20 [NumDataSyms]

IdleInterval=0 s [IdleInterval]

OversampleRatio=Ratio 2 [OversampleRatio]

EVM_AftDUT {FBMC_EVM}

Gain=0.017 [pi/180]

G2 {Gain@Data Flow Models}

Azimuth

Value=0.524 [Azimuth]

Azimuth1 {Const@Data Flow Models}

Zenith

Value=4.712 [Zenith]

Zenith1 {Const@Data Flow Models}

Gain=0.017 [pi/180]

G1 {Gain@Data Flow Models} Beam form erWeights

OutputZ

OutputY

OutputX

Phases

M agni tudes

Weights

Zenith

Az imuth

Azimuth=0 °

DistanceX_in_Wavelengths=0.5NumElementsY=8 [NumOfAnt_YV]

Configuration=Uniform Rectangular Array

B7 {BeamformerWeights@Data Flow Models}

BeamPattern

OutputZ

OutputY

OutputX

AntennaGain

Zenith

Az imuth

Input

RotateArray=NODistanceX_in_Wavelengths=0.5

Configuration=Uniform Rectangular Array

B6 {BeamPattern@Data Flow Models} Z

M agnitude

YZenith(Theta)

XAz imuth(Phi)

MinLevel_dB=-30

CoordinateSystem=Spherical

Beam {Dynamic3D@Data Flow Models}

M ag

Zenith

(Theta)

Az imuth

(Phi)

M ain Lobes

Az imuth

M ain Lobes

Zenith

AzimuthCutAngle=30 °

AzimuthCut=YES

BeamwidthLevel=-3 dB10

MagnitudeUnit=dBiSetMainLobeDirections=NO

B3 {BeamMeasurement@Data Flow Models}

5G Phased Array MIMO System

Baseband

(Digital)Radiating Element

(EM)

Analog

(RF)

PA

LNA

Communicatio

n Data

Signal

Processing

Antenna

ArrayLO

DA

C

AD

C

TX

RX

BFN

Block Level 5G Design

System Level Design

Actual Hardware Design

BFN

Phased Array

Simulation with

Beamforming for 5G

System 10

Page

Agenda

• 5G and Phased Array System

• Phased Array Design Flow

• Pre-layout Simulation

SystemVue: 5G Phased Array System

• Post-layout Simulation

ADS: Butler Matrix Design

EMPro: Antenna Design

• Summary

Phased Array

Simulation with

Beamforming for 5G

System 11

Page

Beamforming Analysis

Phased Array

Simulation with

Beamforming for 5G

System

Arbitrary 3D conformal arrays

Whole platform rotation

3D radiation pattern import

(from EMPro or HFSS)

Windows and tapers

Coupling between array elements

Statistical variations, % failures

Sub-arrays and ABF/DBF/HBF

3D ARRAY CONFIGS

DYNAMIC VISUALIZATIONS

BEAMS, SIDELOBES, NULLS

3D BEAM

WEIGHTING

SYNTHESIS

3D BEAM

RENDERING &

ANALYSIS

3D BEAM VIZ &

MEASUREMENT

12

Page

System-Level Architectures: Array Configurations

Phased Array

Simulation with

Beamforming for 5G

System

CircularUniform Rect. 3D/Conformal

4G Basestations

Automotive Radar

SatComm, 5G, Radar

General purpose

Mobility applications >180o coverage

TriangularUniform Linear

13

Page

Phased Array Impairments – Nonlinear Interference from Multiple users

Phased Array

Simulation with

Beamforming for 5G

System

Signal 1

Signal 2

Signal 3

Signal 4

4 beamforming

TX angles (f,q)

4 modulated

baseband signals

Nonlinear RF effects

and AWGN

De-mod

each signal

Beam measure:

ideal vs. distorted

DBF

14

Page

Phased Array Impairments – Nonlinear Interference from Multiple users

Phased Array

Simulation with

Beamforming for 5G

System

• Large peak from User 1 can

compress array TX amplifiers

All signals become distorted

• AM-AM : sidelobes

• AM-PM : width, direction

• Able to monitor the dynamic

time-varying quality of each of

• the 4 beams,

• the 4 signals (EVM, ACLR)

Intended Beam

Distorted Beam

Signal quality (EVM)

15

Page

OFDM-based Wideband Hybrid Beamforming Systems

Phased Array

Simulation with

Beamforming for 5G

System

HybridBeamforming_WideBand.wsvChannel Estimation Solution in OFDM-based

Hybrid Beamforming System

5th Generation Communications Systems Modeling using SystemVue

Scenario:* OFDM-based Hybrid Beamforming System* Realistic wideband HBF Channel Estimation Solution* Various channel H in dif ferent subcarriers

* Two step channel estimation approach

Conf iguration:* UPA/ULA Tx Antenna Array* UPA/ULA Rx Antenna Array* OmniDirectional / 3Sectors / Custom Antenna Pattern* Modif ied 3GPP 3D Channel Model (Max 256

Antennas) and NYU Channel Model

TIMING CONTROL TX/RX BEAM GENERATORS WIDEBAND BF CONTROL PLOT CONTROL

Fc : 28.5GHz Bandwidth: 2GHzOptimal Tx/Rx beams estimation

THROUGHPUT CONTROL

Precoder Feedback

1 1 0 1 0

DataPattern=PN9B5 {DataPattern@Data Flow Models}

Noise

Density

NDensity=-58.331 dBm [NDensity_dBm]NDensityType=Constant noise density

A3 {AddNDensity_M@Data Flow Models}

ArrayCoupling_M

CouplingMatrix=(16x16) [1,0,0,0,0,0,0,0,0,0,0,0… [eye(Nt)]

A4 {ArrayCoupling_M@Data Flow Models}

ArrayCoupling_M

CouplingMatrix=(4x4) [1,0,0,0; 0,1,0,0; 0,0,1,0… [eye(Nr)]A1 {ArrayCoupling_M@Data Flow Models}

DataIn

RxWeights

DataOut

R F

R X

RxAntArrayWindowType=NoneRxPhaseShifterDistortion=(4x1)… [RxPhaseShifterDistortion]

RxAntennaArrayMask=(4x1) [1; 1; 1; 1] [ones(Nr,Nrrf)]Nrrf=1 [Nrrf]

NumOfRxAntz=1 [NumOfRxAntz]NumOfRxAnty=4 [NumOfRxAnty]NumOfRxAntx=1 [NumOfRxAntx]

fc=28.5e+9 Hz [fc]Subnetwork2 {RF_Rx_WB}

Flex OFDM M IM O

Sourc e RF

Flex OFDM_Sig

Flex OFDM_Const

Flex OFDM_RF

M IM OPrecoding

DataInfo2

DataInfo1

DFTSize=64 [Num_Subcarriers]FlexOFDM_Source_RF_2 {FlexOFDM_MIMO_Source_RF@5G Advanced Modem Models}

OutputTiming=BeforeInput

D1 {Delay@Data Flow Models}

TEST

REF

StartStopOption=SamplesB1

PlotControl

Wrf

Frf

RxPosition_Z=(4x1) [0; 0; 0; 0] [RxPosition_Z]RxPosition_Y=(4x1) [0; 0.5; 1; 1.5] [RxPosition_Y]

RxPosition_X=(4x1) [0; 0; 0; 0] [RxPosition_X]TxPosition_Z=(16x1) [0; 0; 0; 0; 0.5; 0.5] [TxPosition_Z]

TxPosition_Y=(16x1) [0; 0.5; 1; 1.5; 0; 0.… [TxPosition_Y]TxPosition_X=(16x1) [0; 0; 0; 0; 0; 0; 0] [TxPosition_X]

RxSlantAngle=(4x1) [0; 0; 0; 0] [RxSlantAngle]RxDowntiltAngle=(4x1) [0; 0; 0; 0] [RxDowntiltAngle]RxBearingAngle=(4x1) [0; 0; 0; 0] [RxBearingAngle]

TxSlantAngle=(16x1) [0; 0; 0; 0; 0; 0; 0] [TxSlantAngle]TxDowntiltAngle=(16x1) [0; 0; 0; 0; 0] [TxDowntiltAngle]

TxBearingAngle=(16x1) [0; 0; 0; 0; 0; 0] [TxBearingAngle]Nrrf=1 [Nrrf]

NumOfRxAntz=1 [NumOfRxAntz]

NumOfRxAnty=4 [NumOfRxAnty]NumOfRxAntx=1 [NumOfRxAntx]

RxAntennaPatternType=0Ntrf=1 [Ntrf]

NumOfTxAntz=4 [NumOfTxAntz]NumOfTxAnty=4 [NumOfTxAnty]

NumOfTxAntx=1 [NumOfTxAntx]TxAntennaPatternType=0

Disabled: OPENPlotControl {PlotControl}

OutputTiming=BeforeInputD2 {Delay@Data Flow Models}

TimingControl

Rx Beam Enable

Sy nc Idx_delay

Sy ncEn

Sy ncIdx

TimingControl {TimingControl}

HBF_Tx Beam Generator

Nrrf=1 [Nrrf]Nr=4 [Nr]

Ntrf=1 [Ntrf]

Nt=16 [Nt]HBF_TxBeamGenerator {HBF_TxBeamGenerator@5G Advanced Modem Models}

H B F _ R x B e a m Generator

Rx Weights

Rx Beam Enable

Sy nc Idx_delay

Wrf_Data

Nrrf=1 [Nrrf]

Nr=4 [Nr]Ntrf=1 [Ntrf]Nt=16 [Nt]

HBF_RxBeamGenerator {HBF_RxBeamGenerator@5G Advanced Modem Models}

HBF_Contro l ler_WB

Frf

Wrf

FreSig

RxAntArrayWindowType=NoneRxAntennaArrayMask=(4x1) [1; 1; 1; 1… [RxAntennaArrayMask]

RxPhiRange=(1x2) [-90,89] °

RxThetaRange=(1x2) [0,179] °RxBeamPhiGranularity=1 °

RxBeamThetaGranularity=1 °NumOfRxRFChains=1 [Nrrf]

NumOfRxAntz=1 [NumOfRxAntz]

NumOfRxAnty=4 [NumOfRxAnty]NumOfRxAntx=1 [NumOfRxAntx]

TxAntArrayWindowType=NoneTxAntennaArrayMask=(16x1) [1; 1; 1] [TxAntennaArrayMask]

TxPhiRange=(1x2) [-90,89] °TxThetaRange=(1x2) [0,179] °

TxBeamPhiGranularity=1 °TxBeamThetaGranularity=1 °NumOfTxRFChains=1 [Ntrf]

NumOfTxAntz=4 [NumOfTxAntz]NumOfTxAnty=4 [NumOfTxAnty]

NumOfTxAntx=1 [NumOfTxAntx]H1 {HBF_Controller_WB@5G Advanced Modem Models}

[ ]

Format=ColumnMajorNumCols=1

NumRows=1 [Nrrf]

P2 {PackBus_M@Data Flow Models}

[ ]

Format=ColumnMajorNumCols=1

NumRows=1 [Nrrf]

U2 {UnpackBus_M@Data Flow Models}

[ ]

Format=ColumnMajorNumCols=1

NumRows=1 [Ntrf]U1 {UnpackBus_M@Data Flow Models}

OutputTiming=BeforeInput

N=16 [Nt]D3 {Delay@Data Flow Models}

OutputTiming=BeforeInputN=4 [Nr]

D4 {Delay@Data Flow Models}

M IM O_3DChannel_RF

H

SigOut

SigIn

UseIntraClusterDelays=NOSimPeriod=1e-2 s

MsMovingTheta=90MsMovingPhi=0

BsLOSTheta=90BsLOSPhi=0

RxAntennaPatternType=OmniDirectionalNumberofRx=4 [Nr]

TxAntennaPatternType=OmniDirectional

NumberofTx=16 [Nt]ChannelLinkDirection=Downlink

CarrierFrequency=28.5e+9 Hz [fc]ScenarioType=UserDefined

ChannelModelType=NYU_Model

MIMO_3DChannel_RF_1

FlexO FDM _M I M O _Receiver _RF

p2Out

Sy ncEn

Sy nc Index

Bi ts Out

M IM OPrec odingMatrix

Flex OFDM_RF

DFTSize=64 [Num_Subcarriers]FelxOFDM_Receiver_RF {FlexOFDM_MIMO_Receiver_RF}

DataOutDataIn

TxWeights

R F

T X

TxAntArrayWindowType=NoneTxPhaseShifterDistortion=(16x1… [TxPhaseShifterDistortion]

TxAntennaArrayMask=(16x1) [1; 1; 1; 1; 1] [ones(Nt,Ntrf)]NumOfTxAntz=4 [NumOfTxAntz]

NumOfTxAnty=4 [NumOfTxAnty]NumOfTxAntx=1 [NumOfTxAntx]

Ntrf=1 [Ntrf]Subnetwork1 {RF_Tx_WB}

[ ]

Format=ColumnMajorNumCols=1

NumRows=1 [Ntrf]P1 {PackBus_M@Data Flow Models}

16

Page

OFDM-based Wideband Hybrid Beamforming Systems

Phased Array

Simulation with

Beamforming for 5G

System 17

Page

Agenda

• 5G and Phased Array System

• Phased Array Design Flow

• Pre-layout Simulation

SystemVue: 5G Phased Array System

• Post-layout Simulation

ADS: Butler Matrix Design

EMPro: Antenna Design

• Summary

Phased Array

Simulation with

Beamforming for 5G

System 18

Page

8 x 8 Butler Matrix Design

• Butler matrix is a passive feeding N x N network with

beam steering capabilities, consist of hybrid junctions

(or directional couplers) and fixed phase shifters.

• (N/2) log2N hybrids and (N/2) log2 (N – 1) fixed phase

shifters are required to form the network.

• Antenna beam is steered in a specific direction using

a simple beam-forming network. A traditional ‘divide/

combine’ BFN would have required 112 hybrid

couplers and 64 phase shifters

• For example, a 8x8 butler matrix consists of :

• 4 Quadrature couplers

• 8 Phase shifters

• 16 0dB Cross coupler

2D Butler Matrix

Phased Array

Simulation with

Beamforming for 5G

System 19

Page

67.5°

22.5°

67.5°

22.5°

45°

45°

45°

45°

1R: Port-1

4L: Port-2

3R: Port-3

2L: Port-4

2R: Port-5

3L: Port-6

4R: Port-7

1L: Port-8

3dB coupler

Crossover

Phaseshifter

Antenna-8(A8)

Antenna-7(A7)

Antenna-6(A6)

Antenna-5(A5)

Antenna-4(A4)

Antenna-3(A3)

Antenna-2(A2)

Antenna-1(A1)

112°

90°

67°

-135°

22°

-180°

157°

-45°

• Butler matrix is a passive feeding N x N network with beam

steering capabilities.

• A 8x8 butler matrix consists of :

• 12 Quadrature couplers

• 8 Phase shifters

• 16 0dB Cross coupler

8 Input

Phased Array Design based on Butler Matrix

Phased Array

Simulation with

Beamforming for 5G

System 20

Page

27 mm

22 mm

22 mmBeam Orientation for Different Inputs

3D Beamforming Network

Phased Array

Simulation with

Beamforming for 5G

System 21

Page

Antenna Beam for different Port excitation in ADS

Phased Array

Simulation with

Beamforming for 5G

System 22

Page

Agenda

• 5G and Phased Array System

• Phased Array Design Flow

• Pre-layout Simulation

SystemVue: 5G Phased Array System

• Post-layout Simulation

ADS: Butler Matrix Design

EMPro: Antenna Design

• Summary

23

Phased Array

Simulation with

Beamforming for 5G

System

Page

Phased Array Antenna Design Flow

SystemVueEMPro

Design and simulate performance of single

antenna element

Export far field file (.uan) of the antenna

element

Explore architecture & performance of array with .uan file

Export locations and weights of all

elements in the array to file

Read the file and build physical array

models automatically with Python script

Run FDTD to validate performance of array

antenna

Pre

Simulation

Post

SimulationPhased Array

Simulation with

Beamforming for 5G

System

24

Page

Single Antenna Element Design

SystemVueEMPro

Design and simulate performance of single

antenna element

Export far field file (.uan) of the antenna

element

Explore architecture & performance of array with .uan file

Export locations and weights of all

elements in the array to file

Read the file and build physical array

models automatically with Python script

Run FDTD to validate performance of array

antenna

Phased Array

Simulation with

Beamforming for 5G

System

25

Page

Single Antenna Element Design

• Use EMPro FEM or FDTD to run single antenna element simulation.

Phased Array

Simulation with

Beamforming for 5G

System

26

Page

Single Antenna Element Design

View the results.Phased Array

Simulation with

Beamforming for 5G

System

27

Page

Output Far Field File

Phased Array

Simulation with

Beamforming for 5G

System

28

Page

Antenna Array Pre Simulation

SystemVueEMPro

Design and simulate performance of single

antenna element

Export far field file (.uan) of the antenna

element

Explore architecture & performance of array with .uan file

Export locations and weights of all

elements in the array to file

Read the file and build physical array

models automatically with Python script

Run FDTD to validate performance of array

antenna

Phased Array

Simulation with

Beamforming for 5G

System

29

Page

Evaluate Antenna Array in SystemVue

• For example, we want an 8*8 rectangular array with main lobe direction theta 45

degree + phi 0 degree.

• The distance between every element is set to be 0.7 lamda.

Phased Array

Simulation with

Beamforming for 5G

System

Main lobe direction setting

Weigh computing

component

Location and weight

information collecting

component

Pattern file loading

component

30

Page

Evaluate Antenna Array in SystemVue

SV will complete the simulation within a few seconds.

Phased Array

Simulation with

Beamforming for 5G

System

31

Page

Antenna Array Post Simulation

SystemVueEMPro

Design and simulate performance of single

antenna element

Export far field file (.uan) of the antenna

element

Explore architecture & performance of array with .uan file

Export locations and weights of all

elements in the array to file

Read the file and build physical array

models automatically with Python script

Run FDTD to validate performance of array

antenna

Phased Array

Simulation with

Beamforming for 5G

System

32

Page

Python Script Reads the File and Build Array within EMPro

• Antenna array is built. We could run full 3D EM simulation directly.

• When array size is large, we prefer FDTD solver.

Phased Array

Simulation with

Beamforming for 5G

System

33

Page

Validate Array Performance

34

• View full 3D EM simulation result.

Phased Array

Simulation with

Beamforming for 5G

System

Page

Validate Array Performance

• Pre simulation result matches post simulation result well, no matter main lobe

direction, gain or the whole beam pattern.

Phased Array

Simulation with

Beamforming for 5G

System

35

Page

More Validation

36

Phased Array

Simulation with

Beamforming for 5G

System

Page

64 Elements V-shape Array

• Pre simulation with SV.

• Set main lobe direction theta 30 degree + phi 20 degreePhased Array

Simulation with

Beamforming for 5G

System

37

Page

64 Elements V-shape Array

• Post simulation with EMPro FDTD.

Phased Array

Simulation with

Beamforming for 5G

System

38

Page

64 Elements V-shape Array

• Nice agreement between pre and post simulation

Phased Array

Simulation with

Beamforming for 5G

System

39

Page

Add Housing

Phased Array

Simulation with

Beamforming for 5G

System

40

Page

Consider Coupling in SystemVue

Phased Array

Simulation with

Beamforming for 5G

System

SystemVue Spectrasys

41

Page

Windowing

Phased Array

Simulation with

Beamforming for 5G

System

42

Page

Windowing

Phased Array

Simulation with

Beamforming for 5G

System

SLL: 17.3-2.144 = 15.156 SLL: 16.63-(-10.11) = 26.74

SLL: 15.3716 SLL: 25.0663

43

Page

Agenda

• 5G and Phased Array System

• Phased Array Design Flow

• Pre-layout Simulation

SystemVue: 5G Phased Array System

• Post-layout Simulation

ADS: Butler Matrix Design

EMPro: Antenna Design

• Summary

44

Phased Array

Simulation with

Beamforming for 5G

System

Page

Summary

– Beamforming plays an important role in 5G system.

– Keysight offers a smooth phased array simulation flow with ADS,

EMPro, and SystemVue.

45

Phased Array

Simulation with

Beamforming for 5G

System