phased array radar basics - ofcm.gov · pdf fileradar course jsh -1 mit lincoln laboratory...

Download Phased Array Radar Basics - ofcm.gov · PDF fileRadar Course JSH -1 MIT Lincoln Laboratory Phased Array Radar Basics Jeffrey Herd MIT Lincoln Laboratory. 17 November 2009

If you can't read please download the document

Upload: vuongcong

Post on 06-Feb-2018

236 views

Category:

Documents


3 download

TRANSCRIPT

  • Radar CourseJSH -1

    MIT Lincoln Laboratory

    Phased Array Radar Basics

    Jeffrey Herd

    MIT Lincoln Laboratory17 November 2009

  • MIT Lincoln LaboratoryRadar CourseJSH -2

    Outline

    History and Evolution of Phased Arrays Phased Array Radar Fundamentals

    Array Beamforming Electronic Scanning Active Transmit-Receive Modules

    Summary

  • MIT Lincoln LaboratoryRadar CourseJSH -3

    T R

    Radar Antenna Architectures

    Dish Antenna

    Very low cost Frequency diversity Slow scan rate High distribution loss Single point of failure

    MILLSTONE

    T R

    Passive Phased Array

    Beam agility Effective radar resource

    management High distribution loss Higher cost

    SPY-1

    Beamformer

    T R

    Active Phased Array

    Highest performance Effective radar resource

    management Low distribution loss Highest cost

    THAAD

    T/R Modules

  • MIT Lincoln LaboratoryRadar CourseJSH -4

    MIT LL Millstone Radar 2 Klystrons with 3 MW peak power

    120 kW avg power

    Center Frequency of 1295 MHz

    8 MHz bandwidth

    Millstone Klystron Tube

    Dish Radar Example

    Advantages High output power Low cost per watt

    Disadvantages Single point of failure Large size

    $400,000/tube 7 ft x 1ft 600 lbs 3% duty cycle 42 dB gain

  • MIT Lincoln LaboratoryRadar CourseJSH -5

    Solid State Array Radar Example

    PAVE PAWS First all-solid-state array radar UHF Band 1800 active transceiver T/R

    modules, 340 W of peak power each

    Advantages Electronic beam agility Low maintenance (no moving

    parts) Graceful degradation

    Disadvantages Higher cost per watt

    Transmit and Receive Modules

  • MIT Lincoln LaboratoryRadar CourseJSH -6

    Airb

    orne

    Surf

    ace

    Phased Array Radar Evolution

    PatriotC-Band

    SPY-1S-Band

    B-1BX-Band

    JSTARSX-Band

    Passive Arrays( Phase Shifter at Element)

    F/A-22X-Band

    JSFX-Band

    THAADX-Band

    SBXX-Band

    MP-RTIPX-Band

    SPY-3X-Band

    Active Arrays(Amplifiers + Phase Shifter at Element)

    1985

    1975

    1980

    2015

    2005

    2000

    1995

    1990

    2010

    Increasing Beam Agility

  • MIT Lincoln LaboratoryRadar CourseJSH -7

    Outline

    History and Evolution of Phased Arrays Phased Array Radar Fundamentals

    Array Beamforming Electronic Scanning Active Transmit-Receive Modules

    Summary

  • MIT Lincoln LaboratoryRadar CourseJSH -8

    Multiple antennas combined to enhance radiation and shape pattern

    Array Beamforming

    Array Phased ArrayIsotropicElement

    PhaseShifter

    S

    CombinerS S

    Direction

    Res

    pons

    e

    Direction

    Res

    pons

    e

    Direction

    Res

    pons

    e

    Direction

    Res

    pons

    e

    Array

  • MIT Lincoln LaboratoryRadar CourseJSH -9

    Array Beamforming (Beam Collimation)

    Broadside Beam Scan To 30 deg

    Want fields to interfere constructively (add) in desired directions, and interfere destructively (cancel) in the remaining space

  • MIT Lincoln LaboratoryRadar CourseJSH -10

    Broadside Uniform Linear Array

    d = l/4 separation d = l/2 separation d = l separation

    Angle off Array q (deg) Angle off Array q (deg) Angle off Array q (deg)0 30 60 90 120 150 180

    Dire

    ctiv

    ity (d

    Bi)

    GratingLobes

    0 30 60 90 120 150 180-30

    -20

    -10

    0

    10

    20

    0 30 60 90 120 150 180

    10 dBi7 dBi

    10 dBi

    L = (N-1) d

    z

    90q = Maximum at

    90cos 0k d

    qy q b

    = = + =

    Design Goal0b =

    Required Phase

    N = 10 Elements

    Limit element separation to d < l to preventgrating lobes for broadside array

  • MIT Lincoln LaboratoryRadar CourseJSH -11

    Increasing Broadside Linear ArraySize by Adding Elements

    Gain ~ 2N(d / l) ~ 2L / lfor long broadside array without grating lobes*

    N = 10 Elements

    Dire

    ctiv

    ity (d

    Bi)

    Angle off Array q (deg)0 30 60 90 120 150 1800 30 60 90 120 150 1800 30 60 90 120 150 180-30

    -20

    -10

    0

    10

    20

    10 dBi 13 dBi 16 dBi

    Angle off Array q (deg) Angle off Array q (deg)

    N = 40 ElementsN = 20 Elements

    Element Separation d = l/2

    * d < l

    L = (N-1) d

    z

  • MIT Lincoln LaboratoryRadar CourseJSH -12

    Excitation AmplitudesTapers Across 10 Element Linear Array

    Uniform Amplitude Binomial26 dB Dolph-Tschebyscheff

    -

    1 2 3 4 5 6 7 8 9 10

    1

    2

    3

    1 2 3 4 5 6 7 8 9 10

    1

    2

    3

    1 2 3 4 5 6 7 8 9 10

    50

    100

    150

    1

    0 30 60 90 120 150 180-40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    0 30 60 90 120 150 180-40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    0 30 60 90 120 150 180-40

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    13 dB SLL

    26 dB SLL

    No Sidelobes -Theoretical Result!

    Amplitude & Phase Errors Limit the Sidelobe Level (SLL)That Can Be Achieved in Practice: > 40 dB is Challenging

  • MIT Lincoln LaboratoryRadar CourseJSH -13

    Polarization

    rE

    HorizontalLinear

    (with respectto Earth)

    Defined by behavior of the electric field vector as it propagates in time

    r

    E

    VerticalLinear

    (with respectto Earth)

    ElectromagneticWave Electric Field

    Magnetic Field

    q

    f

    r

  • MIT Lincoln LaboratoryRadar CourseJSH -14

    Active Array T/R Module

  • MIT Lincoln LaboratoryRadar CourseJSH -15

    T/R Module / Subarray Integration

    High levels of integration reduce unit cost Automated assembly and test reduces touch labor cost

    64 Element Tile

  • MIT Lincoln LaboratoryRadar CourseJSH -16

    Summary

    Phased array provides improvements in radar functionality and performance

    Beam agility

    Effective radar resource management

    Graceful degradation with module failures

    Current trend is towards active arrays with distributed T/R modules

    Large number of distributed active components and control

    High levels of integration required to achieve low cost

  • MIT Lincoln LaboratoryRadar CourseJSH -17

    References

    General Antenna Theory and Design: Balanis, C.A., Antenna Theory: Analysis and Design, 2nd ed. New

    York: Wiley, 1997.* Elliot, R. S., Antenna Theory and Design. New Jersey: Prentice-Hall,

    1981. Kraus, J.D., Antennas 2nd ed. New York: McGraw-Hill, 1993. Stutzman W. L., Thiele, G. A., Antenna Theory and Design, 2nd ed.

    New York: Wiley, 1998. Special Topics:

    Hansen, R. C., Microwave Scanning Antennas. California: Peninsula Publishing, 1985.

    Pozar, D. M., Schaubert, D. H. eds., Microstrip Antennas: The Analysis and Design of Microstrip Antennas and Arrays. New York: IEEE, 1995.

    Handbooks: Lo, Y.T. and Lee S.W. eds., Antenna Handbook, Theory, Applications,

    and Design. New York: Van Nostrand Reinhold, 1993. Mailloux, R. J., Phased Array Antenna Handbook. Artech House,

    1994.

    Phased Array Radar BasicsOutlineRadar Antenna ArchitecturesSlide Number 4Solid State Array Radar Example Slide Number 6OutlineArray BeamformingArray Beamforming (Beam Collimation)Slide Number 10Slide Number 11Excitation AmplitudesTapers Across 10 Element Linear ArrayPolarizationActive Array T/R ModuleT/R Module / Subarray IntegrationSummaryReferences