perbandingan analisis biomekanika gait cycle pada...

7
Petunjuk Sitasi: Hardiningtyas, D., Putri, Y. W., & Efranto, R. Y. (2017). Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong. Prosiding SNTI dan SATELIT 2017 (pp. B305-311). Malang: Jurusan Teknik Industri Universitas Brawijaya. SNTI dan SATELIT, 4-6 Oktober 2017, Batu B-305 Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong Dewi Hardiningtyas (1) , Yana Windy Sesha Putri (2) , Remba Yanuar Efranto (3) Jurusan Teknik Industri, Fakultas Teknik Universitas Brawijaya (1), (2), (3) Jl. MT. Haryono No. 167, Malang, Indonesia 65145 (1) [email protected], (2) [email protected], (3) [email protected] ABSTRAK Pekerjaan pemindahan bahan secara manual seringkali dilakukan di tempat kerja, yang meliputi menarik, mendorong, membawa, ataupun memindahkan. Setiap kegiatan manual tersebut berpotensi menyebabkan gangguan tulang dan otot (musculoskeletal disorder) apabila dilakukan pada postur yang berlebihan. Tujuan dari penelitian ini adalah untuk mengidentifikasi nilai gaya dan momen pada postur mendorong benda kerja beam benang dengan berat berkisar antara 200-450 kg. Gait cycle digunakan untuk mengidentifikasi secara lebih detail besarnya gaya dan momen pada setiap fase berjalan. Setiap fase tersebut sebelumnya telah digambarkan menggunakan free-body diagram untuk mennetukan titik pusat massa pada setiap segmen tubuh. Hasil penelitian ini menunjukkan bawah segmen punggung mengalami gaya terbesar (2015,7 N) yang disebabkan karena aktivitas mendorong dan reaksi terhadap berat benda kerja. Nilai momen terbesar juga dialami segmen punggung pada fase midstance sebesar 1710,5 N dan nilai momen terkecil pada segmen lengan bawah fase heel off sebesar 53,8 N. Perubahan postur dengan memperkecil sudut terutama pada segmen punggung diprediksikan dapat memperkecil nilai gaya dan momen pada postur mendorong beam benang, serta mengurangi potensi risiko cidera tulang belakang. Kata kuncibiomekanika, fase berjalan, gait cycle, postur kerja, mendorong I. PENDAHULUAN Aktivitas perpindahan benda kerja secara manual masih seringkali ditemukan di berbagai unit produksi. Aktivitas tersebut meliputi postur mengangkat, mendorong, menarik, maupun membawa. Perkembangan penelitian biomekanika pada fase berjalan normal telah banyak diketahui, namun masih sedikit yang fokus pada aktivitas mendorong. Menurut Roffey, dkk (2010) aktivitas mendorong masih belum terbukti secara mutlak dapat menyebabkan cidera tulang belakang (low back pain / LBP) yang merupakan salah satu penyakit pada musculoskeletal disorders (MSDs) hingga pada rentang benda kerja 25-30 kg. Namun di beberapa unit produksi tekstil, masih terdapat aktivitas mendorong benda kerja seperti beam benang dengan massa 200- 450 kg dari satu titik ke titik lainnya. Beam diletakkan diatas alat bantu dorong berupa pallet beroda untuk mengurangi gaya gesek antara beam dengan lantai. Walaupun aktivitas mendorong menjadi lebih ringan, namun perlu diidentifikasi lebih lanjut besarnya gaya tekan terhadap setiap segmen tersebut dan evaluasi apakah postur ini tergolong postur yang membahayakan atau tidak. Beban kerja fisik yang melewati batas kemampuan dapat mengakibatkan terjadinya risiko pada gangguan sistem otot-rangka (Iridiastadi & Yassierli, 2014). Postur yang salah seperti mendorong dan membungkuk menyebabkan risiko terjadinya MSDs dan kelelahan dini. MSDs adalah cidera pada otot, saraf, tendon, ligamen, sendi, tulang rawan, atau cakram tulang belakang (Kuswana, 2014). Sejumlah dampak buruk lainnya akibat dari beban yang berlebih berpengaruh pada kualitas dan performansi kerja. Dampak ini dapat berupa penurunan konsentrasi saat bekerja, peningkatan kesalahan dalam pengambilan keputusan serta peningkatan potensi kecelakaan kerja. Maka dari itu sistem manajerial yang berhubungan dengan manusia membutuhkan perhatian lebih, khususnya pada manusia dan alat kerjanya untuk meminimalisir terjadinya kecelakaan kerja. Postur mendorong yang diamati adalah seorang operator yang bertugas memindahkan gulungan benang seberat 200-450 kg atau yang dikenal dengan istilah beam selama jam kerja.

Upload: lenhu

Post on 29-Aug-2018

222 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Petunjuk Sitasi: Hardiningtyas, D., Putri, Y. W., & Efranto, R. Y. (2017). Perbandingan Analisis Biomekanika Gait

Cycle pada Postur Mendorong. Prosiding SNTI dan SATELIT 2017 (pp. B305-311). Malang: Jurusan Teknik Industri Universitas Brawijaya.

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-305

Perbandingan Analisis Biomekanika Gait Cycle

pada Postur Mendorong

Dewi Hardiningtyas(1)

, Yana Windy Sesha Putri(2)

, Remba Yanuar Efranto(3)

Jurusan Teknik Industri, Fakultas Teknik Universitas Brawijaya(1), (2), (3)

Jl. MT. Haryono No. 167, Malang, Indonesia 65145 (1)

[email protected], (2)

[email protected], (3)

[email protected]

ABSTRAK Pekerjaan pemindahan bahan secara manual seringkali dilakukan di tempat kerja,

yang meliputi menarik, mendorong, membawa, ataupun memindahkan. Setiap kegiatan

manual tersebut berpotensi menyebabkan gangguan tulang dan otot (musculoskeletal

disorder) apabila dilakukan pada postur yang berlebihan. Tujuan dari penelitian ini

adalah untuk mengidentifikasi nilai gaya dan momen pada postur mendorong benda

kerja beam benang dengan berat berkisar antara 200-450 kg. Gait cycle digunakan untuk

mengidentifikasi secara lebih detail besarnya gaya dan momen pada setiap fase berjalan.

Setiap fase tersebut sebelumnya telah digambarkan menggunakan free-body diagram

untuk mennetukan titik pusat massa pada setiap segmen tubuh. Hasil penelitian ini

menunjukkan bawah segmen punggung mengalami gaya terbesar (2015,7 N) yang

disebabkan karena aktivitas mendorong dan reaksi terhadap berat benda kerja. Nilai

momen terbesar juga dialami segmen punggung pada fase midstance sebesar 1710,5 N

dan nilai momen terkecil pada segmen lengan bawah fase heel off sebesar 53,8 N.

Perubahan postur dengan memperkecil sudut terutama pada segmen punggung

diprediksikan dapat memperkecil nilai gaya dan momen pada postur mendorong beam

benang, serta mengurangi potensi risiko cidera tulang belakang.

Kata kunci— biomekanika, fase berjalan, gait cycle, postur kerja, mendorong

I. PENDAHULUAN

Aktivitas perpindahan benda kerja secara manual masih seringkali ditemukan di berbagai unit

produksi. Aktivitas tersebut meliputi postur mengangkat, mendorong, menarik, maupun

membawa. Perkembangan penelitian biomekanika pada fase berjalan normal telah banyak

diketahui, namun masih sedikit yang fokus pada aktivitas mendorong. Menurut Roffey, dkk

(2010) aktivitas mendorong masih belum terbukti secara mutlak dapat menyebabkan cidera tulang

belakang (low back pain / LBP) yang merupakan salah satu penyakit pada musculoskeletal

disorders (MSDs) hingga pada rentang benda kerja 25-30 kg. Namun di beberapa unit produksi

tekstil, masih terdapat aktivitas mendorong benda kerja seperti beam benang dengan massa 200-

450 kg dari satu titik ke titik lainnya. Beam diletakkan diatas alat bantu dorong berupa pallet

beroda untuk mengurangi gaya gesek antara beam dengan lantai. Walaupun aktivitas mendorong

menjadi lebih ringan, namun perlu diidentifikasi lebih lanjut besarnya gaya tekan terhadap setiap

segmen tersebut dan evaluasi apakah postur ini tergolong postur yang membahayakan atau tidak.

Beban kerja fisik yang melewati batas kemampuan dapat mengakibatkan terjadinya risiko

pada gangguan sistem otot-rangka (Iridiastadi & Yassierli, 2014). Postur yang salah seperti

mendorong dan membungkuk menyebabkan risiko terjadinya MSDs dan kelelahan dini. MSDs

adalah cidera pada otot, saraf, tendon, ligamen, sendi, tulang rawan, atau cakram tulang belakang

(Kuswana, 2014). Sejumlah dampak buruk lainnya akibat dari beban yang berlebih berpengaruh

pada kualitas dan performansi kerja. Dampak ini dapat berupa penurunan konsentrasi saat bekerja,

peningkatan kesalahan dalam pengambilan keputusan serta peningkatan potensi kecelakaan kerja.

Maka dari itu sistem manajerial yang berhubungan dengan manusia membutuhkan perhatian

lebih, khususnya pada manusia dan alat kerjanya untuk meminimalisir terjadinya kecelakaan

kerja.

Postur mendorong yang diamati adalah seorang operator yang bertugas memindahkan

gulungan benang seberat 200-450 kg atau yang dikenal dengan istilah beam selama jam kerja.

Page 2: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Hardiningtyas, Putri, dan Efranto

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-306

Beam dipindahkan oleh operator dengan cara mendorong sejauh 6-10 m dari bagian sizing ke

gudang. Dalam sehari, setiap operator dapat memindahkan 8-9 beam. Postur dasar aktivitas ini

adalah dengan posisi leher serta kepala menghadap ke bawah dan juga posisi punggung yang

membungkuk berlebihan. Tentunya hal tersebut berpotensi mengandung risiko LBP.

Untuk mengidentifikasi postur mendorong beam pada salah satu unit produksi tekstil, terlebih

dahulu dilakukan penggambaran postur sesuai dengan fase berjalan (walking gait cycle). Berjalan

merupakan gerakan tubuh untuk berpindah dari satu tempat ke tempat yang lain (Perry, 2010).

Pada dasarnya, gait cycle terdiri dari 2 periode, yaitu periode berdiri (stance) dimana kaki

mengenai landasan dan periode mengayun (swing) dimana kaki tidak mengenai landasan. Periode

berdiri dimulai pada saat tumit menyentuh tanah (heel strike), kemudian dilanjutkan dengan kaki

menapak penuh ke tanah (foot flat). Mid stance adalah posisi dimulainya foot flat dan berakhir

pada saat heel strike. Fase heel off terjadi pada saat salah satu kaki mulai meninggalkan tanah dan

kaki yang lain mengenai landasan. Fase toe off ketika heel strike oleh kaki kiri dan kaki kanan

meninggalkan landasan untuk mengayun. Periode mengayun (swing) merupakan periode ketika

kaki tidak berada di landasan atau posisi berayun. Pada penelitian ini hanya akan diamati pada

periode berdiri saja,

Gambar 1. Fase Berjalan (Sumber : Levangie & Norkin, 2011)

Pengembangan model matematis analisis gaya postur kerja telah banyak digunakan di

berbagai penelitian. Pada proses scarfing, pendekatan biomekanika dikombinasikan dengan

OWAS (Ovako Working Postural Analysis System) dan Mannequin Pro untuk merancang alat

bantu yang lebih meringankan pekerjaan (Dirawidya, Tama, & Efranto, 2015). Perancangan alat

bantu berjalan long leg braces bagi penyandang cacat kaki tunggal juga lebih tepat jika

mempertimbangkan aspek perasaan pengguna (kansei) serta gaya yang bekerja pada kaki (Cendy,

Sugiono, & Hardiningtyas, 2015). Kajian biomekanika pada aktivitas berjalan amputee juga dapat

diterapkan ketika menaiki dan menuruni bidang miring dengan menggukana prosthetic

endoskeleton sistem energy storing knee mekanisme 2 bar (Aminasti, 2010). Sehingga pada

penelitian bertujuan untuk mengembangkan model matematis analisis biomekanika aktivitas

mendorong beam terhadap gait cycle, mengidentifikasi besarnya gaya dan momen ketika aktivitas

tersebut, serta mengevaluasi risiko gaya berlebih pada setiap segmen tubuh.

II. METODE

Penelitian ini dilakukan dengan mengamati langsung di unit produksi pada aktivitas

mendorong beam karena tidak memungkinkan untuk memindahkan benda kerja ke ruang

laboratorium. Pengambilan data antropometri tinggi dan berat badan operator digunakan sebagai

data primer dalam perhitungan panjang dan berat setiap segmen tubuh. Dari 24 orang operator

yang ada di unit produksi ini, memiliki deviasi tinggi badan yang tidak terlalu jauh, sehingga

dipilih persentil rata-rata yaitu tinggi badan 170 cm dan berat badan 64 kg. Panjang dan berat

setiap segmen tubuh merujuk pada proporsi panjang dan berat segmen yang telah dikemukan oleh

Adrian & Cooper (1989). Berat dan massa segmen diperoleh dari hasil perkalian proporsi

terhadap berat badan (Tabel 1). Pusat massa segmen diperoleh dari dengan hasil perkalin

persentase jarak titik pusat massa terhadap tinggi tubuh (Tabel 2).

Page 3: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-307

Tabel 1. Massa dan Berat Segmen Tubuh

Segmen Proporsi Massa (kg) Berat (N)

Kepala, leher & Punggung 51,4 33,1 324,4

Lengan atas (kanan) 3,0 1,9 18,9

Lengan bawah (kanan) 1,6 1,0 10,1

Tangan (kanan) 0,5 0,3 3,2

Paha (kanan) 12,9 8,3 81,4

Betis (kanan) 4,8 3,1 30,3

Kaki (kanan) 1,5 1,0 9,5

Lengan atas (kiri) 3,0 1,9 18,9

Lengan bawah (kiri) 1,6 1,0 10,1

Tangan (kiri) 0,2 0,1 1,1

Paha (kiri) 12,8 8,2 80,8

Betis (kiri) 4,7 3,0 30,0

Kaki (kiri) 1,5 1,0 9,5

Tabel 2. Jarak Pusat Massa Segmen Tubuh

Segmen

Pusat Massa

(% ketinggian di

Atas Lantai)

Pusat Massa

dari Atas Lantai

Kepala 93,5 % 1,59 m

Batang tubuh dan leher 71,1 % 1,21 m

Lengan atas 71,7 % 1,22 m

Lengan bawah 55,3 % 0,94 m

Paha 42,5 % 0,72 m

Betis 18,2 % 0,30 m

Perhitungan biomekanika dilakukan dengan mengambil gambar postur mendorong beam pada

kelima fase berjalan, yaitu heel strike, foot flat, midstance, heel off dan toe off. Setiap

dokumentasi (gambar dan video) tersebut digambarkan ulang dengan free-body diagram untuk

menyederhanakan identifikasi titik-titik gaya pada setiap segmen. Pada penelitian ini, gaya

segmen pada pusat massa segmen dianggap mewakili berat rangka dan otot yang membentuk

segmen tersebut. Setelah diketahui model free-body diagram setiap fase, maka dapat ditemukan

sudut yang terbentuk antar segmen tubuh sebagai data untuk perhitungan gaya dan momen.

Gaya dapat didefinisikan sebagai suatu pengaruh pada sebuah benda yang menyebabkan

benda menjadi berubah kecepatannya. Gaya dalam pergerakan didefinisikan sebagai penyebab

berpindahnya suatu benda atau objek dikarenakan suatu tindakan. Kontraksi otot dalam tubuh

manusia merupakan gaya internal yang utama dalam menghasilkan suatu pergerakan pada segmen

tubuh yang diberikan beban (Adrian & Cooper, 1989).

∑ Fx = 0 (1)

∑ Fy = 0 (2)

dengan, ∑ Fx = Resultan gaya yang bekerja di sumbu x (N)

∑ Fy = Resultan gaya yang bekerja di sumbu y (N)

Resultan gaya sama dengan nol menunjukkan bahwa benda berada pada posisi yang diam

atau benda yang bergerak dengan kecepatan konstan (Tipler, 1991). Beban yang terima oleh

tubuh nantinya akan didistribusikan ke anggota tiap tubuh yang lain karena tubuh merupakan satu

kesatuan. Sehingga gaya dalam tubuh manusia menggambarkan tekanan yang dirasakan oleh

tubuh manusia, semakin besar nilai gaya maka semakin besar pula tekanan akibat beban yang

diberikan, sehingga nanti akan terjadi suatu gerakan.

Gaya gesek adalah gaya yang membentuk sudut tangensial antara 2 permukaan benda yang

bersentuhan. Gaya gesek merupakan pasangan dari gaya normal yang nantinya menghasilkan total

Page 4: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Hardiningtyas, Putri, dan Efranto

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-308

gaya yang bekerja pada dua benda yang saling bersentuhan. Gaya gesek memiliki dua koefisien

gesekan yaitu koefisien gesekan statis μs dan koefisien gesekan kinetik μk. Koefisien gesekan

statis digunakan untuk benda diam, dimana gaya tersebut berlawanan arah dengan arah gaya yang

berusaha menggerakkan benda. Sedangkan koefisien gesekan kinetik digunakan untuk benda

yang bergerak, dimana gaya tersebut arahnya berlawanan dengan arah gerak benda (Satriawan,

2012).

Fs = μs * FN (3)

dengan, Fs = gaya gesek statis (N)

μs = koefisien gaya gesek statis

FN = gaya normal (N)

Momen gaya atau yang biasa disebut torsi merupakan gaya yang menyebabkan suatu benda

mengalami pergerakan rotasi. Momen didapatkan dari hasil kali gaya dengan jarak (Kuswana,

2014). Momen dalam tubuh manusia dapat didefinisikan sebagai sebab terjadinya suatu

pergerakan pada segmen tubuh akibat dari gaya yang dikeluarkan oleh tubuh. Selain

mempertimbangkan gaya dan jarak. Jika jarak yang dibentuk oleh segmen tubuh semakin besar

makan risiko cidera juga semakin besar. Sehingga, momen dalam tubuh manusia dapat diartikan

sebagai tingkat cidera dalam tubuh ketika melakukan suatu pergerakan.

M = F * d * sin ɵ (4)

∑ M = 0 (5)

dengan, M = momen (Nm)

F = gaya (N)

d = jarak (m)

Hasil formulasi matematis dan perhitungannya kemudian dibandingkan pada setiap segmen

tubuh dan setiap fase berjalan. Dari nilai-nilai tersebut, dapat diketahui apakah postur mendorong

beam benang tergolong aktivitas yang berisiko atau tidak, serta segmen tubuh yang manakah yang

paling tinggi risiko cideranya.

III. HASIL PENELITIAN

Pendekatan biomekanika diterapkan pada penelitian ini untuk menganalisis gait cycle fase

berjalan pada aktivitas mendorong beam benang. Kelima fase tersebut digambarkan dan

ditentukan titik-titik gaya yang bekerja pada segmen baik di sumbu x maupun y, serta sudut yang

terbentuk antar segmen. Gambar 2 merupakan free-body diagram untuk kelima fase berjalan pada

aktivitas mendorong beam. Penggunaan free-body diagram akan menyederhanakan bentuk tubuh

manusia dan memudahkan dalam mengidentifikasi gaya yang bekerja pada tubuh.

Gambar 2. Fase Berjalan Aktivitas Mendorong Beam

Page 5: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-309

Perhitungan gaya pada beam bertujuan untuk mengetahui berat beam yang di dorong oleh

operator ketika terdapat alat bantu dorong. Dengan adanya alat bantu tersebut, berat beam yang

dirasakan operator akan lebih kecil dari berat sebenarnya. Gambar 3 merupakan penguraian gaya

pada beam. Nilai μs yang digunakan yaitu sebesar 0,45 yang merupakan sifat kedua permukaan

benda yang bersentuhan yaitu antara baja dengan baja. Dari perhitungan diperoleh nilai gaya

dorong yang dikeluarkan oleh operator yaitu sebesar 1984,5 N.

Gambar 3. Gaya Dorong yang Bekerja pada Beam dan Alat Bantu

∑ Fx = 0

Fdorong – Fs = 0

Fdorong = Fs

= μs * FN

= μs * Wbeam

= 0,45 * 450 kg * 9,8 m/s

= 1984,5 N

Selanjutnya perhitungan gaya dan momen dilakukan pada setiap segmen tubuh dengan

mempertimbangkan sudut yang terbentuk pada fase berjalan yang telah digambarkan sebelumnya.

Gambar 4 merupakan contoh identifikasi setiap gaya yang bekerja pada segmen tubuh lengan

bahwa fase pertama yaitu heel strike. Titik A merupakan tangan, dan titik B merupakan siku. Pada

sumbu x terdapat gaya dorong (Fdorong) yang bekerja pada tangan, sehingga menyebabkan reaksi

pada siku berupa Fx1. Segmen lengan bawah mempunyai berat yang ditunjukkan dengan gaya

berat (W) sehingga menyebabkan reaksi pada siku berupa Fy1. Gaya yang bekerja pada siku (FB)

merupakan resultan gaya Fx1 dan Fy1. Perhitungan tersebut dilanjutkan hingga diperoleh nilai gaya

yang bekerja pada setiap segmen tubuh dan setiap fase seperti pada tabel 3. Perhitungan momen

menggunakan persamaan (4) dan (5) dengan pengaruh sudut dan jarak yang terbentuk.

Rekapitulasi perhitungan momen ditunjukkan pada tabel 4.

ƩFx = 0 ƩFy = 0

Fx1 – Fdorong = 0 Fy1 – W = 0

Fx1 = Fdorong Fy1 = W

= 1984,5 N / 2 = m x g

= 992,25 N = 10,09 N

Gambar 4. Free-body diagram segmen lengan bawah fase heel strike

FB = √∑ ∑

= √ = 992,3 N

Ʃ M = 0

M1 = (W x O x sin (33,5)) + (Fdorong x P x sin (33,5))

= 148,52 Nm

Page 6: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Hardiningtyas, Putri, dan Efranto

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-310

Dari tabel 3 dapat diketahui bahwa nilai gaya pada segmen di semua fase cenderung sama

dikarenakan besarnya gaya hanya dipengaruhi oleh gaya reaksi yang dirasakan oleh tubuh

operator sebagai akibat dari aktivitas mendorong dan juga dipengaruhi berat dari segmen tersebut.

Nilai gaya pada semua segmen memiliki nilai yang cukup besar, hal tersebut dipengaruhi oleh

berat dari beam yang didorong oleh operator yaitu sebesar 450kg, dimana berat tersebut melebihi

batas beban dorong yang dianjurkan oleh Health and Safety Executive (2012) yaitu sebesar 20 kg

untuk laki-laki. Namun untuk berat beam tidak dapat dikurangi dikarenakan dalam satu beam

berisi satu jenis benang dengan spesifikasi yang telah ditentukan di awal.

. Tabel 3. Nilai Gaya (N) pada Setiap Segmen dan Fase Berjalan

Segmen Heel strike Foot flat Mid stance Heel off Toe off

Lengan bawah 992,30 992,30 992,30 992,30 992,30

Lengan atas 992,67 992,67 992,67 992,67 992,67

Punggung 2015,73 2015,73 2015,73 2015,73 2015,73

Paha kanan 1083,35 1083,35 1083,35 1083,35 1083,35

Betis kanan 1095,86 1095,86 1095,86 1095,86 1095,86

Paha kiri 1083,10 1083,10 1083,10 1083,10 1083,10

Betis kiri 1095,32 1095,32 1095,32 1095,32 1095,32

Nilai gaya paling besar terdapat pada segmen punggung yaitu sebesar 2015,7 N, hal tersebut

dikarenakan punggung menjadi penopang utama dari beban pendorongan yang melebihi dari

batas pendorongan. Aktivitas mendorong termasuk ke dalam aktivitas manual material handling

yang melibatkan berbagai kelompok otot terutama otot penyangga tulang belakang yang memiliki

fungsi untuk memelihara postur tubuh, menjaga keseimbangan tubuh dan koordinasi

keseimbangan yang baik, masa kerja yang lama juga berpengaruh pada nyeri punggung bawah

akibat dari akumulasi beban pada tulang belakang, semakin besar beban yang diterima maka

tekanan pada tulang belakang menjadi semakin besar.Selain itu juga dikarenakan segmen

punggung menerima gaya dari segmen lengan atas kanan dan segmen lengan atas kiri yang di

distribusikan ke satu punggung, karena tubuh merupakan satu kesatuan yang saling berpengaruh

antar segmen sebelum dan sesudahnya. Sedangkan untuk nilai gaya pada segmen paha terbagi dua

dikarenakan jumlah gaya yang diterima oleh punggung diterima oleh dua paha yaitu paha kanan

dan paha kiri. Nilai gaya kedua terbesar yaitu pada segmen betis sebesar 1095,8, hal tersebut

dikarenakan betis menopang bagian tubuh secara keseluruhan dan juga menjadi tumpuan ketika

berjalan sehingga segmen betis menerima gaya dari segmen lengan atas, lengan bawah, punggung

dan paha, akibatnya tekanan yang dirasakan untuk menahan beban juga semakin besar pula.

Tabel 4. Nilai Momen (Nm) pada Setiap Segmen dan Fase Berjalan

Segmen Heel strike Foot flat Mid stance Heel off Toe off

Lengan bawah 148,52 268,57 214,85 53,40 75,50

Lengan atas 308,95 502,67 534,37 269,13 327,93

Punggung 894,73 1163,90 1756,34 1637,75 1670,40

Paha kanan 375,81 500,33 1262,66 1219,52 1230,55

Betis kanan 766,30 927,26 1442,58 1551,86 1453,79

Paha kiri 718,52 714,00 1165,69 837,75 1036,33

Betis kiri 1042,82 1137,76 1549,60 1208,29 1421,54

Dari tabel 4 dapat dilihat bahwa nilai momen pada semua segmen di semua fase cenderung

memiliki pola yang sama berturut-turut dari nilai kecil ke besar yaitu segmen lengan bawah,

segmen lengan atas, segmen paha, segmen betis dan segmen punggung. Besarnya nilai momen

tersebut dipengaruhi oleh jarak perpindahan sudut pada segmen dan juga dipengaruhi oleh nilai

momen di segmen yang sebelumnya. Nilai momen total terbesar terdapat pada fase mid stance

yaitu sebesar 7926,10 Nm. Hal tersebut menunjukkan bahwa fase mid stance memiliki risiko

cidera yang paling besar diantara semua fase berjalan.

Page 7: Perbandingan Analisis Biomekanika Gait Cycle pada …k8bksti.ub.ac.id/wp-content/uploads/2017/11/46.-KONGRES_VIII_BK…Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

Perbandingan Analisis Biomekanika Gait Cycle pada Postur Mendorong

SNTI dan SATELIT, 4-6 Oktober 2017, Batu

B-311

Nilai momen segmen punggung rata-rata memiliki nilai yang besar diantara semua fase,

terutama pada fase mid stance sebesar 1756,34 Nm, karena pengaruh dari nilai momen lengan

atas yang cukup besar yaitu sebesar 534.37 Nm. Nilai momen segmen punggung kedua terbesar

yaitu pada fase toe off yaitu sebesar 1670,4 Nm. Hal tersebut dikarenakan ketika mendorong

tubuh operator terlalu membungkuk sehingga membentuk sudut perpindahan segmen yang cukup

besar. Semakin operator membungkuk maka risiko terjadinya cidera punggung belakang juga

semakin besar pula. Selain itu, nilai momen terbesar juga terdapat pada segmen betis, hal tersebut

dikarenakan betis menahan beban dari anggota tubuh keseluruhan dan menjadi tumpuan ketika

operator berjalan. Hal tersebut selaras dengan pernyataan operator bahwa ketika operator

mendorong, bagian tubuh yang sering terjadi keluhan yaitu pada segmen punggung dan betis.

IV. PENUTUP

Berdasarkan analisis postur tubuh operator dengan menggunakan fase berjalan gait cycle, fase

berjalan dibagi menjadi lima fase yaitu heel strike, foot flat, mid stance, heel off dan toe off. Dari

kelima fase tersebut memiliki nilai gaya yang cenderung sama dikarenakan besarnya gaya hanya

dipengaruhi oleh gaya reaksi yang dirasakan oleh tubuh operator sebagai akibat dari aktivitas

mendorong dan juga dipengaruhi berat dari segmen tersebut. Nilai gaya terbesar rata-rata terdapat

pada segmen punggung di semua fase yaitu sebesar 2015,73 N, dan nilai gaya terkecil terdapat

pada segmen lengan bawah yaitu sebesar 992,30 N. Sedangkan untuk nilai momen memiliki nilai

yang berbeda-beda, hal tersebut dikarenakan nilai momen dipengaruhi oleh sudut perpindahan

segmen yang dimana setiap segmen membentuk sudut berbeda-beda. Untuk nilai momen terbesar

terdapat pada segmen punggung di fase mid stance yaitu sebesar 1710,53 Nm, dan nilai momen

terkecil terdapat pada segmen lengan bawah di fase heel off yaitu sebesar 53,89 Nm.

DAFTAR PUSTAKA Adrian, M., & Cooper, J. (1989). The Biomechanics of Human Movement. Indianapolis: McGraw-Hills Co.

Aminasti, I. K. (2010). Kajian Gait Dynamic pada Bidang Miring Bagi Pengguna Prosthetic Endoskeletal

Sistem Energy Storing Knee Mekanisme 2 Bar. Surakarta: Skripsi Jurusan Teknik Industri UNS.

Cendy, B., Sugiono, & Hardiningtyas, D. (2015). Analisis Perancangan Produk Long Leg Braces dengan

Pendekatan Kansei Words dan Biomekanika. Jurnal Rekayasa dan Manajemen Sistem Industri, 3(2).

Dirawidya, A., Tama, I., & Efranto, R. (2015). Perancangan Postur Kerja dan Alat Bantu pada Proses

Scarfing dengan Analisis Biomekanika. Jurnal Rekayasa dan Manajemen Sistem Industri, 3(7).

Health and Safety Executive. (2012). Manual Handling at Work : A Brief Guide. HSE.

Iridiastadi, H., & Yassierli. (2014). Ergonomi: Suatu Pengantar. Bandung: PT. Remaja Rosdakarya Offset.

Kuswana, W. S. (2014). Ergonomi dan K3 (Kesehatan Keselamatan Kerja). Bandung: PT. Remaja

Rosdakarya.

Levangie, P., & Norkin, C. (2011). Joint Structure and Function: A Comprehensive Analysis (5th ed.). F.A.

Davis Company.

Perry, J. (2010). Gait Analysis: Normal and Pathological Function (2nd ed.). New Jersey: SLACK

Incorporated.

Roffey, D., Wai, E., Bishop, P., Kwon, B., & Dagenais, S. (2010). Causal Assessment of Occupational

Pushing or Pulling and Low Back Pain: Results of A Systematic Review. The Spine Journal, 10, 544-

553.

Satriawan, M. (2012). Fisika Dasar. Yogyakarta: UGM.

Tipler, P. (1991). Fisika untuk Sains dan Teknik (3 ed.). Jakarta: Erlangga.