penrose tilings - université sorbonne paris nordfernique/qc/structure_2.pdf · penrose tilings...

123
Penrose Tilings Thomas Fernique Moscow, Spring 2011

Upload: others

Post on 27-Mar-2020

8 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose Tilings

Thomas Fernique

Moscow, Spring 2011

Page 2: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

1 Penrose tilings

2 Matching rules

3 Some properties

4 Pentagrids

Page 3: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

1 Penrose tilings

2 Matching rules

3 Some properties

4 Pentagrids

Page 4: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

The trouble with Kepler tilings

Page 5: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

The trouble with Kepler tilings

Page 6: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Regular pentagons almost tile a bigger pentagon.

Page 7: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Each pentagon can in turn be tiled by smaller pentagons.

Page 8: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Holes can be filled by diamonds.

Page 9: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.

Page 10: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Consider such a diamond with its neighborhood.

Page 11: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.

Page 12: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with a star, a boat and a pentagon.

Page 13: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Page 14: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Page 15: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Consider the star and the boat, with their neighborhood.

Page 16: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Tile pentagons by smaller pentagons and fill diamond holes.

Page 17: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

The rest can be tiled with the same tiles (and neighborhood)

Page 18: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

tiling of the plane by pentagons, diamonds, boats and stars.

Page 19: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

Method: inflate, divide and fill diamond-shaped holes – ad infinitum.

Page 20: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by pentagons, diamonds, boats and stars

This yields a hierarchical tiling of the plane (hence non-periodic).

Page 21: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by kites and darts

Page 22: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by kites and darts

Page 23: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by kites and darts

Page 24: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by kites and darts

Page 25: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by kites and darts

Page 26: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Mutual local derivability

Equivalence relation on tilings:

Definition (MLD tilings)

Two tilings are said to be mutually locally derivable (MLD) if theone can be obtained from the other by a local map, and vice versa.

Example: the two previous tilings are MLD.

Page 27: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by thin and fat rhombi

Page 28: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by thin and fat rhombi

Page 29: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by thin and fat rhombi

Page 30: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by thin and fat rhombi

Page 31: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Tilings by thin and fat rhombi

Page 32: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

1 Penrose tilings

2 Matching rules

3 Some properties

4 Pentagrids

Page 33: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

Page 34: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

Page 35: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

The trouble with Penrose tilings

The previous tilesets also admit periodic tilings.

Page 36: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Three aperiodic tilesets (Penrose, 1974)

Penrose’s trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)

Page 37: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Three aperiodic tilesets (Penrose, 1974)

Penrose’s trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)

Page 38: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Three aperiodic tilesets (Penrose, 1974)

Penrose’s trick: notch edges to enforce the hierarchical structure.

(tiles up to rotation)

Page 39: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Penrose tilings (formal)

Definition (Equivalence)

Two tilesets are equivalent if any tiling by one tileset is mutuallylocally derivable from a tiling by the other tileset.

Exercise: prove the equivalence of Penrose tilesets.

Definition (Penrose tilings)

A Penrose tiling is a tiling mutually locally derivable from a tilingof the whole plane by one of the three previous Penrose tilesets.

Page 40: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Robinson triangles

Notched rhombi are equivalent to colored rhombi.

Page 41: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Robinson triangles

Notched rhombi are equivalent to colored rhombi.

Page 42: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Robinson triangles

Colored rhombi are equivalent to Robinson triangles.

(tiles up to rotations and reflections)

Page 43: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Robinson macro-triangles

Robinson macro-triangle: homothetic unions of Robinson triangles.Up to this homothety, triangles and macro-triangles are equivalent.

Page 44: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Inflate and divide

Pattern + inflate/divide ad infinitum tiling of the plane (Konig).

Page 45: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Inflate and divide

Pattern + inflate/divide ad infinitum tiling of the plane (Konig).

Page 46: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Inflate and divide

Pattern + inflate/divide ad infinitum tiling of the plane (Konig).

Page 47: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Inflate and divide

Pattern + inflate/divide ad infinitum tiling of the plane (Konig).

Page 48: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Inflate and divide

Pattern + inflate/divide ad infinitum tiling of the plane (Konig).

Page 49: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Inflate and divide

Pattern + inflate/divide ad infinitum tiling of the plane (Konig).

Page 50: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

Conversely, fix a tiling of the plane. Consider a thin triangle (if any).

Page 51: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

?

What can be its red neighbor?

Page 52: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

!A thin triangle would yield an uncompletable vertex.

Page 53: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

This is thus a fat triangle.

Page 54: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

We can group both to form a thin macro-triangle.

Page 55: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

Consider a remaining fat triangle (if any).

Page 56: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

Its red neighbor is fat (otherwise it would be already grouped).

Page 57: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

?

What can be its blue neighbor?

Page 58: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

!

A fat triangle would yield an uncompletable vertex.

Page 59: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

This is thus a thin triangle

grouped into a thin macro-triangle

.

Page 60: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

This is thus a thin triangle grouped into a thin macro-triangle.

Page 61: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

We can group the three triangles to form a fat macro-triangle.

Page 62: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

Hence, any tiling by Robinson triangles. . .

Page 63: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

. . . can be uniquely seen as a tiling by Robinson macro-triangles.

Page 64: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

Macro-triangles can be consistently replaced by triangles. . .

Page 65: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

. . . and by deflating we get a new Penrose tiling.

Page 66: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Group and deflate

Group/deflate ad infinitum aperiodicity of Robinson triangles.

Page 67: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

1 Penrose tilings

2 Matching rules

3 Some properties

4 Pentagrids

Page 68: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Uncountability

Proposition

Penrose tilesets admit uncountably many tilings of the plane.

Proof:

track a tile in the tiling hierarchy infinite tile sequence;

tiles of isometric tilings sequences with the same tail ends;

infinite tile sequence tiling;

countably many sequences with the same tail end;

uncountably many infinite tile sequences.

Page 69: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r .

Definition (Quasiperiodic tiling)

A tiling is said to be quasiperiodic if, for any r > 0, there is R > 0such that any pattern of size r appears in any pattern of size R.

Quasiperiodic ≡ bounded gap ≡ repetitive ≡ uniformly recurrent.

Any periodic tiling is also quasiperiodic (take R = r + period).

Proposition

Penrose tilings are quasiperiodic.

Proof: first check for r = Diam(tile), then group/deflate.

Page 70: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Quasiperiodicity

Pattern of size r (in a tiling): tiles lying in a closed ball of radius r .

Definition (Quasiperiodic tiling)

A tiling is said to be quasiperiodic if, for any r > 0, there is R > 0such that any pattern of size r appears in any pattern of size R.

Quasiperiodic ≡ bounded gap ≡ repetitive ≡ uniformly recurrent.

Any periodic tiling is also quasiperiodic (take R = r + period).

Proposition

Penrose tilings are quasiperiodic.

Proof: first check for r = Diam(tile), then group/deflate.

Page 71: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Tile angles multiple of π5 only 5- or 10-fold symmetries (or 2-fold).

Page 72: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Up to isometry, three 5-fold elementary patterns.

Page 73: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Inflate/divide two 5-fold Penrose tilings of the plane.

Page 74: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Inflate/divide two 5-fold Penrose tilings of the plane.

Page 75: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Inflate/divide two 5-fold Penrose tilings of the plane.

Page 76: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

They are different even up to decorations.

Page 77: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

They are different even up to decorations.

Page 78: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Page 79: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Page 80: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

Conversely, a symmetry center must live in the whole hierarchy.

Page 81: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

There is thus only two 5-fold Penrose tilings of the plane.

Page 82: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Rotational symmetry

The uncountably many others have only local 5-fold symmetry.

Page 83: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling 5-fold diffractogram.

Page 84: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling 5-fold diffractogram.

Page 85: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling 5-fold diffractogram.

Page 86: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Remind quasicrystals

Point-holes at vertices of a Penrose tiling 5-fold diffractogram.

Page 87: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Vertex atlas

In Penrose tilings, Robinson triangles fit in 8 ways around a vertex.

Page 88: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Vertex atlas

Up to decorations, this yields a vertex atlas of size 7.

Page 89: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Vertex atlas

Proposition: any tiling with this vertex atlas is a Penrose tiling.

Page 90: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Vertex atlas

A similar vertex atlas for tilings by thin and fat rhombi.

Page 91: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Vertex atlas

A similar vertex atlas for tilings by kites and darts.

Page 92: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Ammann bars

Draw these two particular billiard trajectories in each triangle.

Page 93: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Ammann bars

1

1

4

Some trigonometry ratio characterizing the trajectories.

Page 94: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Ammann bars

This draws on Penrose tilings five bundles of parallel lines.

Page 95: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Ammann bars

This draws on Penrose tilings five bundles of parallel lines.

Page 96: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

1 Penrose tilings

2 Matching rules

3 Some properties

4 Pentagrids

Page 97: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Pentagrid (De Bruijn, 1981)

Sj

6

0-1-2-3-4 1

2

3

4

5

Shift sj ∈ R grid {z ∈ C | Re(zζ−j)+sj = 0}, where ζ = e2iπ/5.

Page 98: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Pentagrid (De Bruijn, 1981)

Sj

6

0-1-2-3-4 1

2

3

4

5

Strip numbering: Kj(z) = dRe(zζ−j) + sje.

Page 99: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Pentagrid (De Bruijn, 1981)

Pentagrid: grids 0, . . . , 4, with s0 + . . .+ s4 ∈ Z and no triple point.

Page 100: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

z1)f(z1

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 101: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

z12z

2zf( ))f(z1

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 102: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

z12z

3z

2zf( )

3zf( ))f(z1

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 103: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

z12z

3z4z

2zf( )

3zf( )

4zf( )

)f(z1

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 104: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

z12z

3z4z

5z6z

2zf( )

3zf( )

4zf( )

5zf( )6zf( )

)f(z1

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 105: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 106: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 107: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 108: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From pentagrids to rhombus tilings

f (z) :=∑

0≤j≤4

Kj(z)ζ j maps each mesh onto a rhombus vertex.

Page 109: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Indices

3

2

3

2

3

23

2

3

2

2

3

2

32

3

21

2

3

4

3

32

3

1

23

2

3

2

321

2

3

2

3

23223

1

42 3

41

4

4 3

2

13

4 3

2

2

3

3

2

23

2

34

32

3

4

3

4

3 2

3

2

12

3 2

1

21

3

3

2

1

1

1

3

2 3

2

1

2

3

4

3

3

2

3

4

3

3

3

2

3 4

2

4

3

23

24

3

2

3

4

2

2

1

2

2

3

2

4

3 2

2

i(z) :=∑

0≤j≤4

Kj(z) maps each mesh into {1, 2, 3, 4}. (check)

Page 110: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

?

Can the rhombi of such tilings be consistently notched?

Page 111: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

1

2

3 3

4

2 2

3

2

3 3

4

3

1

2 2

Lemma: each rhombus can be endowed by indices in only two ways.

Page 112: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

3

2

23

2

34

32

3

4

3

4

3 2

3

2

12

3 2

1

21

3

3

2

1

1

1

3

2 3

2

1

2

3

4

3

3

2

3

4

3

3

3

2

3 4

2

4

3

23

24

3

2

3

4

2

2

1

2

2

3

2

4

3 2

2

Lemma: each rhombus can be endowed by indices in only two ways.

Page 113: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

1

2

3 3

4

2 2

3

2

3 3

4

3

1

2 2

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.

Page 114: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

3

2

23

2

34

32

3

4

3

4

3 2

3

2

12

3 2

1

21

3

3

2

1

1

1

3

2 3

2

1

2

3

4

3

3

2

3

4

3

3

3

2

3 4

2

4

3

23

24

3

2

3

4

2

2

1

2

2

3

2

4

3 2

2

Double-arrow notchings from 3 to 4 and from 1 to 2: consistent.

Page 115: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

1

2

3 3

4

2 2

3

2

3 3

4

3

1

2 2

Notchings of remaining edges are forced. Is it consistent?

Page 116: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

1

2

3 3

4

2 2

3

2

3 3

4

3

1

2 2

Remark: single-arrow notchings go from acute to obtuse angles.

Page 117: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

Lemma: along an edge between 2 and 3, acute/obtuse angles match.

Page 118: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

This yields the consistency of the single-arrow notchings.

Page 119: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From rhombus tilings to Penrose tilings

3

2

23

2

34

32

3

4

3

4

3 2

3

2

12

3 2

1

21

3

3

2

1

1

1

3

2 3

2

1

2

3

4

3

3

2

3

4

3

3

3

2

3 4

2

4

3

23

24

3

2

3

4

2

2

1

2

2

3

2

4

3 2

2

This yields the consistency of the single-arrow notchings.

Page 120: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From Penrose tilings to pentagrids

Let φ~s be the rhombus tiling derived from the pentagrid of shift ~s.

Lemma: group/deflate φ~s yields φg(~s), where g(~s)j = sj−1 + sj+1.

Theorem (de Bruijn, 1981)

The Penrose tilings are exactly the tilings derived from pentagrids.

Proof:

Fix a Penrose tiling φ = φ(0);

inflate/divide n times Penrose tiling φ(n);

find ~sn such that φ~sn and φ(n) agree on B(0, 1);

group/deflate n times φgn(~sn) and φ(0) agree on B(0, τn);

gn(~sn) ∈ [0, 1)5 accumulation point t φ = φ(0) = φt .

Page 121: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

From Penrose tilings to pentagrids

Let φ~s be the rhombus tiling derived from the pentagrid of shift ~s.

Lemma: group/deflate φ~s yields φg(~s), where g(~s)j = sj−1 + sj+1.

Theorem (de Bruijn, 1981)

The Penrose tilings are exactly the tilings derived from pentagrids.

Proof:

Fix a Penrose tiling φ = φ(0);

inflate/divide n times Penrose tiling φ(n);

find ~sn such that φ~sn and φ(n) agree on B(0, 1);

group/deflate n times φgn(~sn) and φ(0) agree on B(0, τn);

gn(~sn) ∈ [0, 1)5 accumulation point t φ = φ(0) = φt .

Page 122: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Penrose tilings Matching rules Some properties Pentagrids

Application

Remind:

there are uncountably many Penrose tilings;

exactly two of them have a global five-fold symmetry.

Proof:

uncountably many shifts s0 + . . .+ s4 ∈ Z;

~0 center of symmetry iff sj = 25 or sj = −2

5 .

Page 123: Penrose Tilings - Université Sorbonne Paris Nordfernique/qc/structure_2.pdf · Penrose tilings (formal) De nition (Equivalence) Two tilesets are equivalent if any tiling by one tileset

Bibliography

Some references for this lecture:

Roger Penrose, Pentaplexity: a class of non-periodic tilings ofthe plane, Eureka 39 (1978).

Nicolaas Govert de Bruijn, Algebraic theory of Penrose’snon-periodic tilings of the plane, Indag. Math. 43 (1981).

Marjorie Senechal, Quasicrystals and Geometry, CambridgeUniversity Press, 1995. Chap. 6.

These slides and the above references can be found there:

http://www.lif.univ-mrs.fr/~fernique/qc/