pendahuluan defenisi transformasi jenis-jenis transformasi

48
Pendahuluan Defenisi Transformasi Jenis-Jenis Transformasi Refleksi Terhadap sumbu x Refleksi Terhadap sumbu y Refleksi Terhadap grs x=m Refleksi Terhadap grs y=n Refleksi Terhadap grs y=x Refleksi Terhadap grs y=-x Penutup 1 Benda Bayangan

Upload: morwen

Post on 14-Jan-2016

161 views

Category:

Documents


6 download

DESCRIPTION

Pendahuluan Defenisi Transformasi Jenis-Jenis Transformasi Refleksi Terhadap sumbu x Refleksi Terhadap sumbu y Refleksi Terhadap grs x=m Refleksi Terhadap grs y=n Refleksi Terhadap grs y=x Refleksi Terhadap grs y=-x - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

Pendahuluan Defenisi Transformasi Jenis-Jenis Transformasi Refleksi Terhadap sumbu x Refleksi Terhadap sumbu y Refleksi Terhadap grs x=m Refleksi Terhadap grs y=n Refleksi Terhadap grs y=x Refleksi Terhadap grs y=-x Penutup

1

Benda Bayangan

Page 2: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

Nama : Hendrik Pical

TTL : Banjar Masin,26-10-1956

Pendidikan : S1

Prodi : Matematika

Hobi : Menulis

Alamat Web : Blokmatek.wordpress.com

No.HP : 081248149394

Alamat Emai l: [email protected]

School : SMA Kristen Kalam Kudus Jayapura

Jl.Ardipura I No. 50. Telepon 0967-533467

Jayapura Papua

Page 3: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi
Page 4: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

MGMP MATEMATIKA

SD

SMP

SMA

SKKK JAYAPURA

Kami mohon Donasi dari saudara-saudara sekalian agar blog ini tetapEksis untuk membantu saudara-saudara sekalian agar dapat mengakses materi bahan ajar atau soal-soal dan lainnya dalam bentuk “POWERPOINT” silahkan salurkan lewat rekening Bank MANDIRI atas nama HENDRIK PICAL,A.Md,S.Sos dengan No. ac Bank1540004492181. dan konvirmasi lewat No. HP. 081248149394. Terima Kasih.

Page 5: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

5

TransformaTransformasisi

(Refleksi)(Refleksi)

Page 6: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

6

Setelah menyaksikan tayangan ini anda dapat

Menentukan peta atau bayangan suatu kurvahasil dari suatu Refleksi

Page 7: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

7

Defenisi Transformasi

Untuk memindahkan suatu titik ataubangun pada sebuah bidang dapatdikerjakan dengan transformasi.

Transformasi T pada suatu bidang‘memetakan’ tiap titik P pada bidang

menjadi P’ pada bidang itu pula.Titik P’ disebut bayangan atau peta titik P

Page 8: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

8

Jenis-jenis Transformasi

a. Tranlasi

b. Refleksi*)

c. Rotasi

d. Dilatasi

*) yang dibahas kali ini

Page 9: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

9

Refleksiartinya pencerminan

Bangun

Asal → peta

sumbu pencerminan

Page 10: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

10

Dalam geometri bidang,

sebagai cermin digunakan:sumbu Xsumbu y

Garis x = mGaris y = ngaris y = xgaris y =-x

Page 11: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

11

Refleksi terhadap sumbu X

●P(x,y)

●P’(x’,y’) = P’(x,- y)

x’ = x dan y’ = -y

XO

Y

Page 12: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

12

Berdasarkan gambar tersebut:

x’ = x

y’ = -y

dalam bentuk matriks:

y

x

y

x

10

01

'

'

Page 13: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

13

Sehingga

adalah matriks penceminan terhadap sumbu X

10

01

Page 14: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

14

Contoh 1

Diketahui segitiga ABC dengan

koordinat titik A(2,0), B(0,-5) dan

C(-3,1). Tentukan koordinat bayangan

segitiga ABC tersebut bila

dicerminkan terhadap sumbu X

Page 15: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

15

Bahasan

Pencerminan terhadap sumbu X

P(x,y) → P’(x,-y)

Jadi bayangan titik :

A(2,0) adalah A’(2,0)

B(0,-5) adalah B’(0,5)

C(-3,1) adalah C’(-3,-1)

Page 16: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

16

Contoh 2

Bayangan garis 3x – 2y + 5 = 0 oleh

refleksi terhadap sumbu X adalah….

Jawab:

oleh pencerminan terhadap sumbu x

maka: x’ = x → x = x’

y’ = -y → y = -y’

Page 17: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

17

x = x’ dan y = -y’

disubstitusi ke kurva 3x – 2y + 5 = 0

diperoleh: 3x’ – 2(-y’) + 5 = 0

3x’ + 2y’ + 5 = 0

Jadi bayangannya

adalah 3x + 2y + 5 = 0

Page 18: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

18

Refleksi terhadap sumbu Y

●P(x,y)

O

Y

P’(x’,y’)= P’(-x,y)

x’ = -x y’ = y

X

Page 19: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

19

Berdasarkan gambar tersebut:

x’ = -x

y’ = y

dalam bentuk matriks:

y

x

y

x

10

01

'

'

Page 20: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

20

Sehingga

adalah matriks penceminan terhadap sumbu Y

10

01

Page 21: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

21

Contoh

Tentukan bayangan kurva y = x2 – x

oleh pencerminan terhadap sumbu Y.

Jawab:

oleh pencerminan terhadap sumbu Y

maka: x’ = -x → x = -x’

y’ = y → y = y’

Page 22: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

22

x = -x’ dan y = y’

disubstitusi ke y = x2 – x

diperoleh: y’ = (-x’)2 – (-x’)

y’ = (x’)2 + x’

Jadi bayangannya

adalah y = x2 + x

Page 23: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

23

Refleksi terhadap garis x = m

● ●

O

YP’(x’,y’)x’ = 2m - xy’ = y

X

x = m

P(x,y)

Page 24: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

24

Contoh

Tentukan bayangan kurva y2 = x – 5

oleh pencerminan terhadap

garis x = 3.

Jawab:

oleh pencerminan terhadap garis x = 3

maka: x’ = 2m - x → x = 2.3 - x’ = 6 –x’

y’ = y → y = y’

Page 25: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

25

x = 6 – x’ dan y = y’ disubstitusi

ke y2 = x - 5

diperoleh: (y’)2 = (6 – x’) – 5

(y’)2 = 1 – x’

Jadi bayangannya adalah y2 = 1 - x

Page 26: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

26

Refleksi terhadap garis y = n

●P(x,y)

●P’(x’,y’) = P’(x,2n – y)

x’ = x dan y’ = 2n – y

XO

Y

y = n

Page 27: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

27

ContohTentukan bayangan kurva x2 + y2 = 4

oleh pencerminan terhadap

garis y = -3.

Jawab:

oleh pencerminan terhadap

garis y = - 3 maka: x’ = x

y’ = 2n - y

Page 28: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

28

pencerminan terhadap garis y = - 3

maka: x’ = x x = x’

y’ = 2n – y

y’ = 2(-3) – y

y’ = - 6 – y y = -y’ – 6

disubstitusi ke x2 + y2 = 4

(x’)2 + (-y’ – 6)2 = 4

Page 29: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

29

disubstitusi ke x2 + y2 = 4

(x’)2 + (-y’ – 6)2 = 4

(x’)2 +((-y’)2 + 12y’ + 36) – 4 = 0

Jadi bayangannya:

x2 + y2 + 12y + 32 = 0

Page 30: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

30

Refleksi terhadap garis y = x

●P(x,y)

garis y = x

XO

Y

●P’(x’,y’) = P’(y, x)

x’ = y

y’ = x

Page 31: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

31

Berdasarkan gambar tersebut:

x’ = y

y’ = x

dalam bentuk matriks:

y

x

y

x

01

10

'

'

Page 32: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

32

Sehingga

adalah matriks penceminan terhadap sumbu Y

01

10

Page 33: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

33

ContohBayangan garis 2x – y + 5 = 0

yang dicerminkan tehadap garis

y = x adalah….

Pembahasan:

Matriks transformasi refleksi

terhadap y = x adalah

Page 34: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

34

Bahasanmatriks transformasi refleksi

terhadap y = x adalah

01

10

x

y

y

x

y

x

01

10

'

'

Page 35: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

35

x

y

y

x

y

x

01

10

'

'

x’ = y dan y’ = x

disubstitusi ke 2x – y + 5 = 0

diperoleh: 2y’ – x ’ + 5 = 0

-x’ + 2y’ + 5 = 0

Page 36: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

36

-x’ + 2y’ + 5 = 0

dikali (-1) → x’ – 2y’ – 5 = 0

Jadi bayangannya adalah

x – 2y - 5 = 0

Page 37: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

37

Refleksi terhadap garis y = -x

XO

Y

●P’(x’,y’) = P’(-y,- x)

Garis y = -x ●P (x,y)

Page 38: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

38

Berdasarkan gambar tersebut:

x’ = -y

y’ = -x

dalam bentuk matriks:

y

x

y

x

01

10

'

'

Page 39: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

39

Sehingga

adalah matriks penceminan terhadap sumbu Y

01

10

Page 40: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

40

Contoh 1

Bayangan persamaan

lingkaran x2 + y2 - 8y + 7 = 0

yang dicerminkan tehadap

garis y = -x adalah….

Page 41: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

41

Bahasan:Matriks transformasi refleksi

terhadap y = -x adalah

sehingga:

01

10

y

x

y

x

01

10

'

'

Page 42: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

42

x

y

y

x

y

x

01

10

'

'

→ x’ = -y dan y’ = -x

atau y = -x’ dan x = -y’

Kemudian disubstitusikan ke

x2 + y2 + 8x + 7 = 0

Page 43: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

43

x = -y’ dan y = -x’ disubstitusikan

ke x2 + y2 – 8y + 7 = 0

→ (-y’)2 + (-x)2 – 8(-x) + 7 = 0

(y’)2 + (x’)2 + 8x + 7 = 0

(x’)2 + (y’)2 + 8x + 7 = 0

Jadi bayangannya adalah

x2 + y2 + 8x + 7 = 0

Page 44: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

44

Contoh 2

Koordinat bayangan titik (-2,-3)

oleh translasi oleh T =

dan dilanjutkan refleksi terhadap

garis y = -x adalah….

7

1

Page 45: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

45

Bahasan

Karena translasi T =

maka titik (-2,-3) → (-2 + 1, -3 – 7)

→ (-1,-10)

7

1

Page 46: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

46

Kemudian titik (-1,-10) dilanjutkan

refleksi terhadap garis y = - x

y

x

y

x

01

10

'

'

10

1

01

10

'

'

y

x

Page 47: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

47

→ x’ = 10 dan y’ = 1

Jadi koordinat bayangannya (10,1)

10

1

01

10

'

'

y

x

1

10

)10.(0)1)(1(

)10)(1()1.(0

'

'

y

x

Page 48: Pendahuluan         Defenisi Transformasi         Jenis-Jenis Transformasi

48

SELAMAT BELAJAR