peeling processkkm

Upload: asiff-razif

Post on 04-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Peeling Processkkm

    1/41

    ANALYSIS OF PEELING

  • 7/21/2019 Peeling Processkkm

    2/41

    CUTTING ANALYSIS

    Most of the time cutting force acting on a tool is measured experimentally. But it is alsoimportant to predict quantity of cutting force and how different cutting parameters are affectingcutting force even before setting up the machining operation due to following reassert.

    In order to design of mechanical structure of cutting machine which will withstandcutting force and thrust force effectively.

    To determine power consumption during machining process. This will belt in selectingsuitable motor drive.

    To increase productivity.

    t 1 = undeformed chipthickness

    useallyt 2 = deformedchipthickness t

    3 >t

    = tool ralceangle

    Next we can begin to consider cutting force, chip thic ness.

    !irst, consider the physical geometry of cutting.

    = 40

    t 1 = 0.5 mm/0.0005 m

  • 7/21/2019 Peeling Processkkm

    3/41

    t 2 = 0.7 mm/0.0007 m

    That need to measure the two perpendicular cutting forces are hori"ontal and perpendicular#

    $ !or wood on metal % &.'(&.) % &.*

    F N

    = tan =

    tan = 0.4

    = 21.8

  • 7/21/2019 Peeling Processkkm

    4/41

    F N

    = tan =

    tan = 0.4

    = tan 1 0.4 = 21.8

    r e= thecuttingratio

    r e=t 1t 2

    r e=0.0005

    0.0007

    r e= 0.7143

    t 1 = h sin

    t 2 = h sin ( )

    r e= t 1t 2 = hsin

    h sin ( )= sin cos cos +sin sin

    r e cos cos +sin sin = sin

    r e cos cos sin

    +r e sin sin

    sin = 1

  • 7/21/2019 Peeling Processkkm

    5/41

    r e cos sin

    = 1 r e sin

    tan = r e cos 1 r e sin

    tan = 0.7143cos401 0.7143sin 40

    = 45.33

    F t cos ( )

    = F s

    cos (+ )

    F s= As

    For shear force

    s= F s A

    ,

    h= t 1

    sin

    h= 0.0005sin 45.33

    7.03 10 4

    A= 7.03 10 4 (1 )

    = F s A

    = 3.64 Mpareference

    3.61 10 3

    3.64 Mpa = F s

    7.03 10 4

  • 7/21/2019 Peeling Processkkm

    6/41

    F s= 2559.17 [ N ]

    F c=2559.17 cos (40 21.8 )

    cos (45.33 40 +21.8 )

    F c= 2731.7 [ N ]

    = F ! r

    = 2731.7 0.05

    = 136.585 [ Nm]

    +eciding that the cutting blade should have && rpm

    2 " N

    60

    2 " (300 )

    60

    31.42

    -ower % torque x angular velocity

    # = $

    #= 31.42 (136.585 )

  • 7/21/2019 Peeling Processkkm

    7/41

    k% #= 4.289 [k% ] let say 4.5

  • 7/21/2019 Peeling Processkkm

    8/41

    &adiusof the drum'lade , r d= 0.05 [m] .

    hedistance themiddle theouter diameter of the drum = 0.01 [m] .

    Assuming thediameter of the sugarcane 'efore peeling = 0.024 [m] .

    (o the radius of the sugarcane , r s= 0.012 [m] .

    )ength A* = 0.05 +0.012 = 0.062 [m] .

    )engthA! = 0.06 [m]+

  • 7/21/2019 Peeling Processkkm

    9/41

    cos = 0.660.062

    = 15.6

    F !- = F ! cos75 = 2731.7cos75 = 707.02 [ N ]

    F !. = F ! sin75 = 2731.7sin 75 = 2638.62 [ N ]

    For Vertical

  • 7/21/2019 Peeling Processkkm

    10/41

    $ = 2638.621.16

    = 2274.67 Neglet the mass of the drum

    The cutting force developed into a uniform cutting force along the shaft in order to peel thewhole length of sugarcane.

    GEAR SELECTION METHOD

    FBD

    Contact point of gear 20

    &! = radiusof pitch

    #= $

  • 7/21/2019 Peeling Processkkm

    11/41

    4.289 [k% ]=(31.4 )

    = 136.59 [ Nm]

    F t = &c =

    136.590.05

    F t = 2.7318 [kN ]/ertical

    $ cos = F t

    $ = F t cos

    = 2.7318 [kN ]cos20

    $ = 2907.12 [ N ]

    F &= 0 cos

    F &= 2907.12sin 20

    F &= 994.29 [ N ]hori1ontal

    Simple ear !electio" proce#$re

  • 7/21/2019 Peeling Processkkm

    12/41

    Select a number of teeth for the pinion and the gear to give the require gearratio. Use either the standard teeth numbers as listed in table 6.5 or as listedin stock gear catalogues.

    Select a materials. ( his !ill limited to those listed in the catalog" Select a module# M

    Calculate the pitch diameter# d= Mn

    Calculate the pitch line velocit$# / =d2

    N 2 " 60

    Calculate d$namic factor# 2 / =( 66 +/ ) Calculate the transmitted load# % t =

    po0er/

    Calculate an acceptable face !idth using the %e!is formula in the form#

    F = % t 2 / m3 4 p

  • 7/21/2019 Peeling Processkkm

    13/41

    HORI%ONTAL

    F ! cos20 = 12256.74 cos20

    N

    F !- = 11517.57 ]

    VERTICAL

    F ! cos20 = 12256.74 sin 20

    F !. = 4192.05 [ N ]

    elect a module % '

    elect a materials, based on catalogues

    +ecide the pitch diameter % &./m0/&cm0/&&mm

    1alculate the number of teeth d= Mn

    100= (2)n

    n= 50 teeth

    1alculate the pitch line velocity,

    / = d2

    N 2 " 60

    / = " (0.1 ) (300 )60

  • 7/21/2019 Peeling Processkkm

    14/41

    / = 1.57 m /s

    +ynamic factor ,

    2 / =( 66 +1.57 ) 2 / = 0.7926

    !alculatethe transmitted load , F t = 1385.6

    % t = #.

    % t =42891.57

    % t = 2731.89 N

    1alculate an acceptable face width using the 2ewis formula in the form of,

    F =

    0 t 2 / m 3 4 p

    F = 2731.84(0.7926 )(0.002 )(0.39860 )(345 Mpa )

    F = 12.53 mm

    o its o to use the catalogues based gear based on table, the suitable gear is SG&'() .

    Si"ce *ot+ p$lle, ! o" t+e !ame po!itio" a"# !ame !i-e. a" le o/ 0rap 1 2 1 3

  • 7/21/2019 Peeling Processkkm

    15/41

    2.3log [ 1 2 ]= 52.3log

    [ 1

    2 ]= 0.42 (" )

    1 = 3.75 2 +(1 )

    = ( 1 2 )r

    136.59 =( 1 2)0.05

  • 7/21/2019 Peeling Processkkm

    16/41

    1 2 = 2731.8 (2 )

    Sub equation (2) into equation (1)

    3.75 2= 2731.8 [ N ]

    2.75 2= 2731.8 [ N ]

    2 = 993.38 N

    1 = 3.75 (993.38 )= 3.72 kN

    4 = 1 A

    16 Mpa= 3.72 kN A

    A= 0.0002325 m2 (minimum )

    Selecte# *elt !i-e

    %ide = 29 mm let say 30 mm

  • 7/21/2019 Peeling Processkkm

    17/41

    hickness = 8 mm

    MAIN PEELING SHAFT

    VERTICAL

    6fMat* = 0 7

    4739.66 (1.205 ) & A (1.16 )+2638.6 (0.58 ) 2731.8 (0.03 )= 0

    & A. = 6172.2 N

    6fy= 0 7

    4739.6 +6172.2 2638.6 + &* 2731.8 = 0

    &*. = 3937.86

  • 7/21/2019 Peeling Processkkm

    18/41

    HORI%ONTAL

    6fMat* = 0 7

    & A- (1.16 ) 707.02 (0.58 )+994.29 (0.03 )= 0

    & A- = 327.8 N

    6fy= 0 7

    327.8 707.02 + &*- 994.29 = 0

  • 7/21/2019 Peeling Processkkm

    19/41

    &*- = 1373.51 N

    T+e re!$lta"t *e"#i" mome"t at 4B5

    M M

    ( *. )2+(*- )2

    M *=

    M *= ( 81.9 )2 +(29.84 )2

    M *= 87.17 [ N +m]

    T+e re!$lta"t mome"t at 4C5

  • 7/21/2019 Peeling Processkkm

    20/41

    M M

    (!. )2+(!- )2

    M ! =

    M ! = (237.8 )2 +(88.14 )2

    M ! = 253.6 [ N + m]

    T+i! t+e ma6im$m *e"#i" mome"t i! at re!$lta"t o/ 4C5

    M ma8= 253.6 [ N + m]

    Tor7$e acti" o" t+e !+a/t 1 89:;(

  • 7/21/2019 Peeling Processkkm

    21/41

    T+e e7$i=ale"t *e"#i" mome"t

    M e=12 ( M + M

    2

    + 2

    )=12 ( M + e)

    12 (288.05 +253.6 )

    270.83 [ N + m]

    4 = M c :

    F + (=4 ma84 all

    4 all =320 10 6

    1.5

    4 all = 213.33 Mpa

    213.33 10 6= 270.83

    " 32

    d 3

    d= 23.47 [mm ]let say 25 [mm]

    Based on both analysis between the equivalent twisting moment and the equivalent bendingmoment, we choose the maximum diameter, that is '34mm5.

  • 7/21/2019 Peeling Processkkm

    22/41

    VERTICAL DEFLECTION OF THE SHAFT

    : =" 4 (r

    4

    )

    : = " 4

    (0.0125 4 )

    : = 1.9175 10 8 m4

    ; stell = 200

  • 7/21/2019 Peeling Processkkm

    23/41

    ;: (d 2 yd82 )= 4739.66 < 8>+6172.2 < 8 0.045 > 2274.672 < 8 0.045 2 + 2274.672 < 8 1.205 2+2731.8

    ;: (dyd8)= 4739.662 < 82+6172.22 < 8 0.045 2 2274.676 < 8 0.045 3 +2274.676 < 8 1.205 3 +2731.82

    455.3 < 8 1.205 >3+ A8+*94.78 < 8 1.205 >4+

    1028.7 < 8 0.045 >3 94.78 < 8 0.045 4 + 8>3+

    ;: ( y)= 789.94

    &hen 8= 0.045, y= 0

    0.045 >3 +0.045 A+*0 = 789.94

    0.045 A+* = 0.07198 (1)

    &hen 8= 1.205, y= 0

    94.78 4+1.205 A+*1028.7 3

    1.205 >3+0= 789.94

    1.205 A+* = 51.94 (2 )

    0.045 A+* =

    0.07198(

    3

    )

    0.05423 A+1.205 * = 0.08674

  • 7/21/2019 Peeling Processkkm

    24/41

    1.16 * = 2.4237

    * = 2.09 ..into e=uation (1)

    0.045 A+2.09 * = 0.07198

    A= 44.83

    94.78 < 8 1.205 >4 44.83 < 8>+2.091028.7 < 8 0.045 >3 94.78 < 8 0.045 4 +

    8>3 + ;: ( y)= 789.94

    ' '. '.) '.6 '.* + +. +.)

    ,'.'+

    ,'.'+

    ,'.'+

    '

    '

    '

    '

    '

    '.'+

    -e ection vs /osition

    -istance (m"

    -e ection (m"

  • 7/21/2019 Peeling Processkkm

    25/41

    0fter 1ptimi2ing

    ' '. '.) '.6 '.* + +. +.)

    ,'.'+

    ,'.'+

    ,'.'+

    '

    '

    '

    '

    '

    '.'+

    -e ection vs /osition

    0fter 1ptimi2ation

    -istance (m"

    -e ection (m"

    HORI%ONTAL DEFLECTION OF SHAFT

  • 7/21/2019 Peeling Processkkm

    26/41

    : = " 4 (r 4)

    : = " 4

    (0.0125 4 )

    : = 1.9175 10 8 m4

    ; stell = 200 1373.5 < 8 1.16 > ;: (dyd8)= 609.56 < 83 327.82 < 82 1373.52 < 8 1.16 2+ A

    ;: ( y)= 25.4 < 84 54.63 < 83 228.9 < 8 1.16 3 + A8+*

    &hen 8= 0, y= 0

    * = 0

  • 7/21/2019 Peeling Processkkm

    27/41

    &hen 8= 1.16, y= 0

    0= 25.4

  • 7/21/2019 Peeling Processkkm

    28/41

    ' '. '.) '.6 '.* + +. +.)

    '

    '

    '

    '

    '

    '

    '

    '

    '

    -e ection 3s /osition

    4efore 1ptimi2ation 0fter 1ptimi2ation

    /osition (m"

    -e ection ( m"

    MOTOR SHAFT

  • 7/21/2019 Peeling Processkkm

    29/41

    6fM & A. = 0 7

    4697.11 (0.121 )+ &*. (0.409 )= 0

    &*. = 1389.61 N

    6 fy = 0 7

    4697.11 N & A. + &*. = 0

    & A. = 4697.11 N +1389.61 N

    6'*6. 7

    2.3log

    [ 1

    2 ]= 5

    2.3log [ 1 2 ]= 0.42 (" ) 1 = 3.75 2 +(1 )

  • 7/21/2019 Peeling Processkkm

    30/41

    = ( 1 2 )r

    136.59 =( 1 2 )0.05

    1

    2= 2731.8 (2)

    Sub equation (2) into equation (1)

    3.75 2= 2731.8 N

    2.75 2= 2731.8 N

    2 = 993.38 N

    1 = 3.75 (993.38 )= 3.72 kN

    Maximum bending moment based in the bending moment diagram is at point 6 that is &.378N

    torque on the &./ 7 Nm

    The equivalent twisting moment

    ince torque % &./ 78Nm

  • 7/21/2019 Peeling Processkkm

    31/41

    e= M 2+ 2

    (0.57 )2+(0.137 )2

    0.586 2Nm

    ma8 = allo0a'le

    1.5

    380 106

    1.5

    253.33 Mpa

    = r9

    253.33 106= 0.586 > 103

    " 16

    d 3

    d= 22.8 mmlet say 25 mm

    he equivalent bending moment

    M e=12( M + M 2 + 2)= 1

    2 ( M + e)

    12

    (0.57 +0.586 )

    0.578 2N + m

    4 = M! :

    F + (=4 ma84 all

    4 all =320 10 6

    1.5

  • 7/21/2019 Peeling Processkkm

    32/41

    4 all = 213.33 Mpa

    213.33 106 =

    0.578 > 103

    " 32

    d3

    d= 30.2 mm let say 35 mm

    DEFLECTION AT AC MOTOR SHAFT

  • 7/21/2019 Peeling Processkkm

    33/41

    ;: (d 2 yd82 )= 1389.61 < 8> 6086.72 < 8 0.409 > 8 0.409 >2 + A

    8>2

    6086.72

    2

    ;: (dyd8)= 1389.612 6086.72

    6< 8 0.409 >3+ A8+*

    8>3 ;: ( y)= 1389.61

    6

    &hen 8= 0, y= 0

    * = 0

    &hen 8= 0.409, y= 0

    0.409 >3 +0.409 A ;: (0 )= 1389.61

    6

    A= 38.74

    1014.45 < 8 0.409 >3 38.74 < 8> ;:

    8>3 231.60

    y=

  • 7/21/2019 Peeling Processkkm

    34/41

    LENGTH OF BELT

  • 7/21/2019 Peeling Processkkm

    35/41

    )ength of 'elt ,l = " (r 1+r 2 )+2 8+(r 1 r 2 )2

    8 .. (terms of pulley radii )= "

    2 (d1 +d 2 )+2 8+(

    d 1 d 2 )24 8

    >OINT OF AC MOTOR

  • 7/21/2019 Peeling Processkkm

    36/41

    6 f 1= 0 7

    4691.77 1962 2 F A. 2 F *. = 0 (1)

    6 M at y= 0 7

    4691.77 (0.504 )+19.62 +2 F A. (0.3 )= 0

    F A. = 3908.4 [ N ].. into (1 )

    4691.77 19.62 2 (3908.4 ) 2 F *. = 0

  • 7/21/2019 Peeling Processkkm

    37/41

    F *. = /37'. 4N5 9 ? :

    BOLT AND NUT

    F + (= 4 ma84 allo0a'le

    4 allo0a'le =240 [ M#a ]

    1.5

    4 allo0a'le = 160 [ M#a ]

    SCREWED JOINTS 8ighl$ reliable Convenient to

    assemble Cheap

    ateria!

    0 9 ' stainlesssteel

    Tensi!e stren"th

    '' 7: mm2

    #$2% &ie!' stren"th

    )5' 7: mm2

    !;< B;2T I=> ;! M3(M/&&

    4 MA> = 240 [ M#a ]

    MA> = 311 [ M#a ]

  • 7/21/2019 Peeling Processkkm

    38/41

    F + (= ma8 allo0a'le

    allo0a'le = 311 [ M#a ]1.5

    allo0a'le = 207.33 [ Mpa ]

    4 = F A

    d

    " (2)

    4

    160 106= 3908.4

    d= 5.58 [mm ] or bigger

  • 7/21/2019 Peeling Processkkm

    39/41

    SUN? ?EY

    = orque transmitted b$ the shaft.

    F = angential force acting at the circumference of shaft.

    d= -iameter of shaft.

    l= %ength of ke$.

    0 = &idth of ke$.

    t = hickness of ke$.

    = Shear for the material ke$.

    4 c= Crushing stresses for the material ke$.

  • 7/21/2019 Peeling Processkkm

    40/41

    = 136.59 [ Nm]

    0 = 0.01 [m]

    md= 0.04 ;

    t = 0.01 [m]

    l= 0.04 [m]

    Consi'erin" shearin" of the e&

    F = l 0

    = F d2

    136.59 = F 0.04

    2

    F = 6829.5 [ N ]

    6829.5 = 0.04 0.01

    N /m2

    = 17073750 ;

    Consi'erin" crushin" of the e&

    F = l t 2

    4 c

    6829.5 = 0.04 0.01

    2 4 c

    N /m2

    4 c= 34147500 ;

  • 7/21/2019 Peeling Processkkm

    41/41

    The e& is equa!!& stron" in crushin" an' shearin" if

    0t =

    4 c2

    0.010.01

    = 341475002(17073750 ) proven

    To *n' the !en"th of the e& to trans+it fu!! ,o-er shaft

    l= 1.571 d

    1.571 (0.04 )

    0.06284 [m] 62 [mm]