partition regularity

Download Partition Regularity

Post on 05-Feb-2016

5 views

Category:

Documents

0 download

Embed Size (px)

DESCRIPTION

Partition RegularityWikipedia

TRANSCRIPT

  • Partition regularityWikipedia

  • Contents

    1 Almost disjoint sets 11.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Other meanings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    2 Delta-ring 32.1 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    3 Disjoint sets 43.1 Generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.3 Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53.4 Disjoint unions and partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

    4 Dynkin system 84.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84.2 Dynkins - theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    5 Family of sets 105.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.2 Special types of set family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.4 Related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

    6 Field of sets 12

    i

  • ii CONTENTS

    6.1 Fields of sets in the representation theory of Boolean algebras . . . . . . . . . . . . . . . . . . . . 126.1.1 Stone representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126.1.2 Separative and compact elds of sets: towards Stone duality . . . . . . . . . . . . . . . . . 12

    6.2 Fields of sets with additional structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.2.1 Sigma algebras and measure spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.2.2 Topological elds of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136.2.3 Preorder elds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146.2.4 Complex algebras and elds of sets on relational structures . . . . . . . . . . . . . . . . . . 14

    6.3 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156.5 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    7 Finite character 167.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    8 Finite intersection property 178.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188.5 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188.6 Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

    9 Greedoid 199.1 Denitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199.2 Classes of greedoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209.4 Greedy algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209.5 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219.7 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

    10 Partition of a set 2210.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310.3 Partitions and equivalence relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2310.4 Renement of partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2410.5 Noncrossing partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2410.6 Counting partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2410.7 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2510.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

  • CONTENTS iii

    10.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    11 Partition regularity 3011.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3011.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    12 Pi system 3212.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3212.2 Relationship to -Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

    12.2.1 The - Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3312.3 -Systems in Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

    12.3.1 Equality in Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3412.3.2 Independent Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

    12.4 See also . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3512.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3512.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    13 Ring of sets 3613.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3613.2 Related structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3713.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3713.4 External links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    14 Sigma-algebra 3814.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    14.1.1 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3814.1.2 Limits of Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3914.1.3 Sub -algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    14.2 Denition and properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4014.2.1 Denition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4014.2.2 Dynkins - theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4014.2.3 Combining -algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4014.2.4 -algebras for subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4114.2.5 Relation to -ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4114.2.6 Typographic note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

    14.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4214.3.1 Simple set-based examples . . . . . . . . . . . . . . . . . . . . . . . . . .

Recommended

View more >