partial integro-differential operators · m. rosenkranz partial integro-differential operators. da...

65
Partial Integro-Differential Operators [email protected] School of Mathematics, Statistics and Actuarial Science University of Kent at Canterbury CT1 2DX, United Kingdom Joint work with G. Regensburger, L. Tec and B. Buchberger ACA 2010 Applications of Computer Algebra Vlora, Albania, 24 June 2010 M. Rosenkranz Partial Integro-Differential Operators

Upload: ngodat

Post on 28-Aug-2018

251 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

[email protected]

School of Mathematics, Statistics and Actuarial ScienceUniversity of Kent at Canterbury

CT1 2DX, United Kingdom

Joint work with G. Regensburger, L. Tec and B. Buchberger

ACA 2010

Applications of Computer AlgebraVlora, Albania, 24 June 2010

M. Rosenkranz Partial Integro-Differential Operators

Page 2: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

(Integro-)Differential Operators

Ordinary differentialoperators F [∂]

⊆Partial differentialoperators F [∂x , ∂y ]⊇ ⊇

Ordinary integro-differentialoperators F [∂,

r]

⊆Partial integro-differentialoperators F [∂x , ∂y ,

r x,r y

]

But how should F [∂x , ∂y ,r x,r y

] be defined?

Consider F = C∞(R2) for simplicity.

Need more than ∂x , ∂y ,r x,r y and f ∈ F and ϕ ∈ F ∗.

A new player enters the scene: Geometry.

M. Rosenkranz Partial Integro-Differential Operators

Page 3: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

(Integro-)Differential Operators

Ordinary differentialoperators F [∂]

⊆Partial differentialoperators F [∂x , ∂y ]⊇ ⊇

Ordinary integro-differentialoperators F [∂,

r]

⊆Partial integro-differentialoperators F [∂x , ∂y ,

r x,r y

]

But how should F [∂x , ∂y ,r x,r y

] be defined?

Consider F = C∞(R2) for simplicity.

Need more than ∂x , ∂y ,r x,r y and f ∈ F and ϕ ∈ F ∗.

A new player enters the scene:

Geometry.

M. Rosenkranz Partial Integro-Differential Operators

Page 4: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

(Integro-)Differential Operators

Ordinary differentialoperators F [∂]

⊆Partial differentialoperators F [∂x , ∂y ]⊇ ⊇

Ordinary integro-differentialoperators F [∂,

r]

⊆Partial integro-differentialoperators F [∂x , ∂y ,

r x,r y

]

But how should F [∂x , ∂y ,r x,r y

] be defined?

Consider F = C∞(R2) for simplicity.

Need more than ∂x , ∂y ,r x,r y and f ∈ F and ϕ ∈ F ∗.

A new player enters the scene:

Geometry.

M. Rosenkranz Partial Integro-Differential Operators

Page 5: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

(Integro-)Differential Operators

Ordinary differentialoperators F [∂]

⊆Partial differentialoperators F [∂x , ∂y ]⊇ ⊇

Ordinary integro-differentialoperators F [∂,

r]

⊆Partial integro-differentialoperators F [∂x , ∂y ,

r x,r y

]

But how should F [∂x , ∂y ,r x,r y

] be defined?

Consider F = C∞(R2) for simplicity.

Need more than ∂x , ∂y ,r x,r y and f ∈ F and ϕ ∈ F ∗.

A new player enters the scene:

Geometry.

M. Rosenkranz Partial Integro-Differential Operators

Page 6: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

(Integro-)Differential Operators

Ordinary differentialoperators F [∂]

⊆Partial differentialoperators F [∂x , ∂y ]⊇ ⊇

Ordinary integro-differentialoperators F [∂,

r]

⊆Partial integro-differentialoperators F [∂x , ∂y ,

r x,r y

]

But how should F [∂x , ∂y ,r x,r y

] be defined?

Consider F = C∞(R2) for simplicity.

Need more than ∂x , ∂y ,r x,r y and f ∈ F and ϕ ∈ F ∗.

A new player enters the scene:

Geometry.

M. Rosenkranz Partial Integro-Differential Operators

Page 7: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

(Integro-)Differential Operators

Ordinary differentialoperators F [∂]

⊆Partial differentialoperators F [∂x , ∂y ]⊇ ⊇

Ordinary integro-differentialoperators F [∂,

r]

⊆Partial integro-differentialoperators F [∂x , ∂y ,

r x,r y

]

But how should F [∂x , ∂y ,r x,r y

] be defined?

Consider F = C∞(R2) for simplicity.

Need more than ∂x , ∂y ,r x,r y and f ∈ F and ϕ ∈ F ∗.

A new player enters the scene: Geometry.

M. Rosenkranz Partial Integro-Differential Operators

Page 8: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 9: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 10: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 11: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebra

T ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 12: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)

β1, . . . , βn ∈ F∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 13: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 14: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 15: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 16: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 17: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Recap: Ordinary BndProb

Given f ∈ F , find u ∈ F such that:

Tu = fβ1(u) = · · · = βn(u) = 0

Role of f as symbolic parameter

F = C∞[a, b] Function algebraT ∈ F [∂] Differential operator (monic of degree n)β1, . . . , βn ∈ F

∗ Boundary functionals

Classical two-point boundary functionals (ai , bi ∈ C):

β(u) = a0 u(a) + · · ·+ an−1u(n−1)(a) + b0 u(b) + · · ·+ bn−1u(n−1)(b)

Other boundary functionals for Stieltjes boundary conditions

Invariant description via B = [β1, . . . , βn] ≤ F ∗

Regular boundary problem: ∀f ∃!u

M. Rosenkranz Partial Integro-Differential Operators

Page 18: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):

Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 19: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):

Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 20: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):

Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 21: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):

Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 22: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 23: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 24: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 25: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗

, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 26: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 27: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Da capo: Partial BndProb

Consider a domain Ω ⊂ R2:

Tu = fβiu = 0 (i ∈ I)

T ∈ F [∂x , ∂y ]βi ∈ F

Typical boundary conditions (I = ∂Ω):Dirichlet conditions: βξ = u(ξ)

Neumann conditions: βξ = ∂u∂n (ξ)

Robin conditions: βξ = a u(ξ) + b ∂u∂n (ξ)

Invariant description via B = [βi]i∈I ≤ F∗, regularity as before

Simple example (more details later):

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 28: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 29: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 30: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 31: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 32: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 33: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 34: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Multiplying and Factoring BndProb

DefinitionA boundary problem is a pair (T ,B), where T is an epimorphismof a vector space V and B ≤ V∗ an orthogonally closed subspace.

LODEs / LPDEs, systems→ regularity, Green’s operator. . .

Multiplication: (T1,B1) · (T2,B2) , (T1T2,B1T2 + B2)

Cascade integration:((T1,B1) · (T2,B2)

)−1= (T2,B2)−1 · (T1,B1)−1

In the above monoid, the regular boundary problems form a submonoiddually isomorphic to the monoid of Green’s operators.

TheoremLet (T ,B) be a regular boundary problem. A given factorizationT = T1T2 can be lifted to a factorization (T ,B) = (T1,B1) · (T2,B2) ofregular boundary problems with B2 ≤ B.

M. Rosenkranz Partial Integro-Differential Operators

Page 35: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Factorization Example of Partial BndProb

Unbounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt ]) = (Dt − Dx , [Lt ]) · (Dt + Dx , [Lt ])

or utt − uxx = fu(x, 0) = ut (x, 0) = 0 =

ut − ux = fu(x, 0) = 0 ·

ut + ux = fu(x, 0) = 0

x

t

uHx,0L=utHx,0L=0

uH0,tL=0 uH1,tL=0 Bounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt , Lx ,Rx ]) = (Dt − Dx , [Lt ,S]) · (Dt + Dx , [Lt , Lx ])

or utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = fu(x, 0) =

r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 36: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Factorization Example of Partial BndProb

Unbounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt ]) = (Dt − Dx , [Lt ]) · (Dt + Dx , [Lt ])

or utt − uxx = fu(x, 0) = ut (x, 0) = 0 =

ut − ux = fu(x, 0) = 0 ·

ut + ux = fu(x, 0) = 0

x

t

uHx,0L=utHx,0L=0

uH0,tL=0 uH1,tL=0 Bounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt , Lx ,Rx ]) = (Dt − Dx , [Lt ,S]) · (Dt + Dx , [Lt , Lx ])

or utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = fu(x, 0) =

r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 37: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Factorization Example of Partial BndProb

Unbounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt ]) = (Dt − Dx , [Lt ]) · (Dt + Dx , [Lt ])

or utt − uxx = fu(x, 0) = ut (x, 0) = 0 =

ut − ux = fu(x, 0) = 0 ·

ut + ux = fu(x, 0) = 0

x

t

uHx,0L=utHx,0L=0

uH0,tL=0 uH1,tL=0 Bounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt , Lx ,Rx ]) = (Dt − Dx , [Lt ,S]) · (Dt + Dx , [Lt , Lx ])

or utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = fu(x, 0) =

r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 38: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Factorization Example of Partial BndProb

Unbounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt ]) = (Dt − Dx , [Lt ]) · (Dt + Dx , [Lt ])

or utt − uxx = fu(x, 0) = ut (x, 0) = 0 =

ut − ux = fu(x, 0) = 0 ·

ut + ux = fu(x, 0) = 0

x

t

uHx,0L=utHx,0L=0

uH0,tL=0 uH1,tL=0 Bounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt , Lx ,Rx ]) = (Dt − Dx , [Lt ,S]) · (Dt + Dx , [Lt , Lx ])

or utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = fu(x, 0) =

r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 39: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Factorization Example of Partial BndProb

Unbounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt ]) = (Dt − Dx , [Lt ]) · (Dt + Dx , [Lt ])

or utt − uxx = fu(x, 0) = ut (x, 0) = 0 =

ut − ux = fu(x, 0) = 0 ·

ut + ux = fu(x, 0) = 0

x

t

uHx,0L=utHx,0L=0

uH0,tL=0 uH1,tL=0 Bounded wave equation:(Dtt − Dxx , [Lt , Lt Dt , Lx ,Rx ]) = (Dt − Dx , [Lt ,S]) · (Dt + Dx , [Lt , Lx ])

or utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = fu(x, 0) =

r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 40: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Factorization Example of Partial BndProb

Unbounded wave equation:

(Dtt − Dxx , [Lt , Lt Dt ]) = (Dt − Dx , [Lt ]) · (Dt + Dx , [Lt ])

or utt − uxx = fu(x, 0) = ut (x, 0) = 0 =

ut − ux = fu(x, 0) = 0 ·

ut + ux = fu(x, 0) = 0

x

t

uHx,0L=utHx,0L=0

uH0,tL=0 uH1,tL=0 Bounded wave equation:(Dtt − Dxx , [Lt , Lt Dt , Lx ,Rx ]) = (Dt − Dx , [Lt ,S]) · (Dt + Dx , [Lt , Lx ])

or utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

ut − ux = fu(x, 0) =

r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

M. Rosenkranz Partial Integro-Differential Operators

Page 41: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Geometric Interpretation for Bounded Wave Equation

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

t=0x=0 x=1

Hx,tL

H0,t-xL

H1,t+x-1LH1-x,t-1L

+

-

+

-

+

+

-

+

-

+

±

±

1

M. Rosenkranz Partial Integro-Differential Operators

Page 42: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Geometric Interpretation for Bounded Wave Equation

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 =

t=0x=0 x=1

Hx,tL

H0,t-xL

H1,t+x-1LH1-x,t-1L

+

-

+

-

+

+

-

+

-

+

±

±

1

M. Rosenkranz Partial Integro-Differential Operators

Page 43: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Geometric Interpretation for Bounded Wave Equation

utt − uxx = fu(x, 0) = ut (x, 0) = u(0, t) = u(1, t) = 0 = ut − ux = f

u(x, 0) =r 1(1−t)+

u(ξ, ξ + t − 1) dξ = 0 ·ut + ux = fu(x, 0) = u(0, t) = 0

t=0x=0 x=1

Hx,tL

H0,t-xL

H1,t+x-1LH1-x,t-1L

+

-

+

-

+

+

-

+

-

+

±

±

1

t=0x=0 x=1

Hx,tL

M. Rosenkranz Partial Integro-Differential Operators

Page 44: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 45: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 46: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 47: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 48: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 49: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 50: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Partial Integro-Differential Operators

DefinitionThe partial integro-differential operators are defined as the algebra inthe following indeterminates given with their respective action on afunction f(x, y) ∈ C∞(R2).

Name Indeterminates Action

Differential operators ∂x , ∂y fx(x, y), fy(x, y)

Integral operatorsr x ,

r y r x0f(ξ, y) dξ,

r y0f(x, η) dη

Evaluation operators Lx , Ly f(0, y), f(x, 0)

Substitution operators(

a bc d

)∗∈ GL2(R) f(ax + by, cx + dy)

Selected Rewrite Rules:

Univariate: All rules of F [∂,r

] copied twice.

Chain Rule: ∂xM = a M∂x + c M∂y

Substitution Rule:r xM = 1

a (1 − Lx)Mr x

M. Rosenkranz Partial Integro-Differential Operators

Page 51: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Back to Unbounded Wave Equation

Constant-coefficient first-order boundary problem:

a ux + b ut = fu(kt + c, t) = 0

Solution by standard methods:

u(x, y) =1a

∫ x

Xf(ξ, b

a (ξ − x) + t) dξ with X =ac+(at−bx)k

a−bk

Partial integro-differential operator (c = 0):

Ga,b ,k =(

1/K −k/K−b/L a/L

) r x (a kL/Kb L/K

)with K = a − bk , L = a2 + b2

Green’s Operator for Unbounded Wave Equation:

Gf(x, t) =r t

0

r τ0f(ξ, 2τ − ξ + x − t) dξ dτ

G = G1,−1,0G1,1,0 =(

1 0−1 1

) r x( 1 02 1

) r x( 1 0−1 1

)

M. Rosenkranz Partial Integro-Differential Operators

Page 52: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Back to Unbounded Wave Equation

Constant-coefficient first-order boundary problem:

a ux + b ut = fu(kt + c, t) = 0

Solution by standard methods:

u(x, y) =1a

∫ x

Xf(ξ, b

a (ξ − x) + t) dξ with X =ac+(at−bx)k

a−bk

Partial integro-differential operator (c = 0):

Ga,b ,k =(

1/K −k/K−b/L a/L

) r x (a kL/Kb L/K

)with K = a − bk , L = a2 + b2

Green’s Operator for Unbounded Wave Equation:

Gf(x, t) =r t

0

r τ0f(ξ, 2τ − ξ + x − t) dξ dτ

G = G1,−1,0G1,1,0 =(

1 0−1 1

) r x( 1 02 1

) r x( 1 0−1 1

)

M. Rosenkranz Partial Integro-Differential Operators

Page 53: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Back to Unbounded Wave Equation

Constant-coefficient first-order boundary problem:

a ux + b ut = fu(kt + c, t) = 0

Solution by standard methods:

u(x, y) =1a

∫ x

Xf(ξ, b

a (ξ − x) + t) dξ with X =ac+(at−bx)k

a−bk

Partial integro-differential operator (c = 0):

Ga,b ,k =(

1/K −k/K−b/L a/L

) r x (a kL/Kb L/K

)with K = a − bk , L = a2 + b2

Green’s Operator for Unbounded Wave Equation:

Gf(x, t) =r t

0

r τ0f(ξ, 2τ − ξ + x − t) dξ dτ

G = G1,−1,0G1,1,0 =(

1 0−1 1

) r x( 1 02 1

) r x( 1 0−1 1

)

M. Rosenkranz Partial Integro-Differential Operators

Page 54: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Back to Unbounded Wave Equation

Constant-coefficient first-order boundary problem:

a ux + b ut = fu(kt + c, t) = 0

Solution by standard methods:

u(x, y) =1a

∫ x

Xf(ξ, b

a (ξ − x) + t) dξ with X =ac+(at−bx)k

a−bk

Partial integro-differential operator (c = 0):

Ga,b ,k =(

1/K −k/K−b/L a/L

) r x (a kL/Kb L/K

)with K = a − bk , L = a2 + b2

Green’s Operator for Unbounded Wave Equation:

Gf(x, t) =r t

0

r τ0f(ξ, 2τ − ξ + x − t) dξ dτ

G = G1,−1,0G1,1,0 =(

1 0−1 1

) r x( 1 02 1

) r x( 1 0−1 1

)

M. Rosenkranz Partial Integro-Differential Operators

Page 55: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Back to Unbounded Wave Equation

Constant-coefficient first-order boundary problem:

a ux + b ut = fu(kt + c, t) = 0

Solution by standard methods:

u(x, y) =1a

∫ x

Xf(ξ, b

a (ξ − x) + t) dξ with X =ac+(at−bx)k

a−bk

Partial integro-differential operator (c = 0):

Ga,b ,k =(

1/K −k/K−b/L a/L

) r x (a kL/Kb L/K

)with K = a − bk , L = a2 + b2

Green’s Operator for Unbounded Wave Equation:

Gf(x, t) =r t

0

r τ0f(ξ, 2τ − ξ + x − t) dξ dτ

G = G1,−1,0G1,1,0 =(

1 0−1 1

) r x( 1 02 1

) r x( 1 0−1 1

)

M. Rosenkranz Partial Integro-Differential Operators

Page 56: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Back to Unbounded Wave Equation

Constant-coefficient first-order boundary problem:

a ux + b ut = fu(kt + c, t) = 0

Solution by standard methods:

u(x, y) =1a

∫ x

Xf(ξ, b

a (ξ − x) + t) dξ with X =ac+(at−bx)k

a−bk

Partial integro-differential operator (c = 0):

Ga,b ,k =(

1/K −k/K−b/L a/L

) r x (a kL/Kb L/K

)with K = a − bk , L = a2 + b2

Green’s Operator for Unbounded Wave Equation:

Gf(x, t) =r t

0

r τ0f(ξ, 2τ − ξ + x − t) dξ dτ

G = G1,−1,0G1,1,0 =(

1 0−1 1

) r x( 1 02 1

) r x( 1 0−1 1

)M. Rosenkranz Partial Integro-Differential Operators

Page 57: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 58: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 59: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 60: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 61: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 62: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 63: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 64: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators

Page 65: Partial Integro-Differential Operators · M. Rosenkranz Partial Integro-Differential Operators. Da capo: Partial BndProb Consider a domain ˆR 2: Tu = f ... Da capo: Partial BndProb

Future (and Current) Work

A long way to “real” partial boundary problems:

Complete the collection of rules to a Grobner basis

Generalize from linear to affine substitutions

Include evaluations by admitting singular matrices

Generalize from R2 to Rn

Allow convex polyhedra as integration domains

Generalize from linear to polynomial substitutions

Use them as coordinate charts for manifolds

That’s all folks. . .

THANK YOU

M. Rosenkranz Partial Integro-Differential Operators