parasitological examination of common hippopotamus ... · the common hippopotamus (hippopotamus...

8
66 Wiener Tierärztliche Monatsschrift Veterinary Medicine Austria 101 (2014) From the Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Austria Parasitological examination of common hippopotamus (Hippopotamus amphibius ) faeces in the Gamba Complex of Protected Area in Gabon S. RIETMANN* and C. WALZER received August 5, 2013 accepted November 12, 2013 Schlüsselwörter: Hippopotamus amphibius, Parasiten, Kotproben, Gabun. Zusammenfassung Parasitologische Untersuchung von Flusspferdekot (Hippopota- mus amphibius) in Gabun Einleitung Die Gefährdung von Wildtierpo- pulationen auf Grund von Krank- heitsgeschehen stellt eine wach- sende und ernstzunehmende Bedrohung dar. Wissenschaftlich fundierte Kenntnisse über Krank- heiten, Krankheitserreger sowie Krankheitsverläufe und daraus fol- gende Konsequenzen fungieren als nötige Grundlagen im Rahmen eines evidenzbasierenden Ent- scheidungsprozesses für nachhal- tiges Arten-Management. Diese Studie befasst sich mit der Unter- suchung gastrointestinaler Parasi- ten von Flusspferden (Hippopota- mus amphibius) und evaluiert die Nutzung der angewandten Metho- de als Basis zur Überwachung pa- rasitärer Geschehen in freileben- den Flusspferdpopulationen. Material und Methode Das Untersuchungsgebiet dieser Studie war der Gamba-Komplex im Südwesten Gabuns in Zentralafrika. Er erstreckt sich über eine Fläche von 11.320 km 2 und besteht aus ei- nem Gefüge aus Schutzgebieten mit einem weitläufigen Wassersys- tem. Zwischen dem 14. Juni und dem 1. Oktober 2011 wurden an 46 Tagen 77 Kotproben von Flusspferden ge- sammelt. Die Proben wurden in eine Lösung aus 15 g Natriumacetat, 20 ml Eisessig, 40 ml Formalin (37 %) und 925 ml Leitungswasser fixiert. Jede Probe wurde gesondert mittels Se- dimentation (nach der modifizierten Methode von Benedek) und Flota- tion (nach der McMaster Methode) untersucht. Ergebnisse In 70 der 77 Proben wurden Pa- rasiten gefunden. 61 Proben wa- ren positiv für Eier von Fasciola spp. und in 42 Proben wurde Ei- meria gefunden. Vier Proben wa- ren positiv für Larven von Stron- gyliden, eine Probe beinhaltete ein deformiertes Strongyliden-Ei. Schlussfolgerungen Das Fixieren von Kotproben in einer Lösung aus Formalin, Natri- umacetat und Eisessig ermöglicht eine zuverlässige Evaluierung von Parasiten. Die Ergebnisse weisen auf eine geringe parasitäre Vielfalt und eine geringe Belastung der Flusspferde im Gamba-Komplex hin. Die verwendete Methode lie- fert zuverlässige Daten über pa- rasitäre Geschehen in freileben- den Flusspferden. Ein Vergleich mit anderen Methoden bezüglich Sensitivität und Spezifität sollte in Betracht gezogen werden. Keywors: Hippopotamus amphi- bius; parasite, faeces, Gabon. Summary Effective conservation of species requires scientific evidence upon which to base decisions. Health threats to wild- life must be considered when devising conservation strategies. Reference data on diseases, their spread and their consequences for both hosts and people are key factors in the sustainable management of wildlife species. In this study we investigated the possibility of extracting parasites and assessing parasite type from faeces of the common hippo- potamus ( Hippopotamus am- phibius) from the central African country of Gabon. Faecal samp- les were collected in the field, fixed in a formalin solution and analysed using flotation and sedi- mentation methods. We found parasites in 70 out of 77 samples; mainly comprising the genera Eimeria and Fasciola. The study suggests that our methods are suitable for screening faecal parasites of free-ranging hippo- potamuses. Abbreviations: CITES = Convention on International Trade in Endangered Species; GCPA = Gamba Complex of Protected Areas; IUCN = International Union for Conservation of Nature; WWF = World Wildlife Fund

Upload: others

Post on 25-Feb-2020

19 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

66

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

From the Research Institute of Wildlife Ecology, Department of Integrative Biology and Evolution, University of Veterinary Medicine Vienna, Austria

Parasitological examination of common hippopotamus (Hippopotamus amphibius) faeces in the Gamba Complex of Protected Area in Gabon

S. RIETMANN* and C. WALZER

received August 5, 2013accepted November 12, 2013

Schlüsselwörter: Hippopotamus amphibius, Parasiten, Kotproben, Gabun.

Zusammenfassung

Parasitologische Untersuchung von Flusspferdekot (Hippopota-mus amphibius) in Gabun

EinleitungDie Gefährdung von Wildtierpo-

pulationen auf Grund von Krank-heitsgeschehen stellt eine wach-sende und ernstzunehmende Bedrohung dar. Wissenschaftlich fundierte Kenntnisse über Krank-heiten, Krankheitserreger sowie Krankheitsverläufe und daraus fol-gende Konsequenzen fungieren als nötige Grundlagen im Rahmen eines evidenzbasierenden Ent-scheidungsprozesses für nachhal-tiges Arten-Management. Diese Studie befasst sich mit der Unter-suchung gastrointestinaler Parasi-ten von Flusspferden (Hippopota-mus amphibius) und evaluiert die Nutzung der angewandten Metho-de als Basis zur Überwachung pa-rasitärer Geschehen in freileben-den Flusspferdpopulationen.

Material und MethodeDas Untersuchungsgebiet dieser

Studie war der Gamba-Komplex im Südwesten Gabuns in Zentralafrika. Er erstreckt sich über eine Fläche von 11.320 km2 und besteht aus ei-nem Gefüge aus Schutzgebieten mit einem weitläu� gen Wassersys-tem. Zwischen dem 14. Juni und dem

1. Oktober 2011 wurden an 46 Tagen 77 Kotproben von Flusspferden ge-sammelt. Die Proben wurden in eine Lösung aus 15 g Natriumacetat, 20 ml Eisessig, 40 ml Formalin (37 %) und 925 ml Leitungswasser � xiert. Jede Probe wurde gesondert mittels Se-dimentation (nach der modi� zierten Methode von Benedek) und Flota-tion (nach der McMaster Methode) untersucht.

Ergebnisse In 70 der 77 Proben wurden Pa-

rasiten gefunden. 61 Proben wa-ren positiv für Eier von Fasciola spp. und in 42 Proben wurde Ei-meria gefunden. Vier Proben wa-ren positiv für Larven von Stron-gyliden, eine Probe beinhaltete ein deformiertes Strongyliden-Ei.

SchlussfolgerungenDas Fixieren von Kotproben in

einer Lösung aus Formalin, Natri-umacetat und Eisessig ermöglicht eine zuverlässige Evaluierung von Parasiten. Die Ergebnisse weisen auf eine geringe parasitäre Vielfalt und eine geringe Belastung der Flusspferde im Gamba-Komplex hin. Die verwendete Methode lie-fert zuverlässige Daten über pa-rasitäre Geschehen in freileben-den Flusspferden. Ein Vergleich mit anderen Methoden bezüglich Sensitivität und Spezi� tät sollte in Betracht gezogen werden.

Keywors: Hippopotamus amphi-bius; parasite, faeces, Gabon.

Summary

Effective conservation ofspecies requires scientificevidence upon which to basedecisions. Health threats to wild-life must be considered whendevising conservation strategies. Reference data on diseases, their spread and their consequences for both hosts and people are key factors in the sustainablemanagement of wildlife species. In this study we investigated the possibility of extracting parasites and assessing parasite type from faeces of the common hippo-potamus (Hippopotamus am-phibius) from the central African country of Gabon. Faecal samp-les were collected in the � eld, � xed in a formalin solution and analysed using � otation and sedi-mentation methods. We found parasites in 70 out of 77 samples; mainly comprising the generaEimeria and Fasciola. The study suggests that our methods are suitable for screening faecalparasites of free-ranging hippo-potamuses.

Abbreviations: CITES = Convention on International Trade in Endangered Species; GCPA = Gamba Complex of Protected Areas; IUCN = International Union for Conservation of Nature; WWF = World Wildlife Fund

Page 2: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

67

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

IntroductionThe common hippopotamus (Hippopotamus

amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred along the length of the Nile River all the way to the delta and in South Africa to the Cape. The common hippo-potamus was extirpated from many of these areas in historic times (KINGDON, 1997). The species isbelieved to have experienced an overall decline of 7–20% between 1998 and 2008 (LEWISON andOLIVER, 2008). As a result, it was � rst listed on the IUCN Red list in 2006 (IUCN, 2006). Major threats for the hippopotamus are habitat loss, habitat fragmen-tation and poaching (ELTRINGHAM, 1999; LEWISON and OLIVER, 2008; KLINGEL, 2013).

Today, hippopotamuses still range over much of sub-Saharan Africa: in the west from Senegal and Gambia and in the east from Sudan, Ethiopia and Somalia as far south as the Okavango River delta in Botswana, the Kunene River in Namibia andKwaZulu Natal in South Africa. The estimated total population is in the order of 125,000–148,000 indivi-duals (LEWISON and OLIVER, 2008). The common hippopotamus is still categorized as ‘vulnerable’ on the IUCN Red List (2013). It is also listed in Appendix II of the Convention on International Trade in En-dangered Species (CITES) of Wild Fauna and Flora due to concerns about the appearance of hippo-potamus ivory in international trade (CITES, 2013).

Parasites from free-ranging hippopotamuses were � rst reported during the beginning of the 20th cen-tury (see Tab. 1). Most samples were collected fol-lowing culling operations undertaken to control po-pulation numbers in Eastern Africa. An overview of the parasites found to date in the common hippo-potamus is shown in Table 1. Records are noticeab-ly absent from many areas in which hippopotamuses occur, including West Africa.

The aims of this study were threefold: I) to assess the feasibility of parasitological screening of free ranging hippopotamuses; II) to assess methods for extracting parasites from faeces and � xing them in a solution of formalin; and III) to identify diversity of parasite species in the faeces of hippopotamuses living in the Gamba complex.

Material and Methods

Study Area

The territory of Gabon is largely (80%) covered by forest. Consequently, the spatial distribution of the hippopotamus in Gabon is restricted (MAYAUX et al., 2004). The IUCN estimates the species to number around 250 individuals in Gabon (IUCN, 2013),although robust information on population sizeand distribution is lacking (WWF, 2006). The

hippopotamus is fully protected throughout the country under Gabonese law (Law N° 1/82 of July 22nd 1982). Nevertheless, numbers seem to be de-clining and poaching for meat and tusks is today thought to constitute the biggest threat for this spe-cies in Gabon (WHITE et al., 1983; CHRISTY et al., 2008).

The Gamba Complex of Protected Areas (GCPA) is reported to contain the highest density of common hippopotamuses in Gabon (DALLMEIER et al., 2006). The GCPA is situated in south-western Gabon atlatitude 1°50’-3°10’S and longitude 9°15’-10°50’E (see Maps 1 and 2). The GCPA includes two of the thirteen national parks of Gabon, Moukalaba-Doudou (4,500 km2) and Loango (1,550 km2), and an intervening corridor (3,585 km2). Wildlife in the GCPA is afforded some degree of protection by law.Hunting regulations are well de� ned inside national parks. The area has a very high biodiversity and an extremely low human population density (<1 person per km2) (TREBAOL and CHAILLOL, 2002; ALONSO et al., 2006). The GCPA comprises a mosaic of very diverse habitat types that span altitudes at sea level along the 200 km long pristine coast, up to about820 m a.s.l. on Mount Doudou. The equatorial climate is hot and humid (up to 85 % relative humidity)(LEMOALLE and ALBARET, 1995). The hydrologic landscapes in which hippopotamuses occur aredivided into three large basins. Together with anadditional network of rivers, these form a complex water network with wide permanently submerged woods and mangrove forests.

Parasitological examination

Fieldwork to sample hippopotamus faeces was carried out over 46 days between June 14th andOctober 1st 2011. Depending on accessibility and ter-rain, surveys were performed by motorized boat, quad, kayak or by foot. In total, surveys covered 1,500 km in distance across 12 different regions of the GBPA. By changing the tracks left by hippo-potami after every sampling we tried to avoidcollecting faeces from the same individual twice. The ages of faeces was estimated by local guides based on humidity, colour, smell and the impression of tracks next to it. We often found tracks and faeces in locations that had been sampled the previous day, and this increased con� dence in the estimates of the age of hippopotami faeces, which were classi� ed as fresh faeces deposited the previous night <24 h prior to collection; and old faeces deposited >48 hearlier. Each faecal sample collected took different parts from the scat and sought to avoid contamina-tion by sampling from parts of the scat that had the least contact with the surrounding soil.

A total of 77 faecal samples were collected. Six of these were taken from old scats, seven were taken from scat assessed as being between 24 and 48 hours

Page 3: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

68

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

Tab. 1: List of parasites of hippopotamuses described in the literature

Phylum Plathelminthes

Echinostomatidae Ogmocotyle spp. MCCULLY et al., 1967

Fasciolidae Fasciola nyanzae e.g. LEIPER, 1910; JACKSON, 1921

Paramphistomidae Paramphistomum spp.

Nilocotyle spp.

Gigantocotyle spp.

Carmyerius cruciformis

Gigantatrium gigantoatrium

Glyptamphistoma paradoxum

Gastrothylax cruciformis

Platyamphistoma polycladiformae

Buxifrons spp.

Ugandocotyle spp.

e.g. LEIPER, 1910; NÄSMARK, 1937

e.g. SWART, 1961; SEY and GRABNER, 1980

MCCULLY et al., 1967

e.g.LEIPER, 1910; SEY and GRABER, 1979

NÄSMARK, 1937; CANARIS and GARDNER, 2003

SEY and GRABER, 1979; CANARIS and GARDNER, 2003

CANARIS and GARDNER, 2003

NÄSMARK,1937; CANARIS and GARDNER, 2003

NÄSMARK, 1937; SEY and GRABER, 1979; CANARIS and GARDNER, 2003

e.g. SEY and GRABER, 1979; CANARIS and GARDNER, 2003

Schistosomatidae Schistosoma spp. e.g. THURSTON, 1964; MORGAN et al., 2003

Anoplocephalidae Moniezia amphibian LINSTOW, 1910; CANARIS and GARDNER, 2003

Taeniidae Echinococcus granulosus africanus MCCULLY et al,. 1967

Polystomatidae Oculotrema hippopotami STUNKARD, 1924; THURSTON, 1968a,b; DU PREEZ and MOENG, 2004

Phylum Nematoda

Trichostrongylidae Leiperiatus hopkeni

Nematodirus hopkeni

LEIPER, 1910; CANARIS and GARDNER, 2003

LEIPER, 1910

Filariidae Filaria hippopotami LEIPER, 1910

Atracitidae Cobboldina spp. e.g. OGDEN, 1967; MONDAL and MANNA, 2012

Ascarididae Ascaris hippopotami e.g. CANAVAN, 1929; MAUNG, 1975

Onchocercidae Dipetalonema hippopotami MCCULLY et al., 1967; CANARIS and GARDNER, 2003

Syngamidae Mammomonogamus hippopotami GEDOELST, 1924; CANARIS and GARDNER, 2003

Phylum: Apicomplexa

Eimeria COWAN et al., 1967; KUTTING et al., 1982a,b

Phylum Arthropoda

Amblyommidae Amblyomma tholloni Rhipicephalus S. simus

GUILBRIDE et al., 1962

Phylum Annelida

Hirudinidae Limnatis nilotica

Placobdelloides jaegerskioeldi

GUILBRIDE et al., 1962

OOSTHUIZEN and DAVIES, 1994

Page 4: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

69

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

Map.2: The Gamba Complex of protected area in Gabon

Map 1: Location of Gabon

old and 64 came from fresh faeces. The samples were � xed usinga solution of 15 g sodium acetate in 20 ml acetic acid, 40 ml for-malin (37%) and 925 ml tapwater to enable subsequentanalysis (UTZINGER et al., 2010), an established � xation protocol that is used widely across thetropics (e.g. MARTIN and ESCHER, 1990). About 10–15 g of faecal material from each sample was placed in 30 ml of the diluted � xative.

The samples were screened six months after collection. Each sample was analysed separately using � otation as well as sedi-mentation methods to extract the different parasitic stages. To eva-luate larvae and protozoa using a simple � otation method and the standard McMaster method (GORDON andWHITLOCK, 1939; WHITLOCK, 1948), the homo-genized suspension of drained faeces and waterwas enriched with a sucrose solution (density of1.28 g/cm3) and the sample was centrifuged at 690xg for 8 min. Droplets from the surface were screened by means of a microscope at a magni� cation of up to 400 x. Sedimentation was performed using the modi� ed method of Benedek (BENEDEK, 1943;BORAY and PEARSON, 1960). The suspension was � rst sifted through a sieve to remove plant particles. In a second step, the residue in the sieve of32 meshes/cm was washed out with water to extract as much of the smaller particles as possible. Theresulting solution was allowed to sediment for 3 min before being decanted and the sediment was screened for larvae and eggs under a microscope at a magni� cation of 25 x to 40 x.

Results

The recovered larvae and eggs showed a generally good state of preservation. We found parasites in 70 out of the 77 samplescollected. Sixty-one samples were positive for Fasciola spp. (see Fig. 1), 42 were positive for Eimeria and four contained larvae of Strongyloides, one of which belonged to the genus Dictyo-caulus. To the best of the authors’ knowledge, no representative of the genus Dictyocaulus haspreviously been described as a

parasite infesting hippopotamuses. One sample contained a deformed egg that presumably belongs to a nematode, the taxonomy of a larva in another sample could not be determined due to damaged structures, one oocyst from Isospora was found and in 13 of the samples eggs of mites (Acarina) were identi� ed (see Tab. 2a and 2b).

Discussion

This study demonstrates the feasibility of deter-mining the prevalence and diversity of parasitescollected in the wild from common hippopotamuses. The results of the present and previous studies(Tab. 1) show that the common hippopotamus is host to various species of parasite. Nevertheless,

Page 5: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

70

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

evidence of disease due to parasitism in thehippopotamus is rare (GUILBRIDE et al., 1962;ELTRINGHAM, 1999; MILLER, 2003). Some of the parasites, including Fasciola nyanzae, Oculotrema hippopotami, Schistosoma hippopotami, Schisto-soma edwardiense and the leech Placobdelloides jaegerskioeldi, are thought to be speci� c to hippo-potamuses (DINNIK and DINNIK, 1961; THURSTON and LAWS, 1965; OOSTHUIZEN and DAVIS, 1994; MORGAN et al., 2003). Previously, only three studies had assessed parasites from dropped faeces of free-ranging hippopotamuses, one of which was un-successful in extracting parasites from ‘fresh hippo-potamus dung samples’ (MORGAN et al., 2003). The other two studies showed a relatively low prevalence of parasites: seven out of 30 samples and seven out of 38 samples, respectively (DINNIK and DINNIK, 1961; PITCHFORD and VISSER, 1981). Samples were only � xed in formalin before examination in thesecond study. The present research shows a suc-cessful approach for extracting parasites from drop-ped faeces. A standard formalin-based solution suc-cessfully fixed parasites from common hippo-potamuses in high ambient temperatures and humi-dity and allowed a diagnostically conclusive analysis six months after sampling.

Parasitism with Fasciola seems to be fairly com-mon in wild hippopotamuses (e.g. LEIPER, 1910; JACKSON, 1921; MCCULLY et al., 1967). An infesta-tion with Eimeria has previously been described in only two individual animals (COWAN et al., 1967; KUTTING et al., 1982b).

Compared with previous studies, few species of parasites were found in Gabon. These comprised Fasciola, Eimeria and in � ve cases Nematode spp.

Furthermore, the parasitic load was very low. In the samples positive for Nematode spp. three samples contained fewer than ten eggs and one sample con-tained only a single larva. The food mites found in six different samples were most probably ingested orally and passed through the gastrointestinal system wit-hout negative impact. The low parasitic loads might be linked to the low density of the hippopotamus po-pulation in the GCPA region (personal observation).

The apparent low parasite diversity and load could also be due to the method used in this study, sug-gesting the need to consider further methodological testing. To the best of the authors’ knowledge this is the � rst study of the parasites of the common hippo-potamus from the region: previous studies have been con� ned to Eastern or Southern Africa. A range-wide comparison of parasite prevalence and diversity seems necessary to address the problem of parasi-tism in wild hippopotamuses.

Tab. 2a: Prevalence of parasites found using sedimentation methods in faecal samples from common hippopotamuses collected inGabon in 2011

Sedimentation

age of Sample Results Sample Nr. ∑ %

24 h < Fasciola spp.3, 6-14,16-22, 26-28,30-44, 46, 47, 52, 54, 59, 61, 63, 68, 69, 73-77

49 63.6

24 h < negative 45, 50, 51, 53, 55-60, 62, 64-66, 70 15 19.5

24 h - 48 h Fasciola spp. 23-25, 71,72, 29 6 7.8

24 h - 48 h negative 67 1 1.3

> 48 h Fasciola spp. 1,2, 15, 48 4 5.1

> 48 h negative 4, 5 2 2.6

Total 77 100

Total positive 59 76.6

Total negative 18 23.4

Fig. 1: Extracted Fasciola egg from faeces of the common hip-popotamus

Page 6: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

71

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

Conclusion

The study demonstrated the feasibility of perfor-ming a parasitological screening of free ranging common hippopotamuses through the analysis of recovered faecal samples. The � xation of faeces in a solution of formalin, sodium acetate, acetic acid and tap water allowed the extraction of parasites in diffe-rent stages of development for six months after sam-ple collection. The � ndings suggest a low parasitic load and diversity in the common hippopotamus in the Gamba Complex of Protected Areas in Gabon, possibly due to the species’ low population density there.

The speci� city and sensitivity of the method would bene� t from further validation. Nevertheless, it can be used for a reliable parasitical screening of free-ranging common hippopotamuses.

Further research is needed to investigate which species of Eimeria are present in hippopotamuses. Little is known about this parasite and its possible

impact, although the prevalence found in the hippo-potamuses in our sampling area was remarkable. The intriguing � nding of a Dictyocaulus larva in one sample also suggests that there are still undescribed parasites in the common hippopotamus.

AcknowledgementThis research was partially funded by the WWF.Without the permissions from the CENAREST(National Centre of Scienti� c Research of Gabon), the ANPN (National Agency for National Parks ofGabon), the senior warden of the national parks and the support in the � eld from WWF Gabon and the local staff, this survey could not have been done. Many thanks to the Institute of Parasitology of the University of Veterinary Medicine Vienna for perfor-ming the examination of the faecal samples, and to Dr. P.K. Robbins and Dr. N. Leader-Williams for anumber of comments and suggestions.

Tab. 2b: Prevalence of parasites found using sedimentation methods in faecal samples from common hippopotamuses collected inGabon in 2011

Flotation

age of Sample Results Sample Nr. ∑ %

24 h < Eimeria spp.17-22, 26-28, 31-37, 40-42, 45, 47, 50, 54-56, 58-63, 66, 68, 74-77

37 48.1

24 h < deformed larva 10 1 1,3

24 h < larvae from Strogyloides 12 1 1,3

24 h <Eimeria spp.; deformed egg (presumably Strogyloides)

73 1 1,3

24 h < negative3, 6-9, 11, 13,14, 16, 30, 38,39, 43,44, 46, 49, 51-53, 57, 64,65, 69, 70

24 31.2

24 h - 48 h Eimeria spp. 23, 25, 29 3 3,9

24 h - 48 h negative 24, 67, 71,72 4 5.1

> 48 h larvae from Strogyloides 5, 15 2 2.6

> 48 hlarvae from Strongyloides (Dictyocaulus)

4 1 1,3

> 48 h Eimeria spp. 48 1 1,3

> 48 h negative 1,2 2 2.6

Total 77 100

Total positive 47 61

Total negative 30 39

Page 7: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

72

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

ReferencesALONSO, A., LEE, M.E., CAMPELL, P., PAUWELS, O.S.G.,

DALLMEIER, F. (2006): Gamba, Gabon: biodiversité d‘une forêt équatoriale Africaine. Washington DC, USA.

BENEDEK, L. (1943): Untersuchungen auf Leberegeleier durch Sedimentation. Magyar Allatorvosok 66, 139–141.

BORAY, J.C., PEARSON, I.G. (1960): The anthelmintic ef-� ciency of tetrachlorodi� uoroethane in sheep infested with Fasciola hepatica. Aust Vet J 36, 331–337.

CANARIS, A.G., GARDNER, S.L. (2003): Bibliography of helminth species described from African vertebra-tes 1800–1967, faculty publications from the Harold W.Manter Laboratory of Parasitology. Paper 3, 101. Online at http://lamarck.unl.edu/speciespages/geography/

CANAVAN, W.P.N. (1929): Nematode parasites ofvertebrates in the Philadelphia zoological garden andvicinity. Parasitol 21, 63–102.

CHRISTY, P., LAHM, S.A., PAUWELS, O.S.G:, VANDE WEGHE, J.P. (2008): Check-list des amphibiens, reptiles, oiseaux et mammifères des parcs nationaux du Gabon. - Checklist of amphibians, reptiles, birds and mammals of the national parks of Gabon, Smithsonian Institution.

CITES: Convention on international trade in endangeredspecies of wild fauna and � ora. 2013 [cited 20. 02. 2013];Available from: http://www.cites.org/eng/app/appen-dices.php.

COWAN, D.e.F., THURLBECK, W.M., LAWS, R.M. (1967): Some diseases of the hippopotamus in Uganda. VetPathol Online 4, 553–567.

DALLMEIER, F., ALONSO, A., AMPBELL, P., LEE, M.E., BUIJ, R., PAUWELS, O.S.G. (2006): Indicateurs écolo-giques visant le corridor industriel du Complexe d’Aires Protégées de Gamba: une zone d’une grande valeur pour la biodiversité et l’exploitation pétrolière dans le sud-ouest du Gabon. Bulletin of the Biological Society ofWashington 12,17–28.

DINNIK, J.A., DINNIK, N.N. (1961): On the morphology and life history of Fasciola Nyanzae Leiper, 1910 from thehippopotamus. J Helminthol 35(S1), 53–62.

DU PREEZ, L.H., MOENG, I.A. (2004): Additional morpho-logical information on Oculotrema Hippopotami Stunkard, 1924 (Monogenea: Polystomatidae) parasitic on the African Hippopotamus. Afr Zool 39, 225–233.

ELTRINGHAM, S.K. (1999): The Hippos: natural history and conservation. London, Academic Press.

FOWLER, M.E., MURRAY, E. (1993): Artiodactylids.Parasites. Zoo and wild animal medicine. M. E. Fowler; Philadelphia, Saunders, 524.

GEDOELST, L. (1924): Un syngame parasite de l‘hippopotame. Annales de Parasitologie II, 307-311.

GORDON, H.M., WHITLOCK, H.V. (1939): A new technique for counting nematode eggs in sheep faeces. J Counc Sci Ind Res 12, 50–52.

GUILBRIDE, P.D., COYLE, T.J., MC ANULTY E.G., BAR-BER, L., LOMAX, G.D. (1962): Some pathogenic agents found in hippopotamus in Uganda. J Comp Pathol 72, 137–141.

IUCN News Release (2006): Release of the 2006 IUCN red list of threatened species reveals ongoing decline of the status of plants and animals.

IUCN (2013): IUCN Redlist - Common Hippopotamus(Hippopotamus amphibius).

JACKSON, H.G. (1921): A revision of the genus Fascio-la. With particular reference to F. gigantica (Cobbold)and F. nyanzi (Leiper). Parasitol 13, 48–56.

KINGDON, J.S.H. (1997): The Kingdon � eld guide of african mammals, Academic Press, London.

KLINGEL, H. (2013): Hippopotamus amphibius (Linnaeus). In: KINGDON, J. HOFFMANN M. (Eds): Mammals ofAfrica. Volume IV: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids. Bloomsbury Publishing,London.

KUTTING, E.S., LOUPAL, G., KÖHLER, H., SUPPERER,R. (1982a). Intrauterine coccidiosis in a hippopotamus with occurrence of a new species of Eimeria. J Protozool 29, 535.

KUTTING, E.S., LOUPAL, G., KÖHLER, H., SUPPERER, R. (1982b): Über eine Plazentarkokzidiose bei einem Fluß-pferd (Hippopotamus amphibius). ZBL Vet Med B 29, 153-159.

LAWS, R.M. (1963): Report for 1962-1963. The Nuf� eld Unit of Tropical animal ecology. Report and accounts of the trustees of the Uganda National Parks, Kampala.

LEIPER, R.T. (1910): The entozoa of the hippopotamus. Proc Zool Soc Lond 80, 233–252.

LEMOALLE, J., ALBARET, J.J. (1995): Vevy lagoon and Ndogo lagoon: an environmental appraisal.

LEWISON, R., OLIVER, W. (IUCN SSC Hippo Specialist Subgroup) 2008. Hippopotamus amphibius. In: IUCN 2013. IUCN Red List of threatened species. Versi-on 2013.2. <www.iucnredlist.org>. Downloaded on18 January 2014.

LINSTOW, O.F.B.v. (1910): Atractis perarmata n. sp. ZBL Bakt II Natur 53, 516–518.

MARTIN H., ESCHER E. (1990): SAF - Eine alternative Fixierlösung für Parasitologische Stuhluntersuchun-gen |[SAF - An Alternative Fixative for Stool Samples]. Schweiz Med Wschr 120, 1473–1476.

MAUNG, M. (1975): An ascaridoid nematode from a hip-popotamus. Internat J Parasitol 5, 431–439.

MAYAUX, P., BARTHOLOME, E., FRITZ, S., BELWARD, A. (2004): A new land-cover map of Africa for the year 2000. J Biogeogr 31, 861–877.

MCCULLY, R.M., VAN NIEKERK, J., KRUGER, S.P. (1965): The pathology of bilharziasis in Hippopotamus amphi-bius. S Afr J Lab Clin Med 39, 1026.

MCCULLY, R.M., VAN NIEKERK, J., KRUGER, S.P.(1967): Observations on the pathology of bilharziasisand other parasitic infestations of Hippopotamusamphibius Linnaeus, 1758, from the KrugerNational Park. Onderstepoort J Vet 34, 563–617.

MILLER, M. (2003): Hippopotamidae (Hippopotamus). Zoo and wild animal medicine: Current therapy.M.E. Fowler, R.E. Miller. Philadelphia, Saunders,602–612.

Page 8: Parasitological examination of common hippopotamus ... · The common hippopotamus (Hippopotamus amphibius L.) was once widespread across sub-Saharan Africa. In the past, it occurred

73

Wiener Tierärztliche Monatsschrift – Veterinary Medicine Austria 101 (2014)

MONDAL, S., MANNA, B. (2012): On a new species of the genus Cobboldina (Nematoda: Atractidae) from hip-popotamus (Hippopotamus amphibius Linnaeus, 1758) captivated at the Alipore Zoological Garden, Kolkata, West Bengal, India. J Parasit Dis 36, 251–255.

MORGAN, J.A.T., DEJONG, R.J., KAZIBWE, F., MKOJI, G.M., LOKER, E.S. (2003): A newly-identi� ed lineage of Schistosoma. Int J Parasitol 33, 977–985.

NÄSMARK, K.E. (1937): A revision of the trematode family Paramphistomidae. Zool Bidr Uppsala 16, 301–565.

OGDEN, C.G. (1967): A little-known nematode, Cobboldina vivipara, from the hippopotamus. J Nat Hist 1, 389-392.

OLIVIER, R.C.D., LAURIE, W.A. (1974): Habitat utilization by hippopotamus in the Mara River. Afr J of Ecol 12, 249–271.

OOSTHUIZEN, J.H., DAVIES, R.W. (1994): The biology and adaptations of the hippopotamus leech Placobdelloides jaegerskioeldi (Glossiphoniidae) to its host. Can J Zool 72, 418–422.

PITCHFORD, R.J., VISSER, P.S. (1981): Schistosoma Wein-land, 1858 from Hippopotamus amphibius Linnaeus, 1758 in the Kruger National Park. Onderstepoort J Vet 48, 181–184.

SEY, O., GRABER, M. (1979): Examination of amphistomes (Trematoda: Paramphistomidae) of some Africain mam-mals = Examen des amphistomes (Trematoda: Param-phistomidae) de quelques mammifères d‘Afrique. Rev elev med vet pay 32, 161–168.

SEY, O., GRABER, M. (1980): Nilocotyle duplicisphinctris sp.n. (Trematoda: Paramphistomidae) from Hippopota-mus amphibius. J Helminthol 54, 123–127.

STUNKARD, H.W. (1924): A new trematode, Oculotrema hippopotami n.g., n.sp, from the eye of the hippopota-mus. Parasitology 16, 436–440.

SWART, P.J. (1961): Nilocotyle Hepaticae nsp from Hippo-potamus amphibius. Onderstepoort J Vet 28, 551–556.

SWART, P.J. (1966): A redescription of Nilocotyle (Nilo-cotyle) praesphinctris Näsmark, 1937 (Trematoda: Pa-ramphistomidae) from Hippopotamus amphibius. On-derstepoort J Vet 33, 73–76.

THURSTON, J.P. (1963): Schistosomes from Hippopota-mus amphibius L. Parasitology 53, 49–54.

THURSTON, J.P. (1964): Schistosomes from Hippopota-mus amphibius L. II. The morphology of Schistosoma edwardiense sp.nov. Parasitology 54, 67–72.

THURSTON, J.P. (1968a): The frequency distribution of Oculotrema hippopotami (Monogenea: Polystomatidae) on Hippopotamus amphibius. Journal of Zoology 154, 481–485.

THURSTON, J.P. (1968b): The larva of Oculotrema hippo-potami (Monogenea: Polystomatidae). Journal of Zoolo-gy (London) 154, 475–480.

THURSTON, J.P., LAWS, R.M. (1965): Oculotrema hippo-potami (Trematoda: Monogenea) in Uganda. Nature 205, 1127.

THURSTON, J.P., NOIROT-TIMOTHEE, C., ARMAN, P. (1968): Fermentative digestion in the stomach of Hippo-potamus amphibius (Artiodactyla: Suiformes) and asso-ciated ciliate protozoa. Nature 218, 882–883.

TREBAOL, L., CHAILLOL, C. (Eds.) (2002): Environmental and social impacts of oil industry activities in Central Afri-ca: a case study on the Gamba protected areas complex (Gabon). Gamba, Gabon, World Wide Fund for Nature.

UTZINGER, J., BOTERO-KLEIVEN, S., CASTELLI, F., CHIO-DINI, P.L., EDWARDS, H., KÖHLER, N., GULLETTA, M., LEBBAD, M., MANSER, M., MATTHYS, B., N‘GORAN, E.K., TANNICH, E., VOUNATSOU, P., MARTI, H. (2010): Microscopic diagnosis of sodium acetat-acetic acid-formalin-� xed stool samples for helminths and intestinal protozoa: A comparison among european references la-boratories. Clin Microbiol Infec 16, 267-273.

WHITE, F., UNESCO, UNITED NATIONS SUDANO-SAHE-LIAN OFF. (Eds) (1983): The vegetation of Africa: a de-scriptive memoir to accompany the Unesco/AETFAT /UNSO vegetation map of Africa. Natural resources re-search. Paris, UNESCO.

WHITLOCK, H.V. (1948): Some modi� cations of the Mc-Master helminth egg-counting technique and apparatus. J Counc Sci Ind Res 21, 177–180.

WORLD WILDLIFE FUND (WWF) (2006): WildFinder: Online Database of Species Distributions, ver. Jan-06, World Wildlife Fund.

*Coresponding author’s address: Sylvie Rietmann, Research Institute of Wildlife Ecology,Savoyenstraße 1, 1160 Vienna, Austria e-mail: [email protected]