parameterization tricks

43

Click here to load reader

Upload: ahmed-akhbar

Post on 14-Apr-2015

73 views

Category:

Documents


3 download

DESCRIPTION

Awesome Calc III notes!

TRANSCRIPT

Page 1: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Math 1920 Parameterization Tricks

Dr. Back

Nov. 3, 2009

Page 2: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Please Don’t Rely on this File!

In Math 1920 you’re expected to work on these topics mostlywithout computer aid.

But seeing a few better pictures can help understanding theconcepts.

A copy of this file is at

http://www.math.cornell.edu/̃ back/m1920

Page 3: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Page 4: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Parameters u and v just different names for x and y resp.

Page 5: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Use this idea if you can’t think of something better.

Page 6: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Page 7: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

The graph z = F (x , y) can always be parameterized by

~r(u, v) =< u, v ,F (u, v) > .

Note the curves where u and v are constant are visible in thewireframe.

Page 8: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

Page 9: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Page 10: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Page 11: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Algebraically, we are rescaling the algebra behind polarcoordinates where

x = r cos θ

y = r sin θ

leads to r2 = x2 + y2.

Page 12: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Here we want x2 + 4y2 to be simple. So

x = 2r cos θ

y = r sin θ

will do better.

Page 13: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Paraboloid z = x2 + 4y 2

A trigonometric parametrization will often be better if you haveto calculate a surface integral.

~r(u, v) =< 2u cos v , u sin v , 4u2 > .

Here we want x2 + 4y2 to be simple. So

x = 2r cos θ

y = r sin θ

will do better.Plug x and y into z = x2 + 4y2 to get the z-component.

Page 14: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

Graph parametrizations are often optimal for paraboliccylinders.

Page 15: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

~r(u, v) =< u, v , u2 >

Page 16: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

~r(u, v) =< u, v , u2 >

Page 17: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Parabolic Cylinder z = x2

~r(u, v) =< u, v , u2 >

One of the parameters (v) is giving us the “extrusion”direction. The parameter u is just being used to describe thecurve z = x2 in the zx plane.

Page 18: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

The trigonometric trick is often good for elliptic cylinders

Page 19: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

3·√

2 cos v , u,√

3 sin v >=<√

6 cos v , u,√

3 sin v >

Page 20: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

Page 21: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

Page 22: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

Page 23: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

What happened here is we started with the polar coordinateidea

x = r cos θ

z = r sin θ

but noted that the algebra wasn’t right for x2 + 2z2 so shiftedto

x =√

2r cos θ

z = r sin θ

Page 24: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Elliptic Cylinder x2 + 2z2 = 6

~r(u, v) =<√

6 cos v , u,√

3 sin v >

x =√

2r cos θ

z = r sin θ

makes the left hand side work out to 2r2 which will be 6 whenr =

√3.

Page 25: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Ellipsoid x2 + 2y 2 + 3z2 = 4

A similar trick occurs for using spherical coordinate ideas inparameterizing ellipsoids.

Page 26: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Ellipsoid x2 + 2y 2 + 3z2 = 4

A similar trick occurs for using spherical coordinate ideas inparameterizing ellipsoids.

~r(u, v) =< 2 sin u cos v ,√

2 sin u sin v ,

√4

3cos u >

Page 27: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Ellipsoid x2 + 2y 2 + 3z2 = 4

~r(u, v) =< 2 sin u cos v ,√

2 sin u sin v ,

√4

3cos u >

Page 28: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

You may have run into the hyperbolic functions

cosh x =ex + e−x

2

sinh x =ex − e−x

2

Page 29: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

You may have run into the hyperbolic functions

cosh x =ex + e−x

2

sinh x =ex − e−x

2

Just as cos2 θ + sin2 θ = 1 helps with ellipses, the hyperbolicversion cosh2 θ − sinh2 θ = 1 leads to the nicest hyperbolaparameterizations.

Page 30: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

Just as cos2 θ + sin2 θ = 1 helps with ellipses, the hyperbolicversion cosh2 θ − sinh2 θ = 1 leads to the nicest hyperbolaparameterizations.

~r(u, v) =< 2 sinh v , u, 2 cosh v >

Page 31: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperbolic Cylinder x2 − z2 = −4

~r(u, v) =< 2 sinh v , u, 2 cosh v >

Page 32: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Saddle z = x2 − y 2

The hyperbolic trick also works with saddles

Page 33: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Saddle z = x2 − y 2

~r(u, v) =< u cosh v , u sinh v , u2 >

Page 34: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Saddle z = x2 − y 2

~r(u, v) =< u cosh v , u sinh v , u2 >

Page 35: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

The spherical coordinate idea for ellipsoids with sin φ replacedby cosh u works well here.

Page 36: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

~r(u, v) =< cosh u cos v , cosh u sin v , sinh u >

Page 37: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 1 Sheet x2 + y 2 − z2 = 1

Page 38: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

Page 39: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

~r(u, v) =< sinh u cos v , sinh u sin v , cosh u >

Page 40: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Hyperboloid of 2-Sheets x2 + y 2 − z2 = −1

Page 41: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.

Page 42: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.The polar coordinate idea leads to

~r(u, v) =< u cos v , u sin v , u >

Page 43: Parameterization Tricks

Math 1920Parameteriza-

tionTricks

V2

Definitions

SurfacePictures

Top Part of Cone z2 = x2 + y 2

So z =√

x2 + y2.The polar coordinate idea leads to

~r(u, v) =< u cos v , u sin v , u >