overview on compton polarimetry · specific polarimeter studies ... overview on compton polarimetry...

21
K. Peter Schüler Overview on Compton Polarimetry 1 SLAC – Jan. 6-8, 2005 ILC MDI - Workshop General Issues O spin motion & alignment tolerances O beam-beam effects & upstream vs. Downstream Compton Polarimetry Basics O beam parameters & Compton detection methods O kinematics, cross sections & asymmetries O laser choices and parameters Specific Polarimeter Studies O upstream polarimeter study (DESY) O downstream polarimeter study (SLAC) Overview on Compton Polarimetry

Upload: lethuy

Post on 16-Jun-2019

226 views

Category:

Documents


0 download

TRANSCRIPT

K. Peter SchülerOverview on Compton Polarimetry 1

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

General IssuesO spin motion & alignment tolerancesO beam-beam effects & upstream vs. Downstream

Compton Polarimetry BasicsO beam parameters & Compton detection methodsO kinematics, cross sections & asymmetriesO laser choices and parameters

Specific Polarimeter StudiesO upstream polarimeter study (DESY)O downstream polarimeter study (SLAC)

Overview on Compton Polarimetry

K. Peter SchülerOverview on Compton Polarimetry 2

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

6SLQ�0RWLRQ

• Spin vector must be vertical in the damping ring

• Spin Rotator in the transfer line to the linac:

manipulates spin direction for any desired orientation at the experiment

must compensate all technical spin rotation effects along the machine

requires fast polarimeter at the high-energy end for efficient tune-up

θθ

orbitorbitspin

GeV

Eg θθγθ44065.02

2 0=−= orbitorbitspin

GeV

Eg θθγθ44065.02

2 0=−=

θ pinsθθpinθθ

orbit0orbitspin

GeV44065.02

2 θθγθ Eg =−=

orbit

00

spin 22

21 φ

ρρφ =≈

−−= ∫∫

B

dlB

B

dlBg zz

31016.12

2 −×=−g

• Spin orientation is extremely sensitive to orbit deflections,at 250 GeV: θ spin = 567 θ orbit

K. Peter SchülerOverview on Compton Polarimetry 3

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

6SLQ�PRWLRQ�DORQJ�WKH�DFFHOHUDWRU(e.g. for TESLA TDR topology)

K. Peter SchülerOverview on Compton Polarimetry 4

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

$OLJQPHQW�7ROHUDQFHV

⇒ i.e. beam orbit directions at the polarimeter & e+e- detector must be extremely well aligned to each other

⇒ very tight, but not impossible

⇒ will require high-precision BPM‘s & surveying techniques

⇒ applies to any kind of polarimetry method & location

K. Peter SchülerOverview on Compton Polarimetry 5

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

%HDP�%HDP�(IIHFWV�,������GHSRODUL]DWLRQ�HVWLPDWHV�IRU�7(6/$

angular spread of disrupted beam leads to corresponding spreadof spin vector distribution

⇒ estimated depolarization*of disrupted beam: ≈ 1 % (extracted beam)of beam at e+e- IP: ≈ 0.25% (lumi-weighted)

* only Thomas-BMT spin rotations effects considered

K. Peter SchülerOverview on Compton Polarimetry 6

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

Kathleen Thompson: SLAC-PUB-8761 (Jan. 2001)(see also Yokoya & Chen: SLAC-PUB-4692)

NLC-500: outgoing e- depolarization:

BMT ST TOTAL BMT ST TOTAL(analytic results) (simulation results)

NLC-A 0.6% 0.4% 1.1% 0.4% 0.5% 0.9%NLC-B 0.8% 0.4% 1.1% 0.5% 0.4% 0.9%NLC-C 0.9% 0.3% 1.1% 0.5% 0.3% 0.9%

NLC-500: luminosity-weighted e- beam depolarization:BMT ST TOTAL BMT ST TOTAL

(analytic results) (simulation results)NLC-A 0.2% 0.1% 0.3% 0.1% 0.1% 0.2%NLC-B 0.2% 0.1% 0.3% 0.1% 0.1% 0.2%NLC-C 0.2% 0.1% 0.3% 0.1% 0.1% 0.2%

∆P (downstream) ≈ 4 x ∆P (lumi-weighted)⇒ upstream value is much closer to lumi-weighted polarization!

Beam-Beam Effects II: depolarization studies for NLC

K. Peter SchülerOverview on Compton Polarimetry 7

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

beam parameters & Compton detection methods

• typical e+/e- beam parameters HERA SLC ILCbeam energies (GeV): 27.5 45.6 45.6; 250; 400; 500 bunch population 4 · 1010 4 · 1010 2 · 1010

no. of bunches per pulse 2 820 no. of pulses per sec 5 no. of bunches per sec 10.4 · 10 6 120 14 100 bunch separation 96 ns 8.3 ms 337 nsaverage beam current ~ 50 mA ~ 0.8 µA ~ 45 µA

• Compton detection methods HERA HERA HERA SLD ILCTPOL LPOL Cavity

long/trans ⊥ || || || ||e vs. γ detection γ γ γ e (γ) e (γ)single event counting yes no yes no (no)multi event detection no yes yes yes yeslaser pulse rate (Hz) cw 100 cw 17 5 (*)

14 100 (**)* downstream / ** upstream polarimeter proposals

K. Peter SchülerOverview on Compton Polarimetry 8

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

&RPSWRQ�.LQHPDWLFV

K. Peter SchülerOverview on Compton Polarimetry 9

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

- 1 < P < + 1

- 1 < λ < + 1

&RPSWRQ�3RODULPHWU\

cross sections,spin asymmetry,scattering angles

K. Peter SchülerOverview on Compton Polarimetry 10

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

standard detection method:scattered electron detection with suitable magnetic spectrometer

Eo = 45.6 GeVωo = 4.66 eV (UV)

Eo = 250 GeVωo = 2.33 eV (green)

Eo = 400 GeVωo = 1.165 eV (IR)

may need to adjust wavelength of laser to obtain acceptable coverage of Compton edge region for all beam energies

K. Peter SchülerOverview on Compton Polarimetry 11

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

Photon Detection Option (with suitable calorimeter)

analyzing power = asymmetry of energy-weighted cross section integrals

⇒ May be attractive for Giga-Z (Eo = 45.6 GeV), to avoid need for UV-lasers

K. Peter SchülerOverview on Compton Polarimetry 12

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

Luminosity for pulsed lasers

fb = bunch crossings per secNe, Nγ = no. of e, γ per bunchg = geometry factorσxγ , σyγ = transverse laser beam sizeσzγ = c σtγ = laser pulse lengthθo = laser crossing angle

⇒ effectiveness of laser degrades with increasing pulse length & crossing angle

K. Peter SchülerOverview on Compton Polarimetry 13

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

laser choices & parameters

1. Q-switched Nd:YAG laserpro ⇒ very high pulse energy (up to several 100 mJ),

robust commercial systems, relatively low costcon ⇒ very low rep-rate (~5 Hz), i.e. only a small sampling fraction (1/2820)

of all ILC bunches can be measured;inefficient due to long pulse length (ns‘s)

2. TESLA TTF rf-gun type Nd:YLF laserpro ⇒ pulse pattern matched to ILC bunch & pulse structure;

100% of all ILC bunches will be measured;high efficiency due to short pulse length (10 ps);sufficient pulse energy (10-100 µJ) to achieve negligible stat. errors in 1 sec !

con ⇒ non-commercial system, ~ 400 k per laser

3. Pulsed Fabry-Perot Cavity (R&D project at Orsay)pro ⇒ aims for similar performance as (2)con ⇒ must operate complex laser system remotely in ILC tunnel (reliability!);

feasibility must still be demonstrated (note: HERA Fabry-Perot is not pulsed!)

K. Peter SchülerOverview on Compton Polarimetry 14

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

laser schematic of TTF injector gun:regen. multi-stage Nd:YLF ampl.(built by Max-Born-Inst.)operates at nominal pulse &bunch pattern of TESLA

Nd:YLF laser parameters I

K. Peter SchülerOverview on Compton Polarimetry 15

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

Nd:YLF laser parameters II

Laser for TTF injector gunS. Schreiber et al.NIM A 445 (2000) 427

σt = 8 ps

K. Peter SchülerOverview on Compton Polarimetry 16

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

6SHFLILF�3RODULPHWHU�6WXGLHVA. upstream polarimeter study (DESY)

For details: V. Gharibyan, N. Meyners, K.P. Schüler,www.desy.de/~lcnotes/notes.htmlLC-DET-2001-047

K. Peter SchülerOverview on Compton Polarimetry 17

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

6SHFLILF�3RODULPHWHU�6WXGLHVB. downstream polarimeter study (SLAC)

for details: M. Woods and K.C. Moffeit,SLAC-PUB-10669, Aug. 2004,and K.C. Moffeit, this workshop

low-energy Compton electrons will bewell-separated from disrupted beam(for 20 mrad linac crossing angle!)

4-magnet chicane with 2nd beam focusand laser crossing at center of chicane

Laser: 532 nm, 100 mJ, 2 ns FWHM,5 Hz, 100 µm spot size, 11.5 mrad beam crossing angle

K. Peter SchülerOverview on Compton Polarimetry 18

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

6XPPDU\Upstream polarimeter study (DESY):

u assumes suitable magnetic bend (~ 1 mrad) withdog-leg or chicane geometry

u custom-built laser system (similar to existing facility at DESY)with pulse pattern matched to ILC bunch structure (14 100 per sec)

u very fast, robust facility, precision of ∆P/P ~ 0.25%

Downstream polarimeter study (SLAC):u Assumes 20 mrad linac crossing angle

with suitable magnetic chicane u commercial laser system (similar to SLD polarimeter laser)

which samples fraction of ILC bunches (5 per sec)u Low-energy Compton electrons are well-separated from

disrupted beam background, precision of ∆P/P ~ 0.25%

K. Peter SchülerOverview on Compton Polarimetry 19

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

GRZQVWUHDP��H[WUDFWLRQ OLQH��VWXGLHV IRU�7(6/$/DVHU�%HDP�7RSRORJ\ TESLA beam extraction scheme

laser beam crossing inside the big detector! place Compton electron detector at z = 65 m(behind MSEP magnet)

additional material:

K. Peter SchülerOverview on Compton Polarimetry 20

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

GRZQVWUHDP��H[WUDFWLRQ OLQH��VWXGLHV IRU�7(6/$

250 GeV nominal beam energy,40 000 disrupted beam events,simulated with „guinea pig“,distributions at e+e- IP

extrapolated background (at IP & z = 65 m)for standard 20 mm x 20 mm collimator aperture

additional material:

K. Peter SchülerOverview on Compton Polarimetry 21

SLAC – Jan. 6-8, 2005 ILC MDI - Workshop

GRZQVWUHDP��H[WUDFWLRQ OLQH��VWXGLHV IRU�7(6/$�Compton el. detector at z = 65 m green laser (same type as for upstream polarimeter)

Conclusion: large background from disrupted beam;downstream polarimetry is not possible for head-on linac configurations!

additional material: