organometallic chemistry with emphasis on electron ... · 4000 8000 12000 0 2500 5000...

1
4000 8000 12000 0 2500 5000 Organometallic Chemistry With Emphasis On Electron Transfer Studies M. Lohan , F. Justaud a) , Rico Packheiser, C. Lapinte a) , and H. Lang *) Faculty of Natural Sciences, Institut of Chemistry, Department of Inorganic Chemistry, Chemnitz University of Technology, Straße der Nationen 62, 09111 Chemnitz (Germany). E-mail: [email protected] a) UMR CNRS 6226 Sciences Chimiques de Rennes, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes. Introduction The linkage of transition-metal fragments to give (hetero)multimetallic molecules is, from the viewpoint of synthetic chemistry, a challenge, since the molecular design of such assemblies requires the accessibility of multitopic bridging units featuring diverse reactive coordination sites. [1] In the frame of our previous work in this field of chemistry, the consecutive synthesis, characterization, and structure of heterotri- to heteroheptametallic transition metal complexes in a straightforward way was discussed. [1,2] For understanding the interaction of multiple metal centers via an organic bridge, it is necessary to study smaller symmetric molecules, e. g. M(C≡C) n M. [3] The use of an organometallic spacer, for example, biferrocenyl between two redoxactive termini, has attracted much attention because mixed-valent Fe(II)-Fe(III) species are easily formed by electrochemical or chemical oxidation. [4] Bis(ethynyl)biferrocene can be considered as a bridging and redox-active connectivity between transition metal fragments allowing communication through delocalized bonds in the respective array. [5,6] The Synthesis, characterization and bonding of selected (hetero)- and (homo)metallic complexes will be presented. The spectroelectrochemistry of these molecules will be described including UV-Vis-NIR-, IR-, EPR-, Mößbauer-spectroscopy, and cyclovoltammetry. References Synthesis -10 -5 0 5 10 15 20 25 30 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4 1,6 E [V] Current density [μA/cm 2 ] Potentials in dichloromethane (0.1 M [ n Bu 4 N]PF 6 ; 298 K, platinum electrode, sweep rate 0.100 V s -1 ) are given in V vs. SCE; the ferrocene-ferrocinium couple [Fc]/[Fc + ] (0.460 V vs. SCE) was used as an internal calibrant for the potential measurements. [7] a) Irreversible. Cp = 5 -C 5 H 5 ; Cp* = 5 -C 5 Me 5 ; bfc = 1’,1’’’-biferrocenyl; ((η 5 -C 5 H 4 ) 2 Fe) 2 ; dppe = 1,2-bis(diphenylphosphino)ethane. NIR Spectroscopy of Chemical Oxidized Species 2+ + 4000 8000 12000 0 2500 5000 ε = 10200 dm 3 mol -1 cm -1 ε = 7200 dm 3 mol -1 cm -1 ε = 4930 dm 3 mol -1 cm -1 ε = 2270 dm 3 mol -1 cm -1 Spectroelectrochemistry UV-Vis/NIR Spectroscopy (in-situ Oxidation) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 400 900 1400 1900 2400 λ [nm] ε [dm 3 * cm -1 * mol -1 ] 0 5000 10000 15000 20000 25000 400 900 1400 1900 2400 λ [nm] ε [dm 3 *cm -1 * mol -1 ] Fe 2 Ru 2 Fe 4 1800 1850 1900 1950 2000 2050 2100 2150 2200 Wavenumber [cm -1 ] 1800 1850 1900 1950 2000 2050 2100 2150 2200 Wavenumber [cm -1 ] IR Spectroscopy (in-situ Oxidation) Compd. [M 2+ ]/[M 3+ ] E (E p ,I c /I a ) [V] [Fe 2+ ]/[Fe 3+ ] E (E p ,I c /I a ) [V] Kc bfc(C≡CH) 2 0.47 (0.13, ~1) 0.85 (0.13, ~1) bfc(C≡C(CpRu(PPh 3 ) 2 )) 2 bfc(C≡C(Cp*Fe(dppe))) 2 0.03 (0.09, 1) 0.22 (0.10, 1) -0.23 (0.11) 0.74 (0.12, <1) 0.89 a) 0.49 (0.07) 0.78 (0.07) 1.8·10 3 24 A A 2+ A + A 2+ A + Class II Robin and Day + Electron Paramagnetic Resonance 2500 2700 2900 3100 3300 3500 3700 3900 4100 Field [G] 1500 2000 2500 3000 3500 4000 4500 Field [G] A + A + - Unpaired electrons centered at Fe(η 2 -dppe)(Cp*) - Communication between Fe- and biferrocene moiety is slower than EPR time-scale Weak communication between the terminal Fe centers - Unpaired electrons not Ru- centered - SOMOs show biferrocenium character (bfc + ) - Electron delocalization between the two ferrocene moieties Communication between Ru and Fe Mössbauer spectroscopy a) Compd. a) Fe(η 2 -dppe)(Cp*) bfc Relative surface areas IS Qs IS QS Fe 4 0.26 1.95 0.54 2.32 1:1 Fe 4 [PF 6 ] 0.27 0.23 1.98 0.95 0.52 2.24 25:26:49 Fe 4 [PF 6 ] 2 0.22 0.99 0.51 2.18 1:1 Fe 4 [PF 6 ] 3 0.21 1.02 0.5 0.5 2.11 0.42 61:19:20 a) The velocity is referenced to the iron metal, data in mm/s; Fe 4 = bfc(C≡C(Fe(η 2 -dppe)Cp*)) 2 . Conclusion A series of bis(ethynyl)biferrocenyl-based transition metal complexes of structural type (L n MCC) 2 bfc (L n M=( 5 -C 5 H 5 )(Ph 3 P) 2 Ru, ( 5 -C 5 Me 5 )(dppe)Fe, bfc = 1’,1’’’- biferrocenyl, (( 5 -C 5 H 4 ) 2 Fe) 2 ; dppe = 1,1-bis(diphenyl)phosphanylethane) have been synthesized. The cyclic voltammetry data of these compounds indicate that the 1’,1’’’-bis(ethynyl)biferrocenyl unit acts as a linking group for ruthenium and iron halfsandwich fragments capable of conveying electronic interaction from one end to the other more efficiently than 1,1-(ethynyl)ferrocene (with the same terminal groups), which was recognized to behave as an insulator [5]. EPR spectroscopy allowed to establish in case of Fe 2 Ru 2 that the SOMOs, which contain the odd electrons in the respective mixed valent species, possess a significant biferrocene character. Interestingly, the small tensors of anisotropy strongly support that the biferrocenyl bridge acts as a relay in this long distance electron transfer process. In case of Fe 4 one can see from EPR that the unpaired electron is centered at the half-sandwich Iron-ion. The electron transfer process between the iron half-sandwich moiety and the biferrocenyl-bridge is slower than EPR timescale. Analysis of the NIR absorption bands also supports that a direct M-M electron transfer does not take place in [bfc(CC(Cp’)M(L) 2 ) 2 ] 2+ (M = Fe, Cp’ = Cp*, L 2 = dppe; M = Ru, Cp’ = Cp, L 2 = 2 PPh3), the electron exchange occurs through two successive MC≡CFc electron-transfers, favored by a fast exchange between the two ferrocenyl units. The experimental data support that the strongest interaction may occur between one (Cp’)(L) 2 M moiety and the biferrocenyl unit through ethynyl fragments but while the ferrocenyl group acts as an insulator, the biferrocene connectivity plays the role of a relay allowing electron-transfer from one metal terminus to the other. Fe 2 Ru 2 Fe 4 Fe 2 Ru 2 Fe 4 -6 -4 -2 0 2 4 6 8 10 -0,8 -0,6 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 E [V] Current density [μA/cm 2 ] Cyclic Voltammetry Fe 2+ /Fe 3+ Fe 2+ /Fe 3+ Ru 3+ /Ru 4+ Ru 2+ /Ru 3+ Ru 2+ /Ru 3+ Fe 2+ /Fe 3+ Fe 2+ /Fe 3+ Fe 2+ /Fe 3+ ΔE = 0.08 V ΔE = 0.059 logK c K c = 24 ΔE = 0.19 V ΔE = 0.059 logK c K c = 1.7 · 10 3 ΔE ΔE K c A + A 2+ 2A + Comproportionation Equilibrium Fe 2 Ru 2 Fe 4 cm -1 cm -1 M -1 cm -1 C≡C C≡C C=C=C C=C=C mixed species Fe 2 Ru 2 Fe 4 Comproportionation Equilibrium 2 K c [1] R. Packheiser, P. Ecorchard, T. Rüffer and H. Lang, Chem. Eur. J., 2008, 14, 4948 and references therein. [2] H. Lang, K. Köhler and S. Blau, Coord. Chem. Rev., 1995, 143, 113 and references therein. [3] For example: H. Jiao, K. Costuas, J. A. Gladysz, J.-F. Halet, M. Guillemot, L. Toupet, F. Paul and C. Lapinte, J. Am. Chem. Soc., 2003, 125, 9511. [4] (a) G. M. Brown, T. J. Meyer, D. O. Cowan, C. Le Vanda, F. J. Kaufmann, P. V. Roling and M. D. Rausch, Inorg. Chem., 1975, 14, 506. (b) U. T. Mueller-Westerhoff, Angew. Chem., Int. Ed. Engl., 1986, 25, 702. [5] For example: (a) N. J. Long, A. J. Martin, R. Vilar, A. J. P.White, D. J. Williams, and M. Younus, Organometallics, 1999, 18, 4261. (b) T.-Y. Dong, H.-Y. Lin, S.-F. Lin,C.-C. Huang, Y.-S. Wen, and L. Lee, Organometallics, 2008, 27, 555. (c) Hore, L.-A.; McAdam, C. J.; Kerr, J. L.; Duffy, N. W.; Robinson, B. H.; Simpson, J. Organometallics 2000, 19, 5039. Köcher, S.; van Klink, G. P. M.; van Koten, G.; Lang, H. Journal of Organometallic Chemistry 2006, 691, 3319. [6] (a) M. Lohan, P. Ecorchard, T. Rüffer, F. Justaud, C. Lapinte and H. Lang, Organometallics, 2009, 28, 1878. (b) M. Lohan, F. Justaud, T. Roisnel, P. Ecorchard, T. Rüffer, H. Lang and C. Lapinte, Organometallics, 2009, in press. [7] Connelly, N. G.; Geiger, W. E., Chem. Rev. 1996, 96, 877-910. M -1 cm -1 M -1 cm -1 M -1 cm -1 IVCT-bande IVCT-bande cm -1 cm -1

Upload: others

Post on 29-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Organometallic Chemistry With Emphasis On Electron ... · 4000 8000 12000 0 2500 5000 Organometallic Chemistry With Emphasis On Electron Transfer Studies M. Lohan, F. Justauda), Rico

4000 8000 12000

0

2500

5000

Organometallic Chemistry With Emphasis On Electron Transfer Studies

M Lohan F Justauda) Rico Packheiser C Lapintea) and H Lang)

Faculty of Natural Sciences Institut of Chemistry Department of Inorganic Chemistry Chemnitz University of TechnologyStraszlige der Nationen 62 09111 Chemnitz (Germany) E-mail heinrichlangchemietu-chemnitzde a) UMR CNRS 6226 Sciences Chimiques de

Rennes Universiteacute de Rennes 1 Campus de Beaulieu F-35042 Rennes

IntroductionThe linkage of transition-metal fragments to give (hetero)multimetallic molecules is from the viewpoint of synthetic chemistry a challenge since the molecular design of such assemblies requires the accessibility of multitopic

bridging units featuring diverse reactive coordination sites [1] In the frame of our previous work in this field of chemistry the consecutive synthesis characterization and structure of heterotri- to heteroheptametallic transition

metal complexes in a straightforward way was discussed [12] For understanding the interaction of multiple metal centers via an organic bridge it is necessary to study smaller symmetric molecules e g Mndash(CequivC)nndashM [3] The

use of an organometallic spacer for example biferrocenyl between two redoxactive termini has attracted much attention because mixed-valent Fe(II)-Fe(III) species are easily formed by electrochemical or chemical oxidation

[4] Bis(ethynyl)biferrocene can be considered as a bridging and redox-active connectivity between transition metal fragments allowing communication through delocalized bonds in the respective array [56] The Synthesis

characterization and bonding of selected (hetero)- and (homo)metallic complexes will be presented The spectroelectrochemistry of these molecules will be described including UV-Vis-NIR- IR- EPR- Moumlszligbauer-spectroscopy

and cyclovoltammetry

References

Synthesis

-10

-5

0

5

10

15

20

25

30

-06 -04 -02 0 02 04 06 08 1 12 14 16

E [V]

Cu

rren

t d

en

sit

y [

microA

cm

2]

Potentials in dichloromethane (01 M [nBu4N]PF6 298 K platinum electrode sweep rate 0100 V s-1) are given in V vs SCE theferrocene-ferrocinium couple [Fc][Fc+] (0460 V vs SCE) was used as an internal calibrant for the potential measurements [7] a)Irreversible Cp =5-C5H5 Cp =5-C5Me5 bfc = 1rsquo1rsquorsquorsquo-biferrocenyl ((η5-C5H4)2Fe)2 dppe = 12-bis(diphenylphosphino)ethane

NIR Spectroscopy of Chemical Oxidized Species

2++

4000 8000 12000

0

2500

5000ε = 10200 dm3mol-1cm-1

ε = 7200 dm3mol-1cm-1

ε = 4930 dm3mol-1cm-1

ε = 2270 dm3mol-1cm-1

Spectroelectrochemistry

UV-VisNIR Spectroscopy (in-situ Oxidation)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

400 900 1400 1900 2400

λ [nm]

ε [

dm

3

cm

-1

mo

l-1]

0

5000

10000

15000

20000

25000

400 900 1400 1900 2400

λ [nm]

ε [

dm

3

cm

-1

mo

l-1]

Fe2Ru2 Fe4

180018501900195020002050210021502200

Wavenumber [cm-1

]

180018501900195020002050210021502200

Wavenumber [cm-1

]

IR Spectroscopy (in-situ Oxidation)

Compd[M2+][M3+]E (Ep IcIa) [V]

[Fe2+][Fe3+]E (Ep IcIa) [V]

Kc

bfc(CequivCH)2

047 (013 ~1)

085 (013 ~1)

bfc(CequivC(CpRu(PPh3)2))2

bfc(CequivC(CpFe(dppe)))2

003 (009 1)

022 (010 1)

-023 (011)

074 (012 lt1)

089a)

049 (007)

078 (007)

18middot103

24

A A2+ A+

A2+

A+Class II

Robin and Day

+

Electron Paramagnetic Resonance

2500 2700 2900 3100 3300 3500 3700 3900 4100

Field [G]

1500 2000 2500 3000 3500 4000 4500

Field [G]

A+

A+

- Unpaired electrons centered

at Fe(η2-dppe)(Cp)

- Communication between Fe- and

biferrocene moiety is slower

than EPR time-scale

Weak communication

between the terminal Fe

centers

- Unpaired electrons not Ru-

centered

- SOMOs show biferrocenium

character (bfc+)

- Electron delocalization

between the two ferrocene

moieties

Communication

between Ru and Fe

Moumlssbauer spectroscopy a)

Compd a) Fe(η2-dppe)(Cp) bfc Relative surface areas

IS Qs IS QS

Fe4 026 195 054 232 11

Fe4[PF6] 027

023

198

095

052 224 252649

Fe4[PF6]2 022 099 051 218 11

Fe4[PF6]3 021 102 05

05

211

042

611920

a) The velocity is referenced to the iron metal data in mms Fe4 = bfc(CequivC(Fe(η2-dppe)Cp))2

ConclusionA series of bis(ethynyl)biferrocenyl-based transition metal complexes of structural type (LnMCC)2bfc (LnM = (5-C5H5)(Ph3P)2Ru(5-C5Me5)(dppe)Fe bfc = 1rsquo1rsquorsquorsquo- biferrocenyl ((5-C5H4)2Fe)2 dppe = 11rsquo-bis(diphenyl)phosphanylethane) have beensynthesized The cyclic voltammetry data of these compounds indicate that the 1rsquo1rsquorsquorsquo-bis(ethynyl)biferrocenyl unit acts as alinking group for ruthenium and iron halfsandwich fragments capable of conveying electronic interaction from one end to theother more efficiently than 11rsquo-(ethynyl)ferrocene (with the same terminal groups) which was recognized to behave as aninsulator [5] EPR spectroscopy allowed to establish in case of Fe2Ru2 that the SOMOs which contain the odd electrons in therespective mixed valent species possess a significant biferrocene character Interestingly the small tensors of anisotropy stronglysupport that the biferrocenyl bridge acts as a relay in this long distance electron transfer process In case of Fe4 one can seefrom EPR that the unpaired electron is centered at the half-sandwich Iron-ion The electron transfer process between the ironhalf-sandwich moiety and the biferrocenyl-bridge is slower than EPR timescale Analysis of the NIR absorption bands alsosupports that a direct M-M electron transfer does not take place in [bfc(CequivC(Cprsquo)M(L)2)2]

2+ (M = Fe Cprsquo = Cp L2 = dppe M =Ru Cprsquo = Cp L2 = 2 PPh3) the electron exchange occurs through two successive MCequivCFc electron-transfers favored by a fastexchange between the two ferrocenyl units The experimental data support that the strongest interaction may occur betweenone (Cprsquo)(L)2M moiety and the biferrocenyl unit through ethynyl fragments but while the ferrocenyl group acts as an insulator

the biferrocene connectivity plays the role of a relay allowing electron-transfer from one metal terminus to the other

Fe2Ru2

Fe4

Fe2Ru2Fe4

-6

-4

-2

0

2

4

6

8

10

-08 -06 -04 -02 0 02 04 06 08 1 12

E [V]

Cu

rren

t d

en

sit

y [

microA

cm

2]

Cyclic Voltammetry

Fe2+Fe3+

Fe2+Fe3+ Ru3+Ru4+

Ru2+Ru3+

Ru2+Ru3+

Fe2+Fe3+

Fe2+Fe3+

Fe2+Fe3+

ΔE = 008 V

ΔE = 0059 logKc

Kc = 24

ΔE = 019 V

ΔE = 0059 logKc

Kc = 17 103

ΔE

ΔE

KcA + A2+ 2A+

Comproportionation Equilibrium

Fe2Ru2

Fe4

cm-1

cm-1

M-1

cm-1

CequivC

CequivC

C=C=CC=C=C

mixedspecies

Fe2Ru2

Fe4

Comproportionation Equilibrium

2Kc

[1] R Packheiser P Ecorchard T Ruumlffer and H Lang Chem Eur J 2008 14 4948 and references therein [2] H Lang K Koumlhler and S Blau Coord Chem Rev 1995 143 113 and references therein [3] For example H Jiao K Costuas J

A Gladysz J-F Halet M Guillemot L Toupet F Paul and C Lapinte J Am Chem Soc 2003 125 9511 [4] (a) G M Brown T J Meyer D O Cowan C Le Vanda F J Kaufmann P V Roling and M D Rausch Inorg Chem 1975 14 506

(b) U T Mueller-Westerhoff Angew Chem Int Ed Engl 1986 25 702 [5] For example (a) N J Long A J Martin R Vilar A J P White D J Williams and M Younus Organometallics 1999 18 4261 (b) T-Y Dong H-Y Lin S-F Lin C-C

Huang Y-S Wen and L Lee Organometallics 2008 27 555 (c) Hore L-A McAdam C J Kerr J L Duffy N W Robinson B H Simpson J Organometallics 2000 19 5039 Koumlcher S van Klink G P M van Koten G Lang H Journal

of Organometallic Chemistry 2006 691 3319 [6] (a) M Lohan P Ecorchard T Ruumlffer F Justaud C Lapinte and H Lang Organometallics 2009 28 1878 (b) M Lohan F Justaud T Roisnel P Ecorchard T Ruumlffer H Lang and C Lapinte

Organometallics 2009 in press [7] Connelly N G Geiger W E Chem Rev 1996 96 877-910

M-1

cm-1

M-1

cm-1

M-1

cm-1

IVCT-bande IVCT-bande

cm-1

cm-1