orbital debris and di carlo t. briefing collisional cascading

27
Orbital Debris and Di Carlo T. BRIEFING Collisional Cascading

Post on 18-Dec-2015

219 views

Category:

Documents


0 download

TRANSCRIPT

Orbital Debris and

Di Carlo T.

BRIEFING

Collisional Cascading

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 2

The Problem

Random collisions between man-made objects in earth orbit may some day initiate cascading collisions that will exponentially pollute these high-value orbits, rendering them exceedingly hazardous for space ventures.

As suggested by.: Collisional Cascading - The Limits of Population Growth in Low Earth Orbit, Kessler, Donald J., NASA Doc ID 19920036034, Adv. Space Res. Vol. 11, No. 12, pp. (12)63-(12)66, 1991

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 3

Sampling of Prior Art

EVOLVE - one-dimensional, LEO-only, deterministic and stochastic environment evolution model with Monte Carlo processing (NASA)

LEGEND – Leo-to-Geo Environment Debris model, 3-dimensional (altitude, latitude, longitude) evolutionary model (NASA)

CHAINEE – PIB model for long-term LEO predictions based on traffic assumptions and mitigation measures (ESA)

SDM/STAT – like CHAINEE, based on modulation of background population (ESA)

PIB – particle in a box (1)

(1) for a description of PIB see: Analytic Model for orbital Debris Environmental Management, David L. Talent, Journal of Spacecraft and Rockets, Vol. 29, No. 4, pp. 508-513, 1992

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 4

NASA Orbital Debris Program Architecture

ORDEM Engineering

Model

Source: NASA 26 July 2006 Orbital Debris Environment Presentation to ISS Independent Safety Task Force

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 5

Sources / Sinks

Satellites ~120 launches per year worldwide (but, emerging China, Japan and India space programs could inflate this figure; double it?) (1) (2)

Rocket Body Parts ~ 2-3 per launch (1)

Spontaneous Explosions, Fragmentations – 3% (6), 124 since 1961 (2)

Anti-Satellite Tests (ASAT) Soviet Union, at least 4 between 1968 and 1982 (3) (5)

USA, at least 1 in 1985 (Solwind) (4)

China, 1 in 2007

Space Warfare – none, yet

Random Collisions – 1 to date (Cerise, 1996, without explosion) (5)

Natural Decay – due to drag, also function of solar activity

DeOrbits and Retrievals – policy options

(1) Analytic Model for orbital Debris Environmental Management, David L. Talent, Journal of Spacecraft and Rockets, Vol. 29, No. 4, pp. 508-513, 1992(2) Office of Science and Technology, Nov 1995 Interagency Report on Orbital Debris(3) http://www.nytimes.com/2007/01/18/world/asia/18cnd-china.html?ex=1326776400&en=3f5fb4a065572bbb&ei=5088&partner=rssnyt&emc=rss(4) http://en.wikipedia.org/wiki/Anti-satellite_weapon(5) Survey of past on-orbit fragmentation events, Carmen Pardini, Acta Astronautica 56 (2005) 379-389(6) Future Planned Space Traffic: 1990-2010 and Beyond, Phillip D. Anz-Meador, AIAA/NASA/DOD Orbital Debris Conf., April 16-19, 1990, Baltimore MD

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 6

Solar Flux

The SystemDEBRIS SOURCES

SPONTANEOUS EXPLOSIONS

COLLISIONS

Nations Vying for Space SuperiorityNation’s Technological Development

Nations Wanting Access to SpaceNew Space Programs

SATELLITE LAUNCHES

DECAY DEORBIT, RETRIEVAL

DEBRIS SINKS

ANTI-SATELLITE

TEST

ORBITAL SPACE DEBRIS POPULATION

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 7

200000 Objects in LEO! [1cm or larger]

CNES/ill.D.DUCROS,1999 http://www.orbitaldebris.jsc.nasa.gov/photogallery/beehives/LEO1280.jpg

Inter-Agency Space Debris Coordination Committee, 43rd Session

500000 by 2050 (1998 U.N. Committee on Peaceful Uses of Outer-Space prediction)

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 8

Conceptual Model

1m 10 cm 1cm 1mm

Decay Block

Collision Block

c1 c2 c3 c4

w1 w1 w1 w1g1 g2 g3 g4

s1 s2 s3 s4

BreakupBlock

Holding Tanks

s1 s2 s3 s4 Exit

ASAT Input

New Satellites

Input

Solar Flux

SSN Catalog

est. of untrackable

objects

initialization

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 9

Reference Behavior (measurement)

Number of Catalogued Space Objects (typically 4 in. or larger)200-300 / yr

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 10

Reference Behavior (simulation)NASA EVOLVE PROJECTIONS

SOURCE: http://www.orbitaldebris.jsc.nasa.gov/newsletter/pdfs/ODQNv10i2.pdf

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 11

Preliminary Extend Model

USERINTERFACE

EXCELINTERFACE

LEVELS

PIB EQUATION

COEFFICIENTS

COUNTERS, PLOTTERS, AND CONSTANTS

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 12

Particle In a Box Equation

debris sweep rate- a policy measure

temporary place-holder, suggesting dependence on

altitude

crude attempt to model modulating

effect of solar activity

orbit decay; crude and semi-

empirical

new objects; mostly policy-

driven

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 13

Notional User Interface

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 14

Extend Deposition Sub-Model

Number of significant fragments generated per explosion (could be stochastic)

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 15

Extend Removal Sub-Model

Extend – ExcelINTERFACE

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 16

Extend Collisions Sub-Model

Number of significant fragments generated per collision (could be stochastic)

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 17

Extend ◄► ExcelExtend Global Array Managers

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1957 1967 1977 1987 1997 2007

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 18

1-Tier, 1-Species

Altitude Range: 350 – 1800 km

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 19

4-Tier, 1-Species (to be implemented)

200-500 km 500-800 km 800-1500 km

1500-2000 km

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 20

Critical Simplifying Assumptions

De-Orbit Algorithm – crude, based on average debris diameter, which is turn estimated a function of on-orbit mass, number of orbiting objects, and the simplifying assumption that objects are spherical and of uniform density.

Solar Flux Prediction – I assume a repeating 21 cycle; may be critical for longer-term predictions

Number of Pieces per explosion – 120, could be stochastic

Number of Fragments per collision – 200, could be stochastic

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 21

Preliminary Extend Results (1957-2010)

Solar Activity (F10) and Orbital Decay (N_out)

Sol

ar

Act

ivity

(Ja

nsky

)

Dec

ay (

num

ber/

year

)

Simulation Year

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 22

Preliminary Extend Results (1957-2010)

Significant Objects in Low Earth Orbit (N)

Simulation Year

Sig

nifi

can

t O

bje

cts

in L

EO

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 23

Preliminary Extend Results (1957-2010)

Satellite Kill Rate (rough estimate)

Simulation Year

Col

lisio

n C

oef

ficie

nt (

C)

SA

T K

ill R

ate

(#/

yr)

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 24

Preliminary Insights

Will Collisional Cascading Occur? - maybe, but I’m not seeing it yet (N tends to level out)

Policy and Design – they DO make a difference, for example - post-mission disposal of upper stages reduces N 20%- Doubling SAT density (packaging) reduces N 20%

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 25

Forward Work

Validation – match reference behaviors; get/implement Kessler’s input

Sensitivity Analysis – screen for critical parameters and fine tune them

4-Tier, 1-Species Implementation – if time allows (for granularity)

Historical Satellite Database – link to database

Implement as a Discrete Event n-Tier, n-Species SimulationSimplify user Interface – using Extend Notebook

[NEAR-TERM]

[LONG-TERM]

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 26

Summary

Simulation of orbital accumulation:Inspired by 1991 paper describing idea of Collisional Cascading – AKA The Kessler Syndrome

Resources, Reference Behaviors: Extend6 Simulation Development EnvironmentSSN Catalog; published historical trends; loads of studies and

published papers; Don Kessler

Implementation:Particle-in-a-Box Continuous Simulation ModelExtend◄►Excel; User “Policy” Interface

Potential Benefits, and Lessons to be Learned:Dynamics of orbital crowdingConditions for Collisional CascadingSpace as a Sustainable Resource

Mar 08Mar 08 Collisional Cascading - T. Di Carlo 27

Publications and Resources

(1) Collisional cascading - The Limits of Population Growth in Low Earth Orbit, Kessler, Donald J., NASA Doc ID 19920036034(2) Littered Skies, NYTimes.com, 6 Feb 2007, http://www.nytimes.com/2007/02/06/science/20070206_ORBIT_GRAPHIC.html?_r=2&oref=slogin&oref=slogin(3) Overview of Orbital Space Debris, IPS Radio and Space Services, www.ips.gov.au/Educational/4/2/1(4) Space Simulation and Modeling - Roles and Applications Throughout the System Life Cycle, Larry B. Rainey editor, The Aerospace Press, El Segundo CA, 2002(5) Simulation Model of Space Station Operations in the Space Debris Environment, Mark M. Mekaru and Brian M. Waechter, Proceedings of the 1985 Winter Simulation Conference(6) Collisions of Artificial Earth Orbiting Bodies, L. Sehnal and L. Pospisilova, Publishing House of the Czechoslovak Academy of Sciences, 18 Nov 1980(7) Orbital Debris Environment Resulting from Future Activities in Space, Shin-Yi Su, Center for Space and Remote Sensing Research and the Department of Atmospheric Physics, National Central University, Chung-Li, P.R.C., Taiwan, 23 Oct 2002(8) The New NASA Orbital Debris Engineering Model, NASA/TP—2002-210780, May 2002 ORDEM2000www.orbitaldebris.jsc.nasa.gov/library/ORDEM/ORDEM2K.pdf