optimization of medium and fermentation...

48
OPTIMIZATION OF MEDIUM AND FERMENTATION PARAMETERS FOR HIGH CELL DENSITY CULTIVATION OF Azotobacter vinelandii CHARLES THEN @ THEN KHOON THIAM UNIVERSITI TEKNOLOGI MALAYSIA

Upload: others

Post on 14-Jan-2020

16 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

OPTIMIZATION OF MEDIUM AND FERMENTATION PARAMETERS

FOR HIGH CELL DENSITY CULTIVATION OF

Azotobacter vinelandii

CHARLES THEN @ THEN KHOON THIAM

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

OPTIMIZATION OF MEDIUM AND FERMENTATION PARAMETERS

FOR HIGH CELL DENSITY CULTIVATION OF

Azotobacter vinelandii

CHARLES THEN @ THEN KHOON THIAM

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Masters of Engineering (Bioprocess)

Faculty of Chemical Engineering

Universiti Teknologi Malaysia

JANUARY 2012

Page 3: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

vi

To my beloved mother and father

Page 4: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

vii

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers,

academicians and industrial practitioners who have contributed greatly to my

understanding and thoughts. In particular, I would like to take this opportunity to

express my gratitude to my supervisor, Professor Dr. Hesham A. El-Enshasy for his

encouragement, guidance, critics and friendship. I am also very thankful to the

research officers at the Institute of Bioprocess Development (IBD) namely Puan

Norzalina Othman and Cik Roslinda Malek for their guidance, advice and

encouragement. Without their continued support and interest, this thesis would not

have been the same as presented here.

I am also indebted to All Cosmos Industries Sdn. Bhd. for funding my

Masters study. Technicians and research assistants of IBD also deserve special

thanks for their assistance in the execution of numerous experiments. My fellow

postgraduate and undergraduate students should also be recognized for their

continuous support. My sincere appreciation also extends to all my colleagues and

others who have provided assistance at various occasions. Their ideas and views are

useful indeed. Unfortunately, it is not possible to list all of them in this limited space.

I would once again like to express my sincerest gratitude to my family members and

all who have contributed to the completion of this thesis.

Page 5: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

viii

ABSTRACT

Azotobacter vinelandii is a free-living N-fixing bacterium capable of

converting atmospheric nitrogen into ammonia, a nitrogen source easily assimilated

by plants. Although numerous researches have been done on the genetics and

metabolism of A. vinelandii, little information on cell mass production for

biofertilizer applications is available. Therefore, the objective of this research is to

develop an industrial culture medium and a cultivation strategy for the mass

production of A. vinelandii in a semi-industrial scale. Based on previous works,

several media formulations were tested for their cell growth potential. The best

medium yielded a cell mass of only 3.94 g L-1 in shake flask cultures and was

optimized using both a classical and statistical approach, achieving a maximum cell

mass of 7.71 g L-1 and 8.82 g L-1, respectively. The cell yield on glucose of the

classically optimized medium was approximately 35.5% higher than the statistically

optimized medium and was thus used in subsequent bioreactor experiments. Batch

cultivations in 16-L stirred tank bioreactors with and without pH control yielded cell

mass concentrations of 7.52 g L-1 and 15.86 g L-1 respectively. A series of fed-batch

cultivations was carried out to determine the factors limiting cell growth. A

combination of a constant feeding strategy coupled with pH and dissolved oxygen

control with additional pure oxygen sparging was found to yield the highest cell mass

concentration of 40.65 g L-1 in 16-L bioreactor cultivations. The cultivation in a 150-

L stirred tank bioreactor revealed that oxygen is one of the most critical factors

affecting cell mass production of the highly aerobic A. vinelandii. The decreased

oxygen transfer rate limited cell growth but increased alginate production. The

maximum cell mass obtained in a fed-batch culture of Azotobacter vinelandii in a

150-L stirred tank bioreactor was 28.35 g L-1 while the maximum alginate

concentration was 18.60 g L-1.

Page 6: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

ix

ABSTRAK

Azotobacter vinelandii merupakan sejenis bakteria pengikat-N yang boleh

menukarkan nitrogen di atmosfera kepada ammonia yang boleh diserap oleh tumbuh-

tumbuhan.Walaupun banyak kajian telah dijalankan ke atas genetik dan metabolisme

bakteria ini, namun maklumat tentang strategi pengkulturan ketumpatan sel tinggi

untuk pengaplikasian bio-baja masih kekurangan. Oleh itu, objektif utama kajian ini

adalah untuk menghasilkan mediakultur dan strategi yang sesuai untuk pengkulturan

ketumpatan sel tinggi A. vinelandii. Berdasarkan kajian yang lepas, beberapa

mediakultur telah dipilih untuk diuji kesesuaiannya untuk pengkulturan A. vinelandii.

Media terbaik memberi ketumpatan sel sebanyak 3.94 g L-1 dalam pengkulturan di

dalam kelalang kon. Pengoptimuman komposisi media dijalankan atas media ini

menggunakan kaedah klasik dan statistik.Ketumpatan sel yang diperoleh dari media

optimum klasik dan statistik setiap satunya adalah 7.71 g L-1 dan 8.82 g L-1. Media

optimum klasik yang menunjukkan hasil sel yang lebih tinggi (35.5%) dipilih untuk

pengkulturan seterusnya dalam bioreaktor 16-L. Pengkulturan berkelompok di dalam

bioreaktor 16-L dengan dan tanpa kawalan pH masing-masing menghasilkan 7.52 g

L-1 dan 15.86 g L-1 sel. Satu siri pengkulturan suap kelompok dijalankan untuk

menentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi

pengkulturan suap kelompok dengan aliran nutrien malar, kawalan pH dan oksigen

dengan aliran gas oksigen tulen menghasilkan ketumpatan sel tertinggi, 40.65 g L-1

dalam bioreaktor 16-L. Pengkulturan A. vinelandii dalam bioreaktor 150-L

menghasilkan ketumpatan sel sebanyak 28.35 g L-1 dan alginate adalah 18.60 g L-1.

Ini menunjukkan bahawa oksigen merupakan salah satu faktor utama yang

mempengaruhi pertumbuhan sel di mana penurunan kadar pemindahan oksigen

meningkatkan penghasilan alginat berbanding dengan penghasilan sel.

Page 7: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

x

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

DECLARATION v

DEDICATION vi

ACKNOWLEDGEMENTS vii

ABSTRACT viii

ABSTRAK ix

TABLE OF CONTENTS x

LIST OF TABLES xiv

LIST OF FIGURES xviii

LIST OF APPENDICES xxiii

LIST OF ABBREVIATIONS xxvi

LIST OF SYMBOLS xxix

1 INTRODUCTION 1

1.1 Background 1

1.2 Objective 3

1.3 Scope 3

1.4 Problem Statement 4

2 LITERATURE REVIEW 5

Page 8: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xi

2.1 Nitrogen Fixation 5

2.1.1 Diazotrophs 6

2.1.2 Characteristics of Azotobacter vinelandii 7

2.1.3 Life Cycle of Azotobacter vinelandii 8

2.2 Applications of Azotobacter vinelandii 9

2.2.1 Biomass 9

2.2.1 Alginate 10

2.2.3 Poly-β-hydroxybutyrate, PHB 11

2.3 Azotobacter vinelandii Metabolism 13

2.4 Effects of Medium Composition and Cultivation

Conditions

14

2.4.1 Effects of Carbon Sources 17

2.4.2 Effects of Nitrogen Sources 19

2.4.3 Effects of Phosphate Concentration 21

2.4.4 Effects of Trace Elements 21

2.4.5 Effects of Dissolved Oxygen Concentration 22

2.5 Statistical Media Optimization 26

2.5.1 Full Factorial Design 26

2.5.2 Response Surface Methodology 27

2.5.3 Box-Behnken Design 29

2.6 Fermentation Modes 30

2.6.1 Batch Cultivation 30

2.6.2 Fed-Batch Cultivation 32

3 METHODOLOGY 38

3.1 Microorganism & Maintenance 38

3.2 Inoculum Preparation 39

3.3 Culture Media 39

3.4 Cultivation Using Different Carbon & Nitrogen Sources 41

3.5 Classical Medium Optimization 41

3.6 Statistical Medium Optimization 42

3.7 Growth Kinetics in Shake Flask Cultures 44

3.8 Bioreactor Cultivations 44

3.8.1 Batch Cultivation in 16-L Bioreactor 44

Page 9: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xii

3.8.2 Fed-Batch Cultivation 16-L Bioreactor 45

3.8.3 Fed-Batch Cultivation in 150-L Bioreactor 46

3.9 Analysis Protocols 48

3.9.1 Optical Density Determination 48

3.9.2 Cell Dry Weight Determination 48

3.9.3 Alginate Determination 49

3.9.4 Glucose Determination 49

3.10 Functionality Test 51

4 RESULTS & DISCUSSION 52

4.1 Cultivation in different media 52

4.2 Effect of different carbon sources on cell growth 53

4.3 Effect of different nitrogen sources on cell growth 55

4.4 Effect of different glucose concentrations on cell

growth

56

4.5 Effect of different yeast extract concentrations on

cell growth

58

4.6 Effect of different phosphate concentration on cell

growth

58

4.7 Effect of different ammonium sulfate concentrations

on cell growth

61

4.8 Statistical Media Optimization 63

4.8.1 Full Factorial Design 63

4.8.2 Box-Behnken Design 73

4.9 Growth Kinetics Comparison 82

4.10 Batch Cultivation in 16-L Stirred Tank Bioreactor 88

4.11 Fed-Batch Cultivation in 16-L Stirred Tank

Bioreactor

92

4.11.1 Constant Feeding (Uncontrolled & Controlled

pH without DO-control)

92

4.11.2 Constant Feeding (Uncontrolled &

Controlled pH with DO-control)

97

4.11.3 Intermittent Feeding (Controlled pH with

DO-control)

103

Page 10: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xiii

4.11.4 Constant Feeding in Oxygen Supplemented

Culture

106

4.12 Fed-Batch Cultivation in 150-L Stirred Tank

Bioreactor

109

5 CONCLUSION 115

REFERENCES 118

Appendices A – C 136-172

Page 11: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xiv

LIST OF TABLES

TABLE NO.

TITLE PAGE

2.1 Characteristics of Azotobacter vinelandii

7

2.2 Possible Applications for PHAs

12

2.3 Cultivation media for Azotobacter strains

15

2.4 Alginate yield on different carbon sources in excess

phosphate

18

2.5 Effects of defined and complex carbon sources on

Azotobacter vinelandii

19

2.6 Nitrogen Content of Different Types of Organic Nitrogen

Sources

20

2.7 Function of trace elements on Azotobacter 21

2.8 Effects of DO concentration on the growth, alginate & PHB

production of Azotobacter vinelandii.

24

Page 12: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xv

2.9 Example of a 24 factorial design experiment

27

2.10 Example of a three-variable Box-Behnken design

29

2.11 Types of Feeding Strategy

33

2.12 Feeding strategies employed by various authors

35

3.1 Media for Screening Experiment

40

3.2 Experimental range and levels of factors influencing

Azotobacter vinelandii cell growth in a three-level full

factorial design

42

3.3 Experimental range and levels of factors influencing

Azotobacter vinelandii cell growth in a Box-Behnken design

43

3.4 Composition of starting and feeding media in fed-batch

cultivations in 16-L stirred tank bioreactors

45

3.5 Composition of starting and feeding media in fed-batch

cultivation in 150-L stirred tank bioreactor

46

3.6 Composition of reagents used in DNS method

49

3.7 Medium composition for N-free agar medium

51

4.1 Experimental range and levels of factors influencing

Azotobacter vinelandii cell growth in a three-level full

factorial design

63

4.2 Four-factor, three-level full factorial design of experiment

64

4.3 Analysis of variance (ANOVA) for cell dry weight

production of Azotobacter vinelandii using a 4-factor 3-level

full factorial design

72

Page 13: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xvi

4.4 Experimental range and levels of factors influencing

Azotobacter vinelandii cell growth in a Box-Behnken design

74

4.5 Box-Behnken design of experiment

74

4.6 Estimated regression coefficients for cell mass production of

Azotobacter vinelandii using Box-Behnken design using

coded units

78

4.7 Estimated regression coefficients for cell mass production of

Azotobacter vinelandii using Box-Behnken design using un-

coded units

79

4.8 Analysis of variance (ANOVA) for cell dry weight

production of Azotobacter vinelandii using a Box-Behnken

Design

81

4.9 Medium composition for un-optimized and optimized media

82

4.10 Growth kinetics of shake flask cultures of Azotobacter

vinelandii

87

4.11 Growth kinetics of Azotobacter vinelandii in shake flask and

batch cultivations in a 16-L stirred tank bioreactor

89

4.12 Cultivation parameters for fed-batch cultivations of

Azotobacter vinelandii under controlled and uncontrolled pH

without dissolved oxygen control

92

4.13 Cultivation parameters for fed-batch cultivations of

Azotobacter vinelandii under controlled and uncontrolled pH

with dissolved oxygen control

98

4.14 Growth kinetics of fed-batch cultivations under different

conditions

102

Page 14: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xvii

4.15 Cultivation parameters for fed-batch cultivation of

Azotobacter vinelandii under intermittent feeding

103

4.16 Cultivation parameters for fed-batch cultivation of

Azotobacter vinelandii with pH and dissolved oxygen control

and pure oxygen aeration

106

4.17 Growth kinetics of fed-batch cultures employing different

cultivation strategies

109

4.18 Cultivation parameters for fed-batch cultivation of

Azotobacter vinelandii in a 150-L stirred tank bioreactor

110

4.19 Plate counts for different dilution factors on N-free agar

plates

114

B1 Dimensions for 16-L and 150-L stirred tank bioreactor 169

Page 15: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xviii

LIST OF FIGURES

FIGURE NO. TITLE

PAGE

2.1 Schematic diagram of the life cycle of Azotobacter vinelandii

9

2.2 Azotobacter vinelandii metabolic pathways

13

2.3 Diagram of the electron transport chain of Azotobacter

vinelandii with special reference to the dehydrogenases,

terminal oxidases and, as far as is known, to H+/e3 ratios.

DH, dehydrogenase; Q8, ubiquinone 8; Cyt, cytochrome; cy-

dAB, cycA and cycB genes encoding cyt bd, cyt c4 and cyt

c5, respectively; Km, apparent affinity of the terminal oxidase

for O2

23

2.4 A Box-Behnken design for three factors

30

2.5 Growth of a typical microbial culture in batch cultivation.

31

3.1 Colorimetric DNS method for glucose determination.

50

Page 16: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xix

4.1 Cell dry weight of Azotobacter vinelandii and final pH in

eight different media after 24 hours of cultivation in

Erlenmeyer shake flasks (250mL) at 30˚C

53

4.2 Cell dry weight and final pH in shake flask cultures of

Azotobacter vinelandii with different carbon sources at 30°C

for 24 hours

54

4.3 Cell dry weight and final pH in shake flask cultures of

Azotobacter vinelandii with different nitrogen sources at 30°C

for 24 hours

56

4.4 Cell dry weight and final pH at different concentrations of

glucose after 24 hours fermentation of Azotobacter vinelandii

at 30˚C in Erlenmeyer shake flasks (250 mL)

57

4.5 Cell dry weight and final pH at different concentrations of

yeast extract after 24 hours fermentation of Azotobacter

vinelandii at 30˚C in Erlenmeyer shake flasks (250 mL)

59

4.6 Cell dry weight and final pH at different concentrations of

KH2PO4 and K2HPO4 after 24 hours fermentation of

Azotobacter vinelandii at 30˚C in Erlenmeyer shake flasks

(250 mL)

60

4.7 Cell dry weight and final pH at different concentrations of

ammonium sulfate after 24 hours fermentation of Azotobacter

vinelandii at 30˚C in Erlenmeyer shake flasks (250 mL)

62

4.8 Mean cell mass obtained at different levels of each factor 70

4.9 Effects of interaction between different factors on cell mass

production

71

4.10 Contour plot between glucose and yeast extract when the

response is the residual cell mass

76

Page 17: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xx

4.11 Contour plot between yeast extractand ammonium sulfate

when the response is the residual cell mass

76

4.12 Contour plot between glucoseand ammonium sulfate when

the response is the residual cell mass

77

4.13 Optimization plot for cell mass production of Azotobacter

vinelandii using a Box-Behnken design

80

4.14 Cell dry weight, glucose consumption and pH changes in

shake flask cultures of Azotobacter vinelandii using the un-

optimized medium at 30˚C

84

4.15 Cell dry weight, glucose consumption and pH changes in

shake flask cultures of Azotobacter vinelandii using the

classically optimized medium at 30˚C

85

4.16 Cell dry weight, glucose consumption and pH changes in

shake flask cultures of Azotobacter vinelandii using the

statistically optimized medium at 30˚C

86

4.17 Cell dry weight, alginate production, glucose consumption

and pH changes in batch cultivation of Azotobacter vinelandii

in a 16-L stirred tank bioreactor at 30˚C for 30hours without

pH control

90

4.18 Cell dry weight, alginate production, glucose consumption

and pH changes in batch cultivation of Azotobacter vinelandii

in a 16-L stirred tank bioreactor at 30˚C for 30 hours with pH

control

91

4.19 Cell dry weight, alginate production, glucose consumption,

pH and dissolved oxygen changes in a fed-batch cultivation

of Azotobacter vinelandii without pH control

94

4.20 Cell dry weight, alginate production, glucose consumption, 95

Page 18: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxi

pH and dissolved oxygen changes in a fed-batch cultivation

of Azotobacter vinelandii under a controlled pH of 7.2

4.21 Cell dry weight, alginate production, glucose consumption,

pH and dissolved oxygen changes in a fed-batch cultivation of

Azotobacter vinelandii under an un-controlled pH

environment with dissolved oxygen control

99

4.22 Cell dry weight, alginate production, glucose consumption,

pH and dissolved oxygen changes in a fed-batch cultivation

of Azotobacter vinelandii with pH and dissolved oxygen

control

101

4.23 Cell dry weight, alginate production, glucose consumption,

pH and dissolved oxygen changes in a fed-batch cultivation

of Azotobacter vinelandii employing an intermittent feeding

strategy

104

4.24 Cell dry weight, alginate production, glucose consumption,

pH and dissolved oxygen changes in a fed-batch cultivation

of Azotobacter vinelandii with pH and dissolved oxygen

control with pure oxygen aeration

108

4.25 Cell dry weight, alginate production, glucose consumption,

pH and dissolved oxygen changes in a fed-batch cultivation

of Azotobacter vinelandii in a 150-L stirred tank bioreactor

under constant feeding mode

112

Page 19: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxii

LIST OF APPENDICES

APPENDIX TITLE

PAGE

A1 Media screening

138

A2 Shake flask cultivation using different carbon

sources

139

A3 Shake flask cultivation using different N-sources

139

A4 Shake flask cultivation at different glucose

concentrations

140

A5 Shake flask cultivation at different yeast extract

concentrations

141

A6 Shake flask cultivation at different phosphate salt

concentrations

142

A7 Shake flask cultivation at different ammonium

sulfate concentrations

142

Page 20: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxiii

A8 Growth kinetics in shake flask cultures using the un-

optimized medium

143

A9 Growth kinetics in shake flask cultures using the

classically-optimized medium

144

A10 Growth kinetics in shake flask cultures using the

statistically-optimized medium

145

A11 Batch cultivation in 16-L bioreactor without pH

control

146

A12 Batch cultivation in 16-L bioreactor with pH control

at 7.2

147

A13 Fed-batch cultivation (constant feeding) in 16-L

bioreactor without pH and dissolved oxygen control

148

A14 Fed-batch cultivation (constant feeding) in 16-L

bioreactor under controlled pH without dissolved

oxygen control

150

A15 Fed-batch cultivation (constant feeding) in 16-L

bioreactor under uncontrolled pH with dissolved

oxygen control

152

A16 Fed-batch cultivation (constant feeding) in 16-L

bioreactor with pH and dissolved oxygen control

155

A17 Fed-batch cultivation (intermittent feeding) in 16-L

bioreactor with pH and dissolved oxygen control

158

A18 Fed-batch cultivation (constant feeding) in 16-L

bioreactor with pH and dissolved oxygen control

supplemented with pure oxygen aeration

161

Page 21: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxiv

A19 Fed-batch cultivation (constant feeding) in 150-L

bioreactor with pH and dissolved oxygen control

165

B1 Scale-up of cultivation process from 16-L to 150-L

stirred tank bioreactor

168

C1 DNS Standard Curve

171

C2 Optical Density to Cell Dry Weight Standard Curve

172

Page 22: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxv

LIST OF ABBREVIATIONS

Abbreviations

A. - Azotobacter

BNF - Biological Nitrogen Fixation

CDW - Cell dry weight

DO - Dissolved Oxygen

FAO - Food and Agriculture Organization

OD - Optical density

OD540 - Optical density at 540 nm

OD600 - Optical density at 600 nm

sp. - Species

USD - US Dollar

Chemicals

(NH4)2SO4 - Ammonium sulfate

C - Carbon

Page 23: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxvi

CaC12 - Calcium chloride (anhydrous)

CaCl2.2H2O - Calcium chloride dihydrate

CaSO4 - Calcium sulfate

CoA - Coenzyme A

CoCl2 - Cobalt (II) chloride

CuSO4.5H2O - Copper (II) sulfate pentahydrate

Cyt - Cytochrome

DHAP - Dihydroxyacetone phosphate

DNS - 3, 5-dinitro-salicylic acid

FeCl3 - Iron (III) chloride (anhydrous)

FeS04.7H2O - Iron (II) sulfate heptahydrate

FeSO4 - Iron (II) sulfate (anhydrous)

GDP - Guanosine diphosphate

H+ - Proton

H+/e - Proton to electron ratio

H2 - Dihydrogen

H3BO3 - Boric acid

HCl - Hydrochloric acid

K2HPO4 - Dipotassium hydrogen phosphate

KH2PO4 - Potassium dihydrogen phosphate

MgS04 .7H2O - Magnesium sulfate heptahydrate

MnCl2.4H2O - Manganese (II) chloride tetrahydrate

MnSO4.4H2O - Manganese (II)sulfate heptahydrate

MOPS - 3-(N-morpholino)-propanesulfonic acid

MSG - Monosodium glutamate

N - Nitrogen

N2 - Dinitrogen

Na - Sodium

Na2HPO4 - Disodium hydrogen phosphate

Na2MoO4.2H20 - Sodium molybdate dihydrate

NaCl - Sodium chloride

NADH - Reduced nicotinamide adenine dinucleotide

NADPH - Reduced nicotinamide adenine diphosphate

NaOH - Sodium hydroxide

NDH I - NADH dehydrogenase I

NDH II - NADH dehydrogenase II

Page 24: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxvii

NH3 - Ammonia

NH4CH3CO2 - Ammonium acetate

NO - Nitrogen oxide

N2O - Nitrous oxide

O2 - Oxygen

P - Phosphate

PHA - Polyhydroxyalkanoate

PHB - Poly-β-hydroxybutyrate

Pi - Inorganic phosphate group

TCA - Tricarboxylic acid

ZnSO4.7H2O - Zinc sulfate heptahydrate

Page 25: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxviii

LIST OF SYMBOLS

Symbols

% - Percent

> - Greater than

µ - Specific growth rate (h-1)

µmax - Maximum specific growth rate (h-1)

F - Feed rate (g L-1h-1)

KS - Substrate utilization constant

m - Maintenance coefficient (mol substrate g-1 cell L-1)

qp - Specific rate of product formation (mg product g-1 biomass

h-1)

S - Substrate concentration (g L-1)

So - Feed substrate concentration (g substrate L-1)

t - Time interval (h)

t0 - Initial time (h)

V - Volume of reactor liquid (L)

v/v - Volume per volume

vvm - Volume per volume per minute

X - Biomass concentration (g L-1)

x0 - Original biomass concentration (g L-1)

Page 26: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

xxix

xt - Biomass concentration after the time interval (g L-1)

YP/X - Alginate productivity (g alginate g-1 biomass)

YX/S - Substrate yield coefficient (g biomass g-1 substrate)

α - Alpha

β - Beta

Units

°C - Degrees Celsius

µl - Micro liter

µm - Micrometer

µM - Micromole

g - Gram

h - Hour

kg - Kilogram

L - Liter

M - Molarity

min - Minute

ml - Milliliter

rpm - Revolutions per minutes

Page 27: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

1

CHAPTER I

INTRODUCTION

1.1. Background

Food security is one of the most important global issues affecting the world today.

In 2007, the Food and Agriculture Organization of the United Nations, (FAO)

estimated that the number of chronically hungry people in the world rise by 75

million to reach a total of 923 million. Current food insecurity will be further

aggravated by the increasing world population. The FAO estimates that the global

population will reach approximately 8 billion in 2025 and around 9 billion in 2050

before stabilizing at slightly more than 10 billion after 2100. Even before the world

population stabilizes, world food production must increase by more than 75 percent

to feed the entire world population by 2025 (FAO). Since little new land is suitable

for crop production, the output per unit area must increase to meet increasing food

demand (Mosier et al., 2004; Bumb and Baanante, 1996).

Page 28: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

2

Efforts to increase the productivity of crops have seen a tremendous increase in

fertilizer usage over the years. FAO estimates the world fertilizer consumption to

grow annually at about 1.7 percent from 2007/2008 to 2011/12. This growth is

equivalent to an increment of about 15 million tonnes and is expected to reach a total

demand of 180 million tonnes by 2030. Although chemical fertilizers are able to

supply crops with the necessary nutrients for greater yield and productivity, their

excessive use may lead to numerous health hazards and detrimental effects to the

environment. For instance, the excessive use of nitrogen, N fertilizers may lead

various implications such as nitrate leaching which could result in the pollution of

water systems (Fisher and Newton, 2002), emission of greenhouse gases such as

nitrogen oxides (NO, N2O) and volatilization of ammonia (Roy et al., 2006; Mosier

et al., 2004; Hernandez, 2002).

Since nitrogen is one of the most vital minerals required by plants, a viable

alternative is to supply this element through biological nitrogen fixation, BNF. BNF

is a natural process whereby diazotrophs such as Acetobacter, Azoarcus,

Azotobacter, Azospirillum, Cyanobacteria, Glucoacetobacter, Pseudomonas and

Rhizobium reduce stable molecular nitrogen from the atmosphere to ammonia which

can then be readily available to plants (Newton, 2007; Roy et al, 2006).

�� + 6�� + 6�� → 2���

Azotobacters are also known to produce a wide range of growth promoting nutrients

to plants apart from fixing nitrogen. This not only supplies the necessary nutrients to

plants but also helps rejuvenate the soil (Roy et al., 2006). Hence, microbial

inoculants or biofertilizers containing diazotrophs like Azotobacter vinelandii are

seen as viable replacements for detrimental mineral nitrogen fertilizers.

Page 29: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

3

1.2. Problem Statement

Although there is much data on Azotobacter vinelandii, most researches are either

focused on the genetics and metabolism of the bacteria or alginate production. There

is however still little information regarding high cell density cultivation strategies for

Azotobacter vinelandii. On the contrary, most cultivation media are designed to favor

the production of alginate over biomass. Therefore, there is a need to develop an

industrial medium and high cell density cultivation strategy to maximize cell mass

production while minimizing alginate formation. Conditions for optimal alginate

production are known to limit cell growth.

1.3. Objective

The main objective of the present work is to develop an industrial medium and

cultivation strategy to maximize the biomass production by Azotobacter vinelandii

NRRL B-14641 with minimal alginate production.

1.4. Scope

a) Media optimization for high cell mass production of Azotobacter vinelandii

using classical approach.

b) Media optimization for high cell mass production of Azotobacter vinelandii

using statistical approach.

c) Comparison between classical media optimization approach and statistical

media optimization approach.

Page 30: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

4

d) Batch cultivation of Azotobacter vinelandii in a 16-L pilot scale stirred tank

bioreactor for high cell mass production.

e) Fed-batch cultivation of Azotobacter vinelandii in a 16-L pilot scale stirred

tank bioreactor for high cell mass production.

f) Scaling-up of cultivation process for Azotobacter vinelandii to a 150-L pilot

scale stirred tank bioreactor for high cell mass production.

Page 31: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

118

REFERENCES

Aldor I.S. and Keasling J.D. (2003).Process design for microbial plastic factories

metabolic engineering of polyhydroxyalkanoates.Current Opinion in

Biotechnology, 14, 475-483.

Alexander M.A., Chapman T.W. and Jeffries T.W. (1988).Xylose metabolism by

Candida shehatae in continuous culture.Applied, Microbiology and

Biotechnology, 28, 478 – 486.

Anderson A.J. and Dawes E.A. (1990). Occurrence, metabolism, metabolic rate, and

industrial uses of bacterial polyhydroxyalkanoates.Microbiological

Reviews,54, 450-472.

Annison G. and Couperwhite I. (1986). Influence of calcium on alginate production

and composition in continuous cultures of Azotobacter vinelandii.Applied,

Microbiology and Biotechnology,25, 55 – 61.

Anonymous.(2005).Current World Fertilizer Trends and Outlook to 2009/10.Rome:

FAO.

Anonymous, (2008), Current World Fertilizer Trends and Outlook to 2011/12,

Rome:FAO.

Page 32: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

119

Anonymous, (2008), The State of Food Insecurity in the World 2008.Rome: Food

and Agriculture Organization, FAO.

Anthony J., (2003), Design of Experiments for Engineers and Scientists, Oxford,

UK: Elsevier Science & Technology Books.

Anthony P., Davey M.R., Power J.B., Washington C. and Lowe K.C.

(1994).Synergistic enhancement of protoplast growth by oxygenated

perfluorocarbon and Pluronic F-68.Plant Cell Reports,13, 251 – 255.

Aquilanti L., Favilli F., Clementi F., (2004), Comparison of different strategies for

isolation and preliminary identification of Azotobacter from soil samples, Soil

Biology & Biochemistry36, 1475–1483.

Azcon R. and Barea J.M. (1975). Synthesis of auxins, gibberellins and cytokinins by

Azotobacter vinelandii and Azotobacter beijerinckii related to effects

produced on tomato plants.Plant and Soil, 43, 609 – 619.

Bae S. and Shoda M. (2004).Bacterial cellulose production by fed-batch fermentation

in molasses medium.Biotechnology Progress, 20, 1366 – 1371.

Bakulin M.K., Grudsyna A.S. and Pletneva A.Y. (2007).Biological fixation of

nitrogen and growth of bacteria of the genus Azotobacter in liquid media in

the presence of perfluorocarbons.Applied Biochemistry and Microbiology, 43,

399 – 402.

Barrera A.D., Pena C. and Galindo E. (2007). The oxygen transfer rate influences the

molecular mass of alginate roduced by Azotobacter vinelandii.Applied

Microbial and Cell Physiology, 76, 903-910.

Becking J.H. (2006), The Family Azotobacteraceae. In: Dworkin M., Schleifer

Falkow S., Rosenberg E., Schleifer K.-H. and Stackebrandt E. The

Prokaryotes, Vol. 6, 3rd edition.(pp. 759 – 783). Singapore: Springer Science

+ Business Media.

Page 33: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

120

Bormann E.J., Leibner M. and Beer B. (1998). Growth-associated production of

poly(hydroxybutyric acid) by Azotobacter beijerinckii from organic nitrogen

substrates.Applied, Microbiology and Biotechnology, 49, 84-88.

BRENDA, the enzyme information system in 2011, Scheer M., Grote A., Chang A.,

Schomburg I., Munaretto C., Rother M., Söhngen C., Stelzer M., Thiele J.

and Schomburg D. (2011), Nucleic Acids Research. 39.

Brivonese A.C. and Sutherland I.W. (1989).Polymer production by a mucoid strain

of Azotobacter vinelandii in batch culture.Applied Microbiology and

Biotechnology, 30, 97 – 102.

Brown M.E., Burlingham S.K. and Jackson R.M. (1962).Studies on Azotobacter

species in soil.Plant and Soil, 17, 309 – 319.

Buhler T., Sann R., Monter U., Dingier C., Kuhla J. and Oelze J. (1987).Control of

dinitrogen fixation in ammonium-assimilating cultures of Azotobacter

vinelandii.Archives of Microbiology, 148, 247- 251.

Bumb B.C. and Baanante C.A., (1996). The role of fertilizer in sustaining food

security and protecting the environment to 2020, Washington, D.C.,

USA:International Food Policy Research Institute.

Burma D.P. and Burris R.H. (1957).Metabolism of nitrogen by cell-free preparations

from Azotobacter vinelandii.Journal of Biological Chemistry, 225, 723-733.

Cascaval D., Galaction A.-I., Folescu E. and Turnea M. (2006).Comparative study on

the effects of n-dodecane addition on oxygen transfer in stirred bioreactors

for simulated, bacterial and yeasts broths.Biochemical Engineering Journal,

31, 56 – 66.

Chang C.-Y., Lee C.-L. and Pan T.-M. (2006). Statistical optimization of medium

components for the production of Antrodia cinnamomea AC0623 in

submerged cultures.Applied Microbiology and Biotechnology, 72, 654 – 661.

Page 34: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

121

Chauhan, Kishor, Trivedi U. and Patel K.C. (2006).Application of response surface

methodology for optimization of lactic acid production using date

juice.Journal of Microbiology and Biotechnology, 16, 1410 – 1415.

Chen B.-Y., You J.-W., Hsieh Y.-T.and Chang J.-S (2008).Feasibility study of

exponential feeding in fed-batch cultures for phenol degradation using

Cupriavidus taiwanensis.Biochemical Engineering Journal, 41, 175-180.

Chen G.-Q.and Page W.J. (1997).Production of Poly-β-hydroxybutyrate by

Azotobacter vinelandii in a two-stage fermentation process.Biotechnology

Techniques,11, 347-350.

Chen W.-P., Chen J.-Y., Chang S.-C.and Su C.-L. (1985). Bacterial alginate

produced by a mutant of Azotobacter vinelandii.Applied and Environmental

Microbiology, 49, 543 – 546.

Clementi F., Moresi M. and Parente E. (1999).Alginate from Azotobacter vinelandi,

Methods in Biotechnology, 10, 23 – 42.

Dalton D.A. and Kramer S. (2007).Nitrogen-fixing bacteria in non-legumes, In:

Gnanamanickam S.S. Plant-Associated Bacteria (pp. 105 – 130). The

Netherlands: Springer.

De La Vega M.G. and Cejudo F.T., Paneque A. (1991).Production of Exocellular

Polysaccharide by Azotobacter chroococcum.Applied, Biochemistry and

Biotechnology, 30, 273-284.

Dhanasekar R., Viruthagiri T. and Sabarathinam P.L. (2003).Poly(3-hydroxy

butyrate) synthesis from a mutant strain Azotobacter vinelandii utilizing

glucose in a batch reactor.Biochemical Engineering Journal, 16, 1 – 8.

Diaz-Barrera, Pena C. and Galindo E. (2007). The oxygen transfer rate influences the

molecular mass of the alginate produced by Azotobacter

vinelandii.Microbiology and Biotechnology, 76, 903–910.

Page 35: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

122

Dixon R.A. and Cannon F.C. (1976).Recent advances in the genetics of nitrogen

fixation, In:Nutman P.S. Symbiotic nitrogen fixation in plants (3 – 24).Great

Britain: Cambridge University Press.

Dommelen A.V. and Vanderleyden J. (2007).Associative nitrogen fixation, In: Bothe

H., Ferguson S.J. and Newton W.E. Biology of the Nitrogen Cycle (pp. 179 –

192). The Netherlands: Elsevier.

El-Enshasy, H.A. (1998).Optimization of glucose oxidase production and excretion

by recombinantAspergillus niger, Ph.D.thesis, TU-Brauschweig, Germany.

Ferreira S.L.C, Bruns R.E., Ferreira H.S., Matos G.D., David J.M., Brand G.C., da

Silva E.G.P., Portugal L.A., dos Reis P.S., Souza A.S. and dos Santos W.N.L.

(2007). Box-Behnken design: An alternative for the optimization of analytical

methods, Analytica Chimica Acta, 597, 179 – 186.

Ferreira S.L.C, dos Santos W.N.L., Quitella C.M., Neto B.B. and Bosque-Sendra

J.M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry—

review, Talanta, 63, 1061 -1067.

Fisher K. and Newton W.E. (2002).Nitrogen fixation – A general overview. In:Leigh

J.F.Nitrogen Fixation at the Millenium (pp. 1 – 34).Amsterdam, The

Netherlands: Elsevier.

Galindo F., Pena C., Nunez C., Segura D. and Espin G. (2007).Molecular and

bioengineering strategies to improve alginate and polyhydroxyalkanoate

production by Azotobacter vinelandii, Microbial Cell Factories, 6, 1-16.

Ganuza E., Anderson A. J. and Rattleledge C. (2008).High cell density cultivation of

Schizochytrium sp. in an ammonium/pH-auxostat fed-batch

system.Biotechnology Letters, 30, 1559-1564.

Garcia-Arrazola R., Sun C.S., Chan G., Buchanan I., Doyle B., Titchener-Hooker N.

and Baganz F. (2005).Evaluation of a pH-stat feeding strategy on the

Page 36: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

123

production and recovery of Fab’ fragments from E. coli.Biochemical

engineering Journal, 23, 221 – 230.

Garcia-Ochoa F. and Gomez E. (2009). Bioreactor scale-up and oxygen transfer rate

in microbial processes: An overview.Biotechnology Advances, 27, 153 – 176.

George S.E., Costenbader C.J. and Melton T. (1985). Diauxic Growth in Azotobacter

vinelandii.Journal of Bacteriology, 164, 866-871.

Giridhar R. and Srivastava A.K. (2000).Fed-batch sorbose fermentation using pulse

and multiple feeding strategies for productivity improvement.Biotechnology

& Bioprocess Engineering, 5, 340-344.

Gorin P.A.J. and Spencer J.F.T. (1966).Exocellular alginic acid from Azotobacter

vinelandii, Canadian Journal of Chemistry, 44, 993 – 998.

Gothwal R..K., Nigam V.K., Mohan M.K., Sasmal D. and Ghosh P. (2008).

Screening of Nitrogen Fixers from Rhizospheric Bacterial Isolates Associated

with Important Desert Plants.Applied Ecology and Environmental Research,

6, 101-109.

Goucher C.R. and Kocholaty W. (1954).Effects of various ions on the respiration of

Azotobacter, Journal of Biological Chemistry, 211, 613 – 620.

Goucher C.R., Sarachek A. and Kocholaty W. (1955). A time-course respiratory

inactivation associated with Azotobacter cells deprived of Mg2+, Journal of

Bacteriology, 70, 120 – 124.

Gowariker V., Krishnamurthy V.N., Gowariker S., Dhanorkar M., Paranjape K. and

Borlaug N. (2009).The Fertilizer Encyclopedia. Hoboken, New Jersey: John

Wiley and Sons Limited.

Grant C.L. and Pramer D. (1962).Minor element composition in yeast

extract.Journal of Bacteriology, 84, 869 – 870.

Page 37: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

124

Haddock B.A. and Jones C.W. (1977). Bacterial Respiration, Bacterial Reviews, 41,

47-99.

Hardy R.W.F., Holsten R.D., Jackson E.K. and Burns R.C. (1968). The acetylene-

ethylene assay for n2 fixation: laboratory and field evaluation.Plant

Physiology, 43, 1185-1207.

Haug A. and Larsen B. (1971). Biosynthesis of alginate, Carbohydrate Research, 17,

287 – 296.

Hernandez G. (2002).Chair’s Comments: Biological nitrogen fixation and

sustainable agriculture, nitrogen fixation: global perspectives, Wallingford,

UK:CAB International.

Ho C.S., Ju L.-K. and Baddour R.F. (1990).Enhancing penicillin fermentations by

increased oxygen solubility through the addition of n-

hexadecane.Biotechnology and Bioengineering, 36, 1110 – 1118.

Hong L. (2002).Azotobacter vinelandii nitrogenase: Multiple substrate-reduction

sites and effects of pH on substrate reduction and CO inhibition, Ph.D. thesis,

Virginia Polytechnic Institute and State University, United States.

Horan N.J., Jarman T.R. and Dawes E.A. (1981).Effects of carbon source and

inorganic phosphate concentration on the production of alginic acid by a

mutant of Azotobacter vinelandii and on the enzymes involved in its

biosynthesis.Journal of General Microbiology, 127, 185-191.

Horan N.J., Jarman T.R. and Dawes E.A. (1983).Studies of some enzymes of alginic

acid biosynthesis in Azotobacter vinelandii grown in continuous

culture.Journal of General Microbiology, 129, 2985 – 2990.

Jakobsons A., Zell E.A. and Wilson P.W. (1962).A re-investigation of the calcium

requirement if Azotobacter vinelandii using purified media. Archives of

Microbiology, 41, 1 – 10.

Page 38: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

125

Jarman T. R., Deavin L., Slocombe S. and Righelato R.C. (1978).Investigation of the

effect of environmental conditions on the rate of exopolysaccharides

synthesis in Azotobacter vinelandii.Journal of General Microbiology, 107, 59

- 64.

Jensen H.L. (1954). The Azotobacteriaceae, Bacteriological Reviews, 18, 195 - 214.

Jones H.L., Margaritis A. and Stewart R.J. (2007). The combined effects of oxygen

supply strategy, inoculum size and temperature profile on very-high-gravity

beer fermentation by Saccharomyces cerevisiae.Journal of the Institute of

Brewing, 113, 168 – 184.

Kennedy C., Rudnick P., MacDonald M.L. and Melton T. (2005).Genus III

Azotobacter Beijerinck 1901, 567AL, In: Garrity G.M., Brenner D.J., Krieg

N.R. and Staley J.T.Bergey’s Manual of Systematic Bacteriology Volume 2,

Part B, 2nd edition (pp.384 – 401)East Lansing, USA: Springer.

Keevil C.W., Hough J.S. and Cole J.A. (1979). Regulation of respiratory and

fermentative modes of growth of Citrobacter freundii by oxygen, nitrate and

glucose, Journal of General Microbiology, 113, 83 – 95.

Khanna S. and Srivastava A.K. (2005). Repeated batch cultivation of Ralstonia

eutropha for poly(β-hydroxybutyrate) production.Biotechnology Letters, 27,

1401-1403.

Kim B.S., Lee S.C., Lee S.Y., Chang Y.K. and Chang H.N. (2004). High cell density

fed-batch cultivation of Escherichia coli using exponential feeding combined

with pH-stat.Bioprocess Biosystem Engineering, 26, 147-150.

Kim H.M., Paik S.-Y., Ra K.S., Koo K.B., Yun J.W. and Choi J.W. (2006).Enhanced

production of exopolysaccharides by fed-batch culture of Ganoderma

resinaceum DG-6556.The Journal of Microbiology, 44, 233 – 242.

Page 39: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

126

Kim S.S., Lee J.S., Cho J.Y. and Kim Y.E. and Hong E.K. (2010).Effects of C/N

ratio and trace elements on mycelial growth and exo-polysaccharide

production of Tricholoma matsutake.Biotechnology and Bioprocess

Engineering, 15, 293 – 298.

Kim Y.-H., Kng S.W., lee J.H., Chang H.-I., Yun C.-W., Paik H.-D., Kang C.-W.

and Kim S.W. (2007).High cell density fermentation of Saccharomyces

cerevisiae JUL3 in fed-batch culture for the production of β-Glucan.Journal

of Industrial and Engineering Chemistry, 13, 153 – 158.

Kleiner D. and Kleinschmidt J.A. (1976).Selective inactivation of nitrogenase in

Azotobacter vinelandii batch cultures.Journal of Bacteriology, 128, 117-122.

Korz D.J., Rinas U., Hellmuth K., Sanders E.A. and Deckwer W.-D.(1995). Simple

fed-batch technique for high cell density cultivation of Escherichia

coli.Journal of Biotechnology, 39, 59 – 65.

Kulaev I.S., Vagabov V.M. and Kulakovskaya T.V. (2004).The biochemistry of

inorganic polyphosphates,2nd edition, England: John Wiley and Sons

Limited.

Lazic Z.R. (2004).Design of experiments in Chemical Engineering,

Weinheim:Wiley-VCH Verlag GmbH & Co.

Lee J., Lee S.Y., Park S. and Middelberg A.P.J. (1999).Control of fed-batch

fermentations.Biotechnology Advances, 17, 29-48.

Lees H. and Postgate J.R. (1973). The behavior of Azotobacter chroococcum in

oxygen and phosphate limited chemostat culture.Journal of General

Microbiology, 75, 161 – 166.

Li X.-B., Zhao G.-R. and Yuan Y.-J.(2005). A strategy of phosphorus feeding for

repeated fed-batch fermentation of penicillin G.Biochemical Engineering

Journal, 27, 53–58.

Page 40: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

127

Liu J.-K., Lee F.-T., Lin C.-S., Yao X.-T., Davenport J.W. and Wong T.-Y. (1995).

Alternative function of the electron transport system in Azotobacter

vinelandii: removal of excess reductant by the cytochrome d pathway.Applied

and Environmental Microbiology, 61, 3998–4003.

Liu Q.-N., Liu R.-S., Wang Y.-H., Mi Z.-Y., Li D.-S., Zhong J.J. and Tang Y.J.

(2009).Fed-batch fermentation of Tuber melanosporum for the

hyperproduction of mycelia and bioactive Tuber polysaccharides.Bioresource

Technology, 100, 3644 – 3649.

Long-Shan T., Tsai T.-H.and Wang T.C., (2002). Application of oxygen vectors to

Aspergillus terreus cultivation.Journal of Bioscience and Bioengineering, 94,

453 – 459.

Macedo J.A. (2007).Optimization of medium composition for transglutaminase

production by a Brazilian soil Streptomyces sp. Electronic Journal of

Biotechnology, 10, 618 – 626.

Montgomery D.C. (2000), Design and analysis of experiments, 5th edition, New

York: John Wiley & Sons Inc.

Mosier A.R., Syers J.K. and Freney J.R. (2004).Nitrogen fertilizer: An essential

component of increased food, feed and fiber production, agriculture and the

nitrogen cycle.Washington, DC, USA:Island Press.

Mousdale D.M., Melville J.C. and Fisher M. (1999). Optimization of fermentation

processes by quantitative analysis: from analytical biochemistry to chemical

engineering. In: El-Mansi E.M.T. and Bryce C.F.A.Fermentation

Microbiology and Biotechnology(pp. 147 – 178). London: Taylor & Francis.

Navaneeth S., Bhuvanesh S., Bhaskar V., Vijay Kumar P., Kandaswamy S.K.J. and

Achary A. (2009).Optimization of medium for the production of subtilisin

from Bacillus subtilis MTCC 441.African Journal of Biotechnology, 8, 6327

– 6331.

Page 41: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

128

Newton W.E. (2007).Physiology, biochemistry, and molecular biology of nitrogen

fixation. In: Bothe H., Ferguson S.J. and Newton W.E.Biology of the

Nitrogen Cycle (pp. , 109 – 130). Amsterdam, The Netherlands: Elsevier.

Nieto K.F. and Frankenberger Jr. W.T. (1989).Biosynthesis of cytokinins by

Azotobacter chroococcum.Soil Biology and Biochemistry, 21, 967 – 972.

Nikel P.I., Pettinari M.J., Mendez B.S. and Galvagno M.A. (2005). Statistical

optimization of a culture medium for biomass and poly(3-hydroxybutyrate)

production by a recombinant Escherichia coli strain using agroindustrial

byproducts.International Microbiology, 8, 243 – 250.

Noms J.R. and Jensen H.L. (1958).Calcium requirements of Azotobacter.Archives of

Microbiology, 31, 198 – 205.

Ntwampe S.K.O., Williams C.C. and Sheldon M.S., (2010). Water-immiscible

dissolved oxygen carriers in combination with Pluronic F 68 in

bioreactors.African Journal of Biotechnology, 9, 1106 – 1114.

Oelze J. (2000). Respiratory protection of nitrogenase in Azotobacter species: is a

widely held hypothesis unequivocally supported by experimental

evidence?,FEMS Microbiology Reviews, 24, 321-333.

Ogino H., Miyamoto K., Yasuda M., Ishimi K. and Ishikawa H. (1999).Growth of

organic solvent-tolerant Pseudomonas aeruginosa LST-03 in the presence of

various organic solvents and production of lipolytic enzyme in the presence

of cyclohexane.Biochemical Engineering Journal, 4, 1 – 6.

Okabe E., Nokajima M., Marooka H. and Nisizawa K. (1981).Investigation of carbon

and phosphorus sources in cultural media of a selected strain of alginate-

producing Azotobacter vinelandii.Journal of Fermentation Technology, 59, 1

– 7.

Page 42: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

129

Page W.J., Tindale A., Chandra M. and Kwon E. (2001).Alginate formation in

Azotobacter vinelandii UWD during stationary phase and the turnover of

poly-β-hydroxybutyrate.Microbiology, 147, 483–490.

Pal S., Manna A. and Paul A.K. (1998).Nutritional and cultural conditions for

production of poly-3-hydroxybutyric acid by Azotobacter chroococcum.Folia

Microbiology, 43, 177-181.

Parente E., Cruedele M.A., Aquino M. and Clementi F. (1998).Alginate production

by Azotobacter vinelandii DSM576 in batch fermentation.Journal of

Industrial Microbiology & Biotechnology, 20, 171–176.

Park M., Kim C., Yang J., Lee H., Shin W. and Kim S., Sa T. (2005).Isolation and

characterization of diazotrophic growth promoting bacteria from rhizosphere

of agricultural crops of Korea.Microbiological Research, 160, 127-133.

Pecina A. and Paneque A. (1994).Studies of some enzymes of alginic acid

biosynthesis in mucoid and nonmucoid Azotobacter chrococcum

strains.Applied, Biochemistry and Biotechnology, 49, 51-58.

Pena C., Campos N. and Galindo E. (1997). Changes in alginate molecular mass

distributions, broth viscosity and morphology of Azotobacter vinelandii

cultured in shake flasks.Applied, Microbiology and Biotechnology, 48, 510 –

515.

Pena C., Trujilo-Roldan M.A. and Galindo E. (2000). Influence of dissolved oxygen

tension and agitation speed on alginate production and its molecular weight in

cultures of Azotobacter vinelandii.Enzyme and Microbial Technology, 27,

390–398.

Perez F., Riba J.P. and Strehaiano P. (1992).Effect of yeast extract concentration on

growth of Schizoccharomyces pombe.Biotechnology Letters, 14, 123 – 126.

Page 43: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

130

Pestov N.A., Kulakovskaya T.V. and Kulaev I.S. (2004).Inorganic polyphosphate in

mitochondria of Saccharomyces cerevisiae at phosphate limitation and

phosphate excess.FEMS Yeast Research, 4, 643 – 648.

Post E., Kleiner D. and Oelze J. (1983). Whole cell respiration and nitrogenase

activities in Azotobacter vinelandiii growing in oxygen controlled continuous

culture.Achieves of Microbiology, 134, 68-72.

Priego-Jimenez R., Pena C., Ramirez O.T. and Galindo E. (2005). Specific growth

rate determines the molecular mass of the alginate produced by Azotobacter

vinelandii.Biochemical Engineering Journal, 25, 187–193.

Quagliano J.C. and Miyazaki, S.S. (1997). Effect of aeration and carbon/nitrogen

ratio on the molecular mass of the biodegradable polymer poly-b-

hydroxybutyrate obtained from Azotobacter chroococcum 6B.Applied,

Microbiology and Biotechnology, 48, 662-664.

Rajeshwari K.V., Prakash G. and Ghosh P. (1995).Improved process for xanthan

production using modified media and intermittent feeding strategy.Letters in

Applied Microbiology, 21, 173 – 175.

Rech R. and Ayub M.A.Z. (2007).Simplified feeding strategies for fed-batch

cultivation of Kluyveromyces marxianus in cheese whey.Process

Biochemistry,42, 873-877.

Remminghorst U. and Rehm B.H.A. (2006).Bacterial alginates from biosynthesis to

applications.Biotechnology Letters, 28, 1701-1712.

Reyes C., Pena C. and Galindo E. (2003). Reproducing shake flasks performance in

stirred fermentors: production of alginates by Azotobacter vinelandii.Journal

of Biotechnology,105, 189 – 198.

Rocha-Valadez J.A., Albiter V., Caro M.A., Serrano-Carreon L. and Galindo E.,

(2007).A fermentation system designed to independently evaluate mixing

Page 44: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

131

and/or oxygen tension effects in microbial processes: development,

application and performance. Bioprocess and Biosystem Engineering, 30, 115

– 122.

Roy R.N., Finck A., Blair G.J. and Tandon H.L.S. (2006).Plant nutrition for food

security, Rome: FAO.

Sabra W. (1999).Microaerophilic production of alginate by Azotobacter vinelandii,

Ph.D. thesis, TU-Braunschweig, Germany.

Sabra W., Zeng A.-P., Sabry S., Omar S. and Deckwer W.-D.(1999). Effect of

phosphate and oxygen concentrations on alginate production and

stoichiometry of metabolism of Azotobacter vinelandii under microaerobic

conditions.Applied, Microbiology and Biotechnology, 52, 773-780.

Sabra W., Zeng A.-P., Lunsdorf H. and Deckwer W.-D.(2000). Effect of oxygen on

formation and structure of Azotobacter vinelandii alginate and its role in

protecting nitrogenase.Applied and Environmental Microbiology, 66, 4037-

4044.

Sabra W., Zeng A.-P.and Deckwer W.-D. (2001). Bacterial alginate: physiology,

product quality and process aspects.Applied, Microbiology and

Biotechnology, 56, 315 – 325.

Sabra W. and Zeng A.-P. (2009). Microbial production of alginates: Physiology and

process aspects, Microbiology Monographs, 13, 153 – 173.

Sadoff H.L. (1976).Encystment and germination of Azotobacter

vinelandii.Bacteriological Reviews, 39, 516 – 539.

Saha S.P., Patra A. and Pau A.K. (2006).Incorporation of polyethylene glycol in

polyhydroxyalkanoic acids accumulated by Azotobacter chroococcum MAL-

201.Journal of Industrial Microbiology and Biotechnology, 33, 377 – 383.

Page 45: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

132

Santek B. andMarc V. (1995). Temperature and dissolved oxygen concentration as

parameters of Azotobacter chroococcum cultivation for use in

biofertilizers.Biotechnology Letters, 17, 453-458.

Saribay G.F. (2003).Growth and nitrogen fixation dynamics of Azotobacter

chroococcum in nitrogen-free medium and OMW containing medium.Master

thesis, The Middle East Technical University, Turkey.

Savenkova L., Gercberga Z., Kizhlo Z. and Stegantseva E. (1999).Effect of

phosphate supply and aeration on poly-β-hydroxybutyrate production in

Azotobacter chroococcum.Process Biochemistry, 34, 109–114.

Schmidt F.R. (2005). Optimization and scale up of industrial fermentation

processes.Applied, Microbiology and Biotechnology, 68, 425 – 435.

Seanez G. Pena C. and Galindo E. (2001). High CO2 affects alginate production and

prevents polymer degradation in cultures of Azotobacter vinelandii.Enzyme

and Microbial Technology, 29, 535 – 540.

Segura D. and Espin G. (1998). Mutational inactivation of a gene homologous to

Escherichia coli ptsp affects poly-β-hydroxybutyrate accumulation and

nitrogen fixation in Azotobacter vinelandii.Journal of Bacteriology, 180,

4790-4798.

Senior P.J., Beech D.A., Ritchie G.A.F. and Dawes E.A. (1972).The role of oxygen

limitation in the formation of poly- β-hydroxybutyrate during batch and

continuous culture of Azotobacter beijerinckii.Biochemistry Journal, 128,

1193-1201.

Senior P.J. and Dawes E.A. (1973).The regulation of Poly-β-hydroxybutyrate

Metabolism in Azotobacter beijerinckii.Biochemistry Journal, 134, 225-238.

Standbury P.F., Whitaker A. and Hall S.J. (2003).Principles of Fermentation

Technology.Burlington:Butterworth-Heinemann.

Page 46: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

133

Sun Z., Ramsay J.A. and Guay M. (2006).Automated feeding strategies for high cell

density fed-batch cultivation of Pseudomonas putida KT 2440.Applied,

Microbiology & Biotechnology, 71, 423-431.

Tauchert K., Jahn A. and Oelze J. (1990).Control of diauxic growth in Azotobacter

vinelandii on acetate and glucose. Journal of Bacteriology, 172, 6447 – 6451.

Tsai J.C., Aladegbami S.L. and Vela G.R. (1979).Phosphate-limited culture of

Azotobacter vinelandii.Journal of Bacteriology, 139, 639-64.

Trujillo-Roldan M.A., Moreno S., Espin G. and Galindo E. (2004).The roles of

oxygen and alginate-lyase in determining the molecular weight of alginate

produced by Azotobacter vinelandii.Applied, Microbiology and

Biotechnology, 63, 742-747.

Truijilo-Roldan M.A., Pena C., Ramirez O.T. and Galindo E. (2001). Effect of

oscillating dissolved oxygen tension on the production of alginate by

Azotobacter vinelandii.Biotechnology Progress, 17, 1042 – 1048.

Vargas-Garcia M.C., Lopez M.J., Elorrieta, Suarez F. and Moreno J. (2001).

Influence of nutritional and environmental factors on polysaccharide

production by Azotobacter vinelandii cultured on 4-hydroxybenzoic

acid.Journal of Industrial Microbiology and Biotechnology, 27, 5 – 10.

Vermani M.V., Kelkar S.M. and Kamat M.Y. (1995). Production and optimization of

certain growth parameters for an exopolysaccharide from Azotobacter

vinelandii MTCC 2460 isolated from a plant rhizosphere.Journal of

Fermentation and Bioengineering, 80, 599 – 602.

Villen R.A., Borzani W. and Netto A.S. (2009). Influence of the accumulation of

phosphate and magnesium ions in the yeast cells on the ethanol productivity

in batch ethanol fermentation.Brazilian Archives of Biology and Technology,

52, 153 – 155.

Page 47: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

134

Wang J. (2000). Enhancement of citric acid production by Aspergillus niger using n-

dodecane as an oxygen-vector.Process Biochemistry, 35, 1079 – 1083.

Ward A.C., Rowley B.I. and Dawes E.A. (1977).Effect of oxygen and nitrogen

limitation on poly-β-hydroxybutyrate biosynthesis in ammonium-grown

Azotobacter beijerinckii.Journal of General Microbiology, 102, 61-68.

Wong H.H., Kim Y.C., Lee S.Y. and Chang H.N.(1998).Effect of post-induction

nutrient feeding strategies on the production of bioadhesive protein in

Escherichia coli.Biotechnology and Bioengineering, 60, 271-276.

Wong T.Y. (1993). Effects of calcium on sugar transport in Azotobacter

vinelandii.Applied and Environmental Microbiology, 59, 89 – 92.

Wu Z., Du G. and Chen J. (2003).Effects of dissolved oxygen concentration and do-

stat feeding strategy on coq10 production with Rhizobium radiobacter.World

Journal of Microbiology & Biotechnology, 19, 925-928.

Yano T., Endo T., Tuji T. and Nishizawa Y. (1991).Fed-batch culture with a

modified DO-stat method.Journal of Fermentation and Bioengineering, 71,

35 – 38.

Yeom S.H., Dangulis A.J. and Nielsen D.R. (2010).Estimating the cellular

maintenance coefficient and its use in the design of two-phase partitioning

bioscrubbers.Bioprocess and Biosystem Engineering, 33, 731 – 739.

Yee L. and Blanch H.W. (1993).Recombinant trypsin production in high cell density

fed-batch cultures in Escherichia coli.Biotechnology and Bioengineering, 41,

781-790.

Yoo I.-K., Seong G.H., Chang H.N. and Park J.K. (1996). Encapsulation of

Lactobacillus casei cells in liquid-core alginate capsules for lactic acid

production.Enzyme and Microbial Technology, 19, 426 – 433.

Page 48: Optimization of medium and fermentation …eprints.utm.my/id/eprint/31431/5/ThenKhoonThiamMFKK2012.pdfmenentukan faktor-faktor yang mempengaruhi pertumbuhan sel. Kombinasi pengkulturan

135

Zainal Alam M.N.H. (2005).Scale-up strategies in stirred and aerated bioreactor,

Masters Thesis, Universiti Teknologi Malaysia, Malaysia.

Zanzig J. and Scholz C. (2003), Effects of poly(ethylene glycol) on the production of

poly(β-hydroxybutyrate) by Azotobacter vinelandii UWD.Journal of

Polymers and the Environment, 11, 145-154.

Zeiger L. and Grammel H. (2010).Model-based high cell density cultivation of

Rhodospirillum rubrum under respiratory dark conditions.Biotechnology and

Bioengineering, 105, 729-739.