ocean currents. there are two types of ocean currents: 1. surface currents-- pycnocline circulation...

20
OCEAN CURRENTS

Upload: hugh-parker

Post on 02-Jan-2016

238 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

OCEAN CURRENTS

Page 2: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

There are two types of Ocean Currents:

1. Surface Currents--Pycnocline CirculationThese waters make up about 10% of all the water in the ocean.These waters are the upper 400 meters of the ocean. 

Page 3: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

2. Deep Water Currents--Thermohaline CirculationThese waters make up the other 90% of the ocean.These waters move around the ocean basins by density driven forces and gravity.The density difference is a function of different temperatures and salinityThese deep waters sink into the deep ocean basins at high latitudes where the temperatures are cold enough to cause the density to increase.

Page 4: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Ocean Currents are influenced by two types of forces1. Primary Forces--start the water movingThe primary forces are:1. Solar Heating2. Winds3. Gravity4. Coriolis2. Secondary Forces--influence where the currents flow

Page 5: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

1. Surface CirculationSolar heating causes water to expand. Near the equator the water is about 8 centimeters higher than in middle latitudes. This causes a very slight slope and water wants to flow down the slope. Winds blowing on the surface of the ocean pushes the water. Friction occurs when the wind meets the water's surface.

Page 6: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

A wind blowing for 10 hours across the ocean will cause the surface waters to flow at about 2% of the wind speed.Water will pile up in the direction the wind is blowing.Gravity will tend to pull the water down the "hill" or pile of water against the pressure gradient.But the Coriolis Force intervenes and causes the water to move to the right (in the northern hemisphere) around the mound of water.

Page 7: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

These large mounds of water and the flow around them are called Gyres. The produce large circular currents in all the ocean basins.Gyres North Atlantic Gyre

Note how the North Atlantic Gyre is separated into four distinct currents:•North Equatorial Current•Gulf Stream•North Atlantic Current•Canary Current.

Page 8: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Remember the hill of water-- This hill is formed by the inward push of water through a process called Ekman Transport

Remember the Coriolis Force moves objects to the right in the northern hemisphere and to the left in the Southern Hemisphere

Page 9: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Wind blowing on the surface of the ocean has the greatest effect on the surface. However, for the lower layers of the ocean to move they must be pushed by the friction between the layers of water above. Consequently, the lower layer moves slower than the layer above. With each successive layer down in the water column the speed is reduce. This leads to the spiral affect seen in the above diagram.The net movement of water (averaged over the entire upper 330 meters of the ocean) is 90o to the right of the wind direction (in the northern hemisphere).

Page 10: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

When the water is pushed to the right it forms the hill as described above. So, when water is pushed along by the wind it wants to be turned to the right by the Coriolis force (in the northern hemisphere) but it must fight against gravity (trying to move up the hill of water formed by Ekman transport). A balance is met between the Coriolis force and the gravity (pressure gradient force). This balance produces a balanced flow called a Geostrophic current.

Page 11: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in
Page 12: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in
Page 13: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Eastern and Western Boundary CurrentsBoundary Currents are the major geostrophic currents around the gyreNote the difference is strength (Sv) between the western and eastern boundary currents. This is caused by the effect of the rotating Earth which tends to move the "hill" of water to the western sides of the ocean basins

Page 14: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in
Page 15: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

The Gulf Stream is an example of a Western Boundary Current

Page 16: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

The effect of winds on the vertical movement of water

 Upwelling along the coast caused by Ekman transport of waters (waters move to the right

of the wind).The waters moved offshore are replaced by waters from below. This brings cold, nutrient

rich waters to the surface.

Page 17: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Downwelling caused by Ekman transport onshore (movement of water to

the right of the wind direction).Downwelling along a coast

Page 18: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Deep Water Circulation Deep waters are "formed" where the air temperatures are cold and where the salinity of the surface waters are relatively high. The combinations of salinity and cold temperatures make the water denser and cause it to sink to the bottom.

Deep Water Circulation Deep waters are "formed" where the air temperatures are cold and where the salinity of the surface waters are relatively high. The combinations of salinity and cold temperatures make the water denser and causes it to sink to the bottom.

Page 19: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

The Gulf Stream carries salt into the high latitude North Atlantic where the water cools. The cooling and the added salt cause the waters to sink in the Norwegian Sea. This is the formation of Atlantic Deep Water

Page 20: OCEAN CURRENTS. There are two types of Ocean Currents: 1. Surface Currents-- Pycnocline Circulation These waters make up about 10% of all the water in

Places where the water is cold enough and salty enough to form bottom water.