numerical simulation of a thermal plasma flow confined by magnetic mirror in a cylindrical reactor

20
NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR Authors: Gabriel Torrente Julio Puerta Norberto Labrador Universidad Simón Bolívar Departamento de Ciencias de lo Materiales Departamento de Física Centro de Ingeniería de Superficies

Upload: jennifer-wiggins

Post on 31-Dec-2015

46 views

Category:

Documents


4 download

DESCRIPTION

Universidad Simón Bolívar Departamento de Ciencias de lo Materiales Departamento de Física Centro de Ingeniería de Superficies. NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR. Authors: Gabriel Torrente Julio Puerta Norberto Labrador. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL

REACTOR

Authors:Gabriel Torrente

Julio PuertaNorberto Labrador

Universidad Simón BolívarDepartamento de Ciencias de lo Materiales

Departamento de Física Centro de Ingeniería de Superficies

Page 2: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

ANTECEDENTS:

First Plasma reactor designed and constructed with a grant by FONACIT project of AlN synthesis in a thermal plasma reactor

Thermal Plasma Reactor with Expansion Chamber

Page 3: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

RESULTS OF ANTECEDENTS: 8.a

8.b

Problem: Few Thermal Carbonitridation level of Al2O3

Page 4: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Solution for the enhancement of nitridation:1. Increasing the power of the thermal plasma. 2. Increasing the resident time of the powders in the high thermal zones of reactor.

3. Decreasing the thermal energy loss of reactor.

the energy cost of the process increase

the energy cost of the process does not Increase

Then, it is convenient to:1.Design the thermal plasma reactor in fluidized bed for increase the resident time.

2. Confine the thermal plasma flow by magnetic mirror for decrease the energy loss.

Page 5: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

New design

Plasma Torch

Magnetic Coils

Graphite tube

Refractory Tube

Wall Reactor

Page 6: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

First step

NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL

REACTOR

Control Volume

The numerical simulation of this thermal axisymmetry plasma jet in magnetic mirror is carried out using two-temperature model to study how changes the electron density and the plasma flux whit the temperature, pressure and with the applied magnetic fields.

Page 7: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Governing Equation

Initial Conditions2

Ag m

A

r ru u

r

0g gv

2

Antg m m gAnt

rT T T T

r

2

2*

11 1

2e

g

T E

T E

Where the cross section impact and average initial temperatura are:

* 8e e

g

Q p mE

e m

gg p m A ef efm C T T V I

Page 8: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Boundary conditions

0

0h

r

u

r

0 00h hr r

v

0h h hr R r R r Ru v

0 0

0e h

r r

T T

r r

In the Central Axel

In the reactor wall

w Ag wr R

T Th T T

Res

e wr RT T

Page 9: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

State Equation

1P

RT

10r u

r r z

Continuity Equation

Momentum Conservation Equations (Navier-Stoke Equations)

21 1 2 1

23 r r

u r u rp u u ur J B J B g

z r r z z z r r z r z r r r

2 21 2 2 1 2

3 z z

ru rP u ur J B J B

z r r r z z r r r r r z r r r r

2

1 1z r r z

u r rr J B J B

z r r z z r r r r r r

Page 10: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

5 1 5 1

2 2e e e e

B e g e B e g e e e g g eh

T T P Pk n u T k n rv T K K r u v E

z r r z z r r r z r

Energy Conservation Equations

2 3

2e

eh eh e B e hh

mE n k T T

m

Where

3 4 *

3 32

4 lne eei g ei

g e g

V n eV

V m V

2 2

1 1h h h hg g g g g g h h g g eh hp

T T P P u vCp u T Cp rv T K K r u v E E

z r r z z r r r z r r z

Energy transport from the electron to plasma gas

Collision frequency

Page 11: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

22 2

2 2 2 2 21 1 1 1z r z r

r z r

h B B h B h BJ E E E

h B h B h h B

rrzr

zz

z EB

BB

h

hE

B

B

h

hE

B

B

h

h

hJ

22

2

2

2

2

2

2 1111

rz

zr E

B

B

h

hE

hE

B

B

h

hJ

222 111

32 2

2

2B gTe B ge

e

m Tne

n n h

Saha Ionization Equation

Ohm Generalized Law

Page 12: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Hypothesis and Data

0 0 02 1 2 2

2cos

2 2 2z v v v

NI NI NI l zB N d N sen sen N

l l l z R

Maxwell Equations

Z rE vB B

r zE B uB

zr vBuBE

Biot-Savart Law

1. Pressure, Heat Capacity Gas (Cpg), Viscosity Gas () and Thermal Conductivity Gas (K) are constants.3. The dissociation energy is neglected. 4. Axial Symmetry 5. Only magnetic field in axial direction 6. Power Plasma Torch = 10,5 KW; mass flow= 13,2 lpm of Nitrogen, Bzmax= 0,3 T, Ionization Energy = 15,4 eV

Page 13: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Results

Axial velocity Profile

Pressure = 1 atmosphere (101325 Pa)

Pressure = 1 Torr (133 Pa)

1

9

17

25

U p

ara

z= 0

U p

ara

z= 1

8

U p

ara

z= 3

6

U p

ara

z= 5

4

U p

ara

z= 7

2

U p

ara

z= 9

0

U p

ara

z= 1

08

U p

ara

z= 1

26

U p

ara

z= 1

44

0

10002000

3000

4000

5000

6000

7000

8000

Velocity (mm/s)

Radius (mm)

Axial Length (mm)

Velocity, 1 atm

7000-8000

6000-7000

5000-6000

4000-5000

3000-4000

2000-3000

1000-2000

0-1000

1

10

19

28

U p

ara

z=

0

U p

ara

z=

15

U p

ara

z=

30

U p

ara

z=

45

U p

ara

z=

60

U p

ara

z=

75

U p

ara

z=

90

U p

ara

z=

10

5

U p

ara

z=

12

0

U p

ara

z=

13

5

U p

ara

z=

15

0

0

1000

2000

3000

4000

5000

6000

7000

8000

Velocity (mm)

Radius (mm)

Axial Lenght (mm)

Velocity, 1 torr

7000-8000

6000-7000

5000-6000

4000-5000

3000-4000

2000-3000

1000-2000

0-1000

Page 14: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Plasma Temperature Profile

1

9

17

25T p

ara

z= 0

T p

ara

z= 1

5

T p

ara

z= 3

0

T p

ara

z= 4

5

T p

ara

z= 6

0

T p

ara

z= 7

5

T p

ara

z= 9

0

T p

ara

z= 1

05

T p

ara

z= 1

20

T p

ara

z= 1

35

T p

ara

z= 1

50

0

1000

2000

3000

4000

5000

6000

Temperature (K)

Radius (mm)

Axial Length (mm)

Plasma Temperature, 1 atm

5000-6000

4000-5000

3000-4000

2000-3000

1000-2000

0-1000

1

10

19

28

T p

ara

z= 0

T p

ara

z= 1

5

T p

ara

z= 3

0

T p

ara

z= 4

5

T p

ara

z= 6

0

T p

ara

z= 7

5

T p

ara

z= 9

0

T p

ara

z= 1

05

T p

ara

z= 1

20

T p

ara

z= 1

35

T p

ara

z= 1

50

0

1000

2000

3000

4000

5000

6000

Temperature (K)

Radius (mm)

Axial Length (mm)

Plasma Temperature, 1 torr

5000-6000

4000-5000

3000-4000

2000-3000

1000-2000

0-1000

Pressure = 1 atmosphere (101325 Pa)

Pressure = 1 Torr (133 Pa)

Page 15: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Electronic Temperature Profile

1

10

19

28

Te

para

z=

0

Te

para

z=

15

Te

para

z=

30

Te

para

z=

45

Te

para

z=

60

Te

para

z=

75

Te

para

z=

90

Te

para

z=

105

Te

para

z=

120

Te

para

z=

135

Te

para

z=

150

0

1000

2000

3000

4000

5000

6000

Electronic Temperature (K)

Radius (mm)

Axial Lenght (mm)

Electronic Temperatue, 1 atm

5000-6000

4000-5000

3000-4000

2000-3000

1000-2000

0-1000

1

11

21

31

Te

para

z=

0

Te

para

z=

15

Te

para

z=

30

Te

para

z=

45

Te

para

z=

60

Te

para

z=

75

Te

para

z=

90

Te

para

z=

105

Te

para

z=

120

Te

para

z=

135

Te

para

z=

150

0

1000

2000

3000

4000

5000

6000

Electronic Temperature (K)

Radius (mm)

Axial Lenght (mm)

Electronic Temperature, 1 torr

5000-6000

4000-5000

3000-4000

2000-3000

1000-2000

0-1000

Pressure = 1 atmosphere (101325 Pa)

Pressure = 1 Torr (133 Pa)

Page 16: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Density Plasma Profile

1

12

23

Dg

para

z=

0

Dg

para

z=

15

Dg

para

z=

30

Dg

para

z=

45

Dg

para

z=

60

Dg

para

z=

75

Dg

para

z=

90

Dg

para

z=

105

Dg

para

z=

120

Dg

para

z=

135

Dg

para

z=

150

0,00E+00

2,00E-11

4,00E-11

6,00E-11

8,00E-11

1,00E-10

1,20E-10

1,40E-10

Gas Density (g/mm3)

Radius (mm)

Axial Lenght (mm)

Plasma Density, 1 atm

1,20E-10-1,40E-10

1,00E-10-1,20E-10

8,00E-11-1,00E-10

6,00E-11-8,00E-11

4,00E-11-6,00E-11

2,00E-11-4,00E-11

0,00E+00-2,00E-11

1

12

23

Dg

para

z=

0

Dg

para

z=

12

Dg

para

z=

24

Dg

para

z=

36

Dg

para

z=

48

Dg

para

z=

60

Dg

para

z=

72

Dg

para

z=

84

Dg

para

z=

96

Dg

para

z=

108

Dg

para

z=

120

Dg

para

z=

132

Dg

para

z=

144

0,00E+00

2,00E-14

4,00E-14

6,00E-14

8,00E-14

1,00E-13

1,20E-13

1,40E-13

1,60E-13

Density gas (g/mm3)

Radius (mm)

Axial Lenght (mm)

Density Gas, 1 torr

1,40E-13-1,60E-13

1,20E-13-1,40E-13

1,00E-13-1,20E-13

8,00E-14-1,00E-13

6,00E-14-8,00E-14

4,00E-14-6,00E-14

2,00E-14-4,00E-14

0,00E+00-2,00E-14

Pressure = 1 atmosphere (101325 Pa)

Pressure = 1 Torr (133 Pa)

Page 17: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Electronic Density Profile

1

9

17

25

De

para

z=

3

De

para

z=

18

De

para

z=

33

De

para

z=

48

De

para

z=

63

De

para

z=

78

De

para

z=

93

De

para

z=

108

De

para

z=

123

De

para

z=

138

0,00E+00

1,00E+08

2,00E+08

3,00E+08

4,00E+08

5,00E+08

6,00E+08

7,00E+08

8,00E+08

9,00E+08

Electronic Density (#e/mm3)

Radius (mm)

Axial Lenght (mm)

Electronic Density, 1 atm

800000000-900000000

700000000-800000000

600000000-700000000

500000000-600000000

400000000-500000000

300000000-400000000

200000000-300000000

100000000-200000000

0-100000000

1

11

21

31

De

para

z=

3

De

para

z=

18

De

para

z=

33

De

para

z=

48

De

para

z=

63

De

para

z=

78

De

para

z=

93

De

para

z=

108

De

para

z=

123

De

para

z=

138

0,00E+00

5,00E+06

1,00E+07

1,50E+07

2,00E+07

2,50E+07

3,00E+07

3,50E+07

Electronic Density (#e/mm3)

Radius (mm)

Axial Lenght (mm)

Electronic Density, 1 torr

30000000-35000000

25000000-30000000

20000000-25000000

15000000-20000000

10000000-15000000

5000000-10000000

0-5000000

Pressure = 1 atmosphere (101325 Pa)

Pressure = 1 Torr (133 Pa)

Page 18: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Z ionization Profile

1

11

21

31

Zio

n pa

ra z

= 3

Zio

n pa

ra z

= 1

8

Zio

n pa

ra z

= 3

3

Zio

n pa

ra z

= 4

8

Zio

n pa

ra z

= 6

3

Zio

n pa

ra z

= 7

8

Zio

n pa

ra z

= 9

3

Zio

n pa

ra z

= 1

08

Zio

n pa

ra z

= 1

23

Zio

n pa

ra z

= 1

38

0,00E+00

5,00E-07

1,00E-06

1,50E-06

2,00E-06

2,50E-06

3,00E-06

3,50E-06

4,00E-06

Ionization

Radius (mm)

Axial Length (mm)

Ionization, 1 atm

3,50E-06-4,00E-06

3,00E-06-3,50E-06

2,50E-06-3,00E-06

2,00E-06-2,50E-06

1,50E-06-2,00E-06

1,00E-06-1,50E-06

5,00E-07-1,00E-06

0,00E+00-5,00E-07

1

11

21

31

Zio

n pa

ra z

= 3

Zio

n pa

ra z

= 1

8

Zio

n pa

ra z

= 3

3

Zio

n pa

ra z

= 4

8

Zio

n pa

ra z

= 6

3

Zio

n pa

ra z

= 7

8

Zio

n pa

ra z

= 9

3

Zio

n pa

ra z

= 1

08

Zio

n pa

ra z

= 1

23

Zio

n pa

ra z

= 1

38

0,00E+00

2,00E-05

4,00E-05

6,00E-05

8,00E-05

1,00E-04

1,20E-04

Ionization

Radius (mm)

Axial Lenght (mm)

Ionization, 1 torr

1,00E-04-1,20E-04

8,00E-05-1,00E-04

6,00E-05-8,00E-05

4,00E-05-6,00E-05

2,00E-05-4,00E-05

0,00E+00-2,00E-05

Pressure = 1 atmosphere (101325 Pa)

Pressure = 1 Torr (133 Pa)

Page 19: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Average Z ionization

0,00E+00

5,00E-06

1,00E-05

1,50E-05

2,00E-05

2,50E-05

3 23 43 63 83 103 123 143 163

Axial Lenght (mm)

Ioni

zatio

n

Average Z (1atm)

Average Z (1 torr)50 mm

Plasma Torch

Page 20: NUMERICAL SIMULATION OF A THERMAL PLASMA FLOW CONFINED BY MAGNETIC MIRROR IN A CYLINDRICAL REACTOR

Conclusions

The axial velocity has few changed with the pressure.

The Plasma Temperature has few changed with the pressure.

The electronic temperature has few increasing with the vacuum

The Plasma and Electronic densities decreases with the vacuum.

Z ionization increases with the vacuum.