numerical simulation and design - west virginia...

12
MAE 340 – Vibrations Numerical Simulation and Design Section 2.8 Non-linear Response Properties Section 2.9

Upload: duonganh

Post on 08-Jun-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations

Numerical Simulation and DesignSection 2.8

Non-linear Response PropertiesSection 2.9

Page 2: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

Forced Vibration with Coulomb Damping

• A single degree-of-freedom system with mass 10 kg, spring stiffness of 1000 N/m and a Coulomb damping coefficient of 0.3 is excited by a harmonic force of 100 N amplitude at 100 rad/s.

• Plot the EXACT response x(t). Assume x0 = -0.8683 mm and v0 = 35 mm/s.

MAE 340 – Vibrations 2

k

m

x

μF0cosωt

Page 3: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 3

taking derivative wrt time

Section 2.8

Numerical Simulation & Design

is: )()(

)()(

2

1

txtz

txtz

&=

=

212

21

zm

cz

m

kxz

zxz

−−==

==

&&&

&&

−−=

)(

)(10

)(

)(

2

1

2

1

tz

tz

m

c

m

ktz

tz

&

&

Azz =&

)(∆)()( 1 iii tttt Azzz +=+

Putting into matrix form

Approximating

t

ttt ii

i∆

)()()( 1 zz

z−

≈ +&

0=++ kxxcxm &&&

• Recall that the “state-space” formulation for free vibration

Page 4: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 4

taking derivative wrt time

Numerical Simulation & Design

• If we include the harmonic force term

)()(

)()(

2

1

txtz

txtz

&=

=

tm

Fz

m

cz

m

kxz

zxz

ωcos0212

21

+−−==

==

&&&

&&

+

−−=

t

m

Ftz

tz

m

c

m

ktz

tz

ωcos

0

)(

)(10

)(

)(0

2

1

2

1

&

&

)(tfAzz +=&

)(∆)(∆)()( 1 iiii tttttt fAzzz ++=+

Putting into matrix form

Approximating

t

ttt ii

i∆

)()()( 1 zz

z−

≈ +&

tFkxxcxm ωcos0=++ &&&

it becomes:

Page 5: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 5

taking derivative wrt time

Section 2.9

Non-linear Response Properties

• General formulation for any spring and damper forces:

)()(

)()(

2

1

txtz

txtz

&=

=

tfzzfxz

zxz

ωcos],[ 0212

21

+−==

==

&&&

&&

)()( tfzFz +=&

tttttt iiii ∆)(∆)]([)()( 1 fzFzz ++=+

Putting into matrix form

Approximating

t

ttt ii

i∆

)()()( 1 zz

z−

≈ +&

tftxtxftx ωcos)](),([)( 0=+ &&&

• Setting up “state space” numerical time-integration:

+

−=

tfzzf

tz

tz

tz

ωcos

0

),(

)(

)(

)(

011

2

2

1

&

&

Page 6: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 6

taking derivative wrt time

Non-linear Response Properties

• For Coulomb damping:

)()(

)()(

2

1

txtz

txtz

&=

=

tm

Fz

m

Nz

m

kxz

zxz

ωµ

cos)sgn( 0212

21

+−−==

==

&&&

&&

tFkxxNtxm ωµ cos)sgn()( 0=++ &&&

• Setting up “state space” numerical time-integration solution:

tt

m

Fttz

m

Ntz

m

k

tz

tz

tz

tz

tz

iii

i

i

i

i

i∆

+∆

−−+

=

+

+

)cos(

0

))(sgn()(

)(

)(

)(

)(

)(0

21

2

2

1

12

11

ωµ

Page 7: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 7

Numerical (Actual) Nonlinear Response compared with Linearized Response

• Actual problem using solved numerically

• Linearized problem using solved algebraically.

)sgn(xmgFdamping&µ=

X

mgceq

πω

µ4=

Page 8: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 8

Numerical (Actual) Nonlinear Response compared with Linearized Response

• Same as above with higher friction coefficient.

Page 9: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 9

Comparing Actual NonlinearResponse with Linearized Response• Non-linear spring (Fspring = kx – k1x

3) versus linear spring (Fspring = kx)

ω=ωn/2.964

Page 10: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 10

Comparing Actual NonlinearResponse with Linearized Response• Non-linear spring (Fspring = kx – k1x

3) versus linear spring (Fspring = kx)

ω=ωn/1.09

Page 11: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 11

Comparing Actual NonlinearResponse with Linearized Response

• Displacement-squared damping ( )

versus use of ceq ( )

2)sgn( xxFdamping&&α=

πω3

4dXceq =

α=0.005

Page 12: Numerical Simulation and Design - West Virginia Universitycommunity.wvu.edu/...2_8_2_9_Numerical_non_linear.pdf · Numerical Simulation and Design Section 2.8 ... • Non-linear spring

MAE 340 – Vibrations 12

Comparing Actual NonlinearResponse with Linearized Response

• Displacement-squared damping ( )

versus use of ceq ( )

2)sgn( xxFdamping&&α=

πω3

4dXceq =

α=0.5