numerical modelling of bec *

54
Numerical modelling of BEC * * Oleg Utyuzh Oleg Utyuzh he Andrzej Sołtan Institute for Nuclear Studies (SINS), Warsaw, Pola n collaboration with G.Wilk and Z.Wlodarczyk

Upload: alexis

Post on 04-Jan-2016

46 views

Category:

Documents


0 download

DESCRIPTION

Numerical modelling of BEC *. Oleg Utyuzh. The Andrzej Sołtan Institute for Nuclear Studies (SINS) , Warsaw, Poland. * In collaboration with G.Wilk and Z.Wlodarczyk. High-Energy collisions. Quantum Correlations (QS). p 1. BE enhancement. x 1. x 2. p 2. p 2. x 2. R source size. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Numerical  modelling of BEC *

Numerical modelling of BEC **

Numerical modelling of BEC **

Oleg UtyuzhOleg Utyuzh

The Andrzej Sołtan Institute for Nuclear Studies (SINS), Warsaw, Poland

* In collaboration with G.Wilk and Z.Wlodarczyk

Page 2: Numerical  modelling of BEC *

22KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

High-Energy collisions High-Energy collisions

0

0

K K

K K

0K

p

p

p

p

Page 3: Numerical  modelling of BEC *

33KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

Quantum Correlations (QS)Quantum Correlations (QS)

1 212 1 2( ) ( )p pA x x 1 22 1( ) ( )p px x

x1

x2

p1

p2

12 1 2

2 1 222

( , )( )

( , ), ref

N p pC Q

N p pp p

BE enhancement

2

2 1 2 12 11 2 2( , ) ~ ( , ( , ))N p p A x x x dx

Page 4: Numerical  modelling of BEC *

44KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

2 1 22 1 2

2 1 2

( , )( { , })

( , )

BE

ref

N p pC Q p p

N p p 2 1 2

2 1 22 1 2

( , )( { , })

( , )

BE

ref

N p pC Q p p

N p p

CorrelationCorrelation functionfunction (1D) – (1D) – sourcesource sizesize

24

2 ( ) 1 ( ) iQxC Q d x x e

x1

x2

p1

p2

R sourcesize

12

( )QR

R

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

2( )C Q1~

R

R.Hunbury Brown and Twiss, Nature 178 (1956) 1046G.Goldhaber, S.Goldhaber, W.Lee and A.Pais, Phys.Rev 120 (1960) 300

k r Ψ ( ) e i- kr

2 1 21 ( ), ) )( (ρ x x ρ x ρ x×=

Page 5: Numerical  modelling of BEC *

55KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

2( )C Q

0.0 0.5 1.0 1.5 2.00.0

0.5

1.0

1.5

2.0

2( )C Q

2 1 22 1 2

2 1 2

( , )( { , })

( , )

BE

ref

N p pC Q p p

N p p 2 1 2

2 1 22 1 2

( , )( { , })

( , )

BE

ref

N p pC Q p p

N p p

CorrelationCorrelation functionfunction (1D) - chaoticity (1D) - chaoticity

24

2 ( ) 1 ( ) iQxC Q d x x e 12

( )QRλ

x1

x2

p1

p2

12

( )QR

R

chaoticitchaoticityy

• resonancesresonances• finalfinal statestate interactionsinteractions• flowsflows• particlesparticles mismisinindificationdification• momentum resolutionmomentum resolution• ......

1

Page 6: Numerical  modelling of BEC *

66KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

( )1 1

1( ; ) exp exp

!

N N

i ipi i

i iir rp ix x pN

W. Zajc, Phys. Rev. D35 (1987) 3396

NNππ-particle state-particle state

1r

ir

2r

1p

2p2x

1x

ix

ip

Page 7: Numerical  modelling of BEC *

77KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

W. Zajc, Phys. Rev. D35 (1987) 3396

2

( ) npp r r d r

3

3*

ii pdp

pd N

..., ,...old iP p

*..., ,...ew in pP

FOR 1,i N

Metropolisalgorithm

ip fixed

*ACCEPT with min 1, new

oi

ld

PProbp

P

NEXT i

speckles

specklespeckless

Numerical symmetrization – (A)Numerical symmetrization – (A)

1

( )1

1exp exp

!

N N

i ipi

ii

ir i p ix pN

r

TIME !!!TIME !!!

Page 8: Numerical  modelling of BEC *

88KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

1(max)ir C 1(max)ir C

J. Cramer, Univ. of Washigton preprint

(1996 unpublished)

J. Cramer, Univ. of Washigton preprint

(1996 unpublished)

1(max)iC

1( , )Xi iC p p

Numerical symmetrization – (B)Numerical symmetrization – (B)

Monte-Carlo Monte-Carlo rejectionrejection

Monte-Carlo Monte-Carlo rejectionrejection

Xp

1( , )Xi iC p p

1(max) ( 1)!iC i

1PICK UP 0 (max)iX C

SELECT FROM ( )XXp f p

1ACCEPT IF ( , )i iX Xp pC p X

NEXT i

clustersclusters

TIME !!!TIME !!!

10pN

p

Page 9: Numerical  modelling of BEC *

99KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

PermanentPermanent

1 1 1 1 1

2 2 2 2 2

1 1 1 1 1

1 2 1

1 2 1

1 2 1

1 2 1

1 2 1

i i i i i

N N N N N

N N N N N

i N N

i N N

i N N

i N N

i N N

1 1

2 2

1 2

1 1

H. Merlitz, D. Pelte, Z. Phys. A357 (1997) 175

Numerical symmetrization – (C)Numerical symmetrization – (C)

i i

1 11

1

N N

N N

N N

N N

TIME !!!TIME !!!2.5i j pp p

Fact

orizat

ion

Fact

orizat

ion

Fact

orizat

ion

Fact

orizat

ion

1

( )1

1exp exp

!

N N

i ipi

ii

ir i p ix pN

r

2

2

( )( ,0) ~ exp ( )i

i i ip

P pp iX P p

Page 10: Numerical  modelling of BEC *

1010KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

cos H. Merlitz, D. Pelte, Z. Phys. A357 (1997) 175

2.5i j pP P

2

2

( )( ,0) ~ exp ( )i

i i ip

P pp iX P p

(1) ( )

1( ) ( )... ( )

!i N Np p p

N

3( ,0) ( ,0)exp( )i ip d x x ipx

clusters

Numerical symmetrization – (C)Numerical symmetrization – (C)

(1) 1 ( )

1( ) ( )... ( )

!N Np r r r

N

1

( )1

1exp exp

!

N N

i ipi

ii

ir i p ix pN

r

Page 11: Numerical  modelling of BEC *

1111KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Problem with numerical symmetrization Problem with numerical symmetrization ……

TIME !!!TIME !!!

Existing ways out:

replace modeling by simulations … (afterburners)

Examples:

• shifting of momenta

• weighting proceduresweighting procedures

Problems:

• changing of initial distributions – changing of physicschanging of initial distributions – changing of physics

• exampleexample O.V.Utyuzh, G.Wilk and Z.Wlodarczyk; Phys. Lett. B522 (2001) 273 andActa Phys. Polon. B33 (2002) 2681.

Page 12: Numerical  modelling of BEC *

1212KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Numerical symmetrizationNumerical symmetrization

CLUST

ERS

CLUST

ERS

SPECKLES

SPECKLES

SSTTAATTEESS

BUNCHESBUNCHES

CLANSCLANS

CELLSCELLS

Page 13: Numerical  modelling of BEC *

1313KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

1( ; )

1 11

nn

P nn n

1 2

1, ,...,

( ; )

1

i

i

k

n

nn n n i

n

kP n k

n

k

( ; )!

n

nnP n e

n

1( ; )

1

n

n k

n

kn kP n

n n

k

k

2 ( )D k2 ( ) 1

nD n

kk

2 ( 11)D n n

2 ( )D n

EEC’s – A.D. 1996EEC’s – A.D. 1996

M. Biyajima, N. Suzuki, G. Wilk, Z. Wlodarczyk, Phys. Lett. B386 (1996) 297

EElementary lementary EEmitting mitting CCells (ells (EECEEC))

Page 14: Numerical  modelling of BEC *

1414KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

mean number

of - EEC C

Spairs

totpairs

n

N

21 1( 1) ( 1)

2 2Spairs

totpairs

n

N C C n C n n

Page 15: Numerical  modelling of BEC *

1515KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

coshi T im y

MMaximalization of aximalization of IInformation nformation EEntropy (ntropy (MIEMIE))

phasephase spacespace (1D) (1D)

( ) ( )1i i in n

ii

P eZ

( ) ( )lni i

i

n ni i

i n

S P P MIEMIEMIEMIE

constiy

( ), ( )yy y

( )i

i

ni i

i n

n n P ( )i

i

ni i i

i n

E n P ( ) 1i

i

ni

n

P

min

1( )

2iy y i y T. Osada, M. Maruyama and F. Takagi, Phys. Rev. D59 (1999)

014024

Page 16: Numerical  modelling of BEC *

1616KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

MIEMIE - Results - Results

Page 17: Numerical  modelling of BEC *

1717KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

( ) e!

N

BltzP NN

( ) (1 ) NBEP N

( )N i ii

x { , }

1( )

!N i jP i j i

xN

1

( ) e 1iE

kTin E

ssymmetrizationymmetrization**ssymmetrizationymmetrization**

non-identicalnon-identical VSVS identicalidentical BoltzmannBoltzmann VSVS Bose-EinsteinBose-Einstein

QuantumQuantum statisticsstatisticsQuantumQuantum statisticsstatistics

GEOMETRICALGEOMETRICAL

K.Zalewski, Nucl. Phys. B (Proc. Suppl. ) 74 (1999) 65

Page 18: Numerical  modelling of BEC *

1818KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

phasephase spacespace (1D) (1D)

*O. Utyuzh, G. Wilk, Z. Włodarczyk, Acta Phys. Hung. (Heavy Ion Physics) A25 (2006) 83

0

0 eE

kT

0

0 eE

kT

cell formationuntil first

failure( ) (1 ) N

BEP N ( ) (1 ) NBEP N

Quantum Quantum Clan model (1d-QCM)Clan model (1d-QCM)

2

2

( )

2( )cell

E

E E

cellg E e

2

2

( )

2( )cell

E

E E

cellg E e

smearing

particle energyin the cells

EECEEC

Page 19: Numerical  modelling of BEC *

1919KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Algorithm ...Algorithm ...

PICK UP 0 1RAND

10SELECT FROM ( )f EE

10- /

0ADD particle IF E TP Pe RAND spaceE 10E

21021

1

21SELECT FROM ( ) E

E E

g E eE

20E

1 Nf N P P

1EEC 2EEC

probability of particle cellN

cell formationuntil first

failure

1

PN

P

/

1

1E TN E

e

/

0E TP Pe

Page 20: Numerical  modelling of BEC *

2020KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Quantum Quantum Clan modelClan model

HadronicSource

Ind

epen

den

t p

rod

uct

ion

Ind

epen

den

t p

rod

uct

ion

( )PAP N

-1

1 [ (1 ) / ]( )

1 !

N jN

Pólya Aepplij

N p pP N e p

j j

Bo

se-E

inst

ein

Bo

se-E

inst

ein

Bo

se-E

inst

ein

Bo

se-E

inst

ein

Bo

se-E

inst

ein

Bo

se-E

inst

ein

1EEC

cellNEEC

iEEC

O. Utyuzh, G. Wilk and Z. Włodarczyk, Acta Phys. Hung.

A25 (2006) 83

Page 21: Numerical  modelling of BEC *

2121KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Some results …Some results …

( ) ( )cell partP N P n

0 5 10 15 20

100

101

102

103

104

P(N

cell)

Ncell

<Ncell

> = 6.28, N = 1.53

<Ncell

> = 6.30, N = 1.57

0 5 10 15 20 25 30 35 40 45 50 551E-6

1E-5

1E-4

1E-3

0.01

0.1

DELPHI [email protected] GeV <nch

>=20.71, n=6.28

T=3.5 GeV, P0=0.7, =0.3*T; <n

ch>=20.87,

n=6.35

T=3.7 GeV, P0=0.7, =0.1*T; <n

ch>=20.76,

n=6.76

P(n

ch)

nch

0 5 10 15 20 25 3010-1

100

101

102

103

104

105

106

<np> = 1.53,

n = 1.02

<np> = 1.57,

n = 1.07

P(n

p)

np

Page 22: Numerical  modelling of BEC *

2222KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Results …Results … ( (first application to first application to Simple Cascade Simple Cascade ModelModel))

Results …Results … ( (first application to first application to Simple Cascade Simple Cascade ModelModel))

0.0 0.2 0.4 0.6 0.8 1.00.8

1.0

1.2

1.4

1.6

1.8

P = 0.5C2(Q)

Q [GeV]

0.8

1.0

1.2

1.4

1.6

1.8

2.0

P = 0.23C2(Q)

1 101

10

Fq

Mbin

1

10F

q

2 1 22

2 1 2

( , )

( , )

BEC

ref

N p pC

N p p

1

1

( ) ( 1) ( 1)q M

q m m mqm

MF y n n n q

N

Page 23: Numerical  modelling of BEC *

2323KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

MIE vs MIE vs 1d-1d-QCMQCM

phasephase spacespace (1D) (1D)y-spacey-space

consty

20

2

( )

E

E E

E e

( )

1ii E

ne

phasephase spacespace (1D) (1D)E-spaceE-space

Page 24: Numerical  modelling of BEC *

2424KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

1 11

1

N N

N N

N N

N N

i i

1 1

2 2

1 2

1 1

( )1

1( ) ~ exp

!

n

i ipi

r i p rn

2| ( ) |N pP r

What we are proposing … What we are proposing … symmetrization symmetrization

1 1 2 2 1 2 2 12

1( )

2ip r ip r ip r ip r

np r e e e e

2 1 2 1 2cosP p p r r

2 - particle

approximation

2 - particle

approximation 1122

33

44

55

1EEC

iEEC

cellNEEC

Page 25: Numerical  modelling of BEC *

2525KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

model (3D)model (3D)

p-Spacep-Space x-Spacex-Space

x·x·p-correlationsp-correlations

1+cos(δx δp)

symetrizationsymetrizationplane waves

Page 26: Numerical  modelling of BEC *

2626KrakówKraków 2006 2006KrakówKraków 2006 2006Oleg UtyuzhOleg UtyuzhOleg UtyuzhOleg Utyuzh

W T T P0 <nch> σn <npart> <ncell>

45.645.6 3.53.5 0.30.3 1.01.055

0.0.77

10.8310.83 4.294.2922

1.54/1.01.54/1.022

3.23/1.613.23/1.61

91.291.2 3.53.5 0.30.3 1.01.055

0.0.77

20.8820.88 6.376.3700

1.55/1.01.55/1.055

6.31/2.396.31/2.39

182.182.44

3.53.5 0.30.3 1.01.055

0.0.77

41.9741.97 8.988.9855

1.57/1.01.57/1.088

12.60/3.212.60/3.299

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.9

1.0

1.1

1.2

1.3

C2(Q

i)

Qx,z

, [GeV]

Rsphere

= 1.0 fm, psphere

T=3.5 GeV, = 0.3*T GeV, P=0.7*exp(...) W = 46.5 GeV W = 91.2 GeV W = 182.4 GeV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

C2(Q

inv)

Qinv

[GeV]

Rsphere

= 1.0 fm, psphere

T=3.5 GeV, = 0.3*T GeV, P=0.7*exp(...) W = 46.5 GeV W = 91.2 GeV W = 182.4 GeV

W - dependence

Page 27: Numerical  modelling of BEC *

2727KrakówKraków 2006 2006KrakówKraków 2006 2006Oleg UtyuzhOleg UtyuzhOleg UtyuzhOleg Utyuzh

T T P0 <nch> σn <npart> <ncell>

3.13.1 0.30.3 0.930.93 0.70.7 23.3423.34 6.6966.696 1.56/1.01.56/1.044

7.12/2.57.12/2.500

3.53.5 0.30.3 1.051.05 0.70.7 20.8820.88 6.3706.370 1.55/1.01.55/1.055

6.31/2.36.31/2.399

3.93.9 0.30.3 1.171.17 0.70.7 18.8618.86 6.0756.075 1.57/1.01.57/1.077

5.72/2.45.72/2.422

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.9

1.0

1.1

1.2

C2(Q

i)

Qx,z

, [GeV]

Rsphere

= 1.0 fm, psphere

T = 3.1 GeV | T = 3.5 GeV > = 0.3*T GeV, P=0.7*exp(...) T = 3.9 GeV |

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

C2(Q

inv)

Qinv

[GeV]

Rsphere

= 1.0 fm, psphere

T = 3.1 GeV | T = 3.5 GeV > = 0.3*T GeV, P=0.7*exp(...) T = 3.9 GeV |

T - dependence

Page 28: Numerical  modelling of BEC *

2828KrakówKraków 2006 2006KrakówKraków 2006 2006Oleg UtyuzhOleg UtyuzhOleg UtyuzhOleg Utyuzh

T T P0 <nch> σn <npart> <ncell>

3.3.55

0.30.3 1.051.05 0.60.6 19.9119.91 5.7145.714 1.41/0.71.41/0.700

6.74/2.46.74/2.466

3.3.55

0.30.3 1.051.05 0.70.7 20.8820.88 6.3706.370 1.55/1.01.55/1.055

6.31/2.36.31/2.399

3.3.55

0.30.3 1.051.05 0.80.8 22.1522.15 7.3017.301 1.79/1.51.79/1.555

5.89/2.25.89/2.266

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.9

1.0

1.1

1.2

C2(Q

i)

Qx,z

, [GeV]

Rsphere

= 1.0 fm, psphere

P0 = 0.6 |

P0 = 0.7 > T = 3.5 GeV, =0.3*T GeV

P0 = 0.8 |

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

C2(Q

inv)

Qinv

[GeV]

Rsphere

= 1.0 fm, psphere

P0 = 0.6 |

P0 = 0.7 > T = 3.5 GeV, =0.3*T GeV

P0 = 0.8 |

P0 - dependence

Page 29: Numerical  modelling of BEC *

2929KrakówKraków 2006 2006KrakówKraków 2006 2006Oleg UtyuzhOleg UtyuzhOleg UtyuzhOleg Utyuzh

- dependence

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

C2(Q

inv)

Qinv

[GeV]

Rsphere

= 1.0 fm, psphere

0 = 0.1 |

0 = 0.3 > T = 3.5 GeV, P=0.7*exp(...)

0 = 0.5 |

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.9

1.0

1.1

1.2

1.3

C2(Q

i)

Qx,z

, [GeV]

Rsphere

= 1.0 fm, psphere

0 = 0.1 |

0 = 0.3 > T = 3.5 GeV, P=0.7*exp(...)

0 = 0.5 |

T T P0 <nch> σn <npart> <ncell>

3.3.55

0.10.1 0.350.35 0.70.7 21.8421.84 6.9276.927 1.57/1.01.57/1.077

6.62/2.46.62/2.444

3.3.55

0.30.3 1.051.05 0.70.7 20.8820.88 6.3706.370 1.55/1.01.55/1.055

6.31/2.36.31/2.399

3.3.55

0.50.5 1.751.75 0.70.7 19.6519.65 5.8165.816 1.56/1.01.56/1.044

5.99/2.25.99/2.299

Page 30: Numerical  modelling of BEC *

3030KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00

1

2

3

N2(U

),C

2(U

)

U [= dP]

pi, p

j - uniform

pi, p

j - uniform

COS(dP*dR) < 2*Rand - 1 ( / )

20

20

sin ( )1

( )

R p

R p

20

20

sin ( )1

( )

R p

R p

How to model numerically How to model numerically COS(…) COS(…) ??

2 1 2 1 2cosP p p r r

Page 31: Numerical  modelling of BEC *

3131KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00

1

2

3

N2(U

),C

2(U

)

U [= dP]

pi, p

j uniform with selection

COS(dP*dR) < 2*Rand - 1 dP from COS(), dP = /dR

|R| < 1.0 fm, |P| < 1.0 GeV

0 0 003

0

3 sin( ) ( ) cos( )1 cos( )

( )

R p R p R pR p

R p

0 0 003

0

3 sin( ) ( ) cos( )1 cos( )

( )

R p R p R pR p

R p

20

20

sin ( )1

( )

R p

R p

20

20

sin ( )1

( )

R p

R p

( ) ( )x X

Xf x dX f X p

x

( ) ( )x X

Xf x dX f X p

x

( ) (... ) ( )x Xf x dXf X p x X δx

2-ways of modeling of 2-ways of modeling of COS(…)COS(…) … …

Page 32: Numerical  modelling of BEC *

3232KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

1( 1)( 2)

2additional links

N N

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.5

1.0

1.5

2.0

C2(U

)

U [= dP]

100 particles 20 particles 4 particles 2 particles theory for 2 particles

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.5

1.0

1.5

2.0

C2(U

)

U [= dP]

100 particles 20 particles 4 particles 2 particles theory for 2 particles theory for 4 particles

1122

33

44

55

2

02 2

0

sin ( )2( )

2 ( )N N R p

C pN R p

2

2 02 2

0

sin ( )( ) 1

( )

R pC p

R p

2

2 02 2

0

sin ( )( ) 1

( )

R pC p

R p

3N

Pairs counting …Pairs counting …

2

02 2

0

sin ( )( ) 1

( )N R p

C pR p

pairs misidentification effect ???pairs misidentification effect ???

Page 33: Numerical  modelling of BEC *

3333KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.5

1.0

1.5

2.0

C2(U

)

U [= dP]

Np = 2

Np = 6, 2-p relations

Np = 6, 3-p relations

Np = 6, 4-p relations

Np = 6, 5-p relations

Np = 6, 6-p relations

1122

33

44

55

6611

22

33

44

55

66

NN -particles via 2-particles -particles via 2-particles

1(2)

11

1 cos( )n

n n in ini

P P x

1

(2)1

1

1 cos( )n

n n in ini

P P x

Page 34: Numerical  modelling of BEC *

3434KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

( )1

1( ) ~ exp

!

n

i ipi

r i p rn

!

( ) '( )' 1 1

21 cos

!

n n

i i ii

P p r rn

max

2 11 !( ! 1) !

! 2P n n n

n

1,...,i np p

True True NN -particles -particles

Page 35: Numerical  modelling of BEC *

3535KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.5

1.0

1.5

2.0

C2(U

)

U [= dP]

2 particles 4- (via 2 particles) theory for 2 particles 4- (via 4 particles)

1(2)

11

1 cos( )n

n n in ini

P P x

!

( )( ) '( )

' 1 1

21 cos

!

n nn

n i ii

P r rn

1

( )...(max) !

n

nn p pP n 1

( )...(max) !

n

nn p pP n

1

1( 1)(2) 2

...(max) 2n

n n

n p pP

1

1( 1)(2) 2

...(max) 2n

n n

n p pP

<

Page 36: Numerical  modelling of BEC *

3636KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.00.5

1.0

1.5

2.0

C2(U

)

U [= dP]

uniform cantor set (s=0.333) cantor set (s=0.111)

ssss

Fractal sourceFractal source

Page 37: Numerical  modelling of BEC *

3737KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

1 10 100

100

101

102

103 s = 0.333 q=2, =0.35109 q=3, =0.73765 q=4, =1.14699 q=5, =1.56974

Fq(M

)

M [= Y/y]1 10 100

100

101

102

103 s = 0.444 q=2, =0.12256 q=3, =0.24102 q=4, =0.39913 q=5, =0.58540

Fq(M

)

M [= Y/y]

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5 Cantor set (s=1/3)

(x)

x [fm]

-1.0 -0.5 0.0 0.5 1.00

1

2

3

4

5 Cantor set (s=0.444)

(x)

x [fm]

Fractal sourceFractal source

Page 38: Numerical  modelling of BEC *

3838KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

0.0 0.2 0.4 0.6 0.8 1.00.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

BEC with cells (P=0.7*e-E/3.5) BEC w/o cells

C2(

E)

E [GeV]

BE statistics => cells ?... BE statistics => cells ?...

A. Kisiel et al., Comput. Phys. Commun. 174 (2006) 669

Page 39: Numerical  modelling of BEC *

3939KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

qq qqqqqq

qq qq

qq qqqqqq

qq qq

stimulated

emission

3 ( )d x

particles

bunching

Possible further applications …Possible further applications …

Page 40: Numerical  modelling of BEC *

4040KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

SummarySummary

BEC =BEC = CELLSCELLSGEOMETRIC

DISTRIBUTION

GEOMETRIC

DISTRIBUTION

++

Page 41: Numerical  modelling of BEC *

4141KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

ProblemProblem ofof λλ interpretationsinterpretations Problem of normalization ofProblem of normalization of CC22(Q)(Q) Single-particleSingle-particle spectra modifications

Instead of sInstead of summaryummary … …

resonances

final state interactions

flows

particles misindentification

momentum resolution

...

1

1

1

PHYSICSEECN

0 10 20 30 40 50 60

1E-5

1E-4

1E-3

0.01

0.1

P(n

ch)

nch

BEC Boltzmann

Page 42: Numerical  modelling of BEC *

4242KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Back-Up SlidesBack-Up Slides

Page 43: Numerical  modelling of BEC *

4343KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

‘If one insists on representing photons by wave packets and demands

an explanation in those terms of the extra fluctuation, such an

explanation can be given. But I shall have to use language which

ought, as a rule, to be used warily. Think, then, of a stream of wave

packets, each about c/ long, in a random sequence. There is a

certain probability that two such trains accidentally overlap. When

this occurs they interfere and one may find (to speak rather loosely)

four photons, or none, or something in between as a result. It is

proper to speak of interference in this situation because the

conditions of the experiment are just such as will ensure that these

photons are in the same quantum state. To such interference one may

ascribe the “abnormal” density fluctuations in any assemblage of

bosons’.E. M. Purcell,

Nature 178 (1956) 1449-1450

Quantum Optics - pQuantum Optics - particles articles bunchings bunchings ……

Page 44: Numerical  modelling of BEC *

4444KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Quantum Optics - pQuantum Optics - particles articles bunchings bunchings ……

50%

21

3C

BosonsBosons

bunching

correpositi latve ions

FermionsFermions correnegati latve ions

anti-bunching

M. Henny et. al. , Science 284 (1999) 296

0C

0C

Page 45: Numerical  modelling of BEC *

4545KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

- coherent state n

n n 2( ) d

22 21( ) ( )

!

nn n e d P n

n

2

, ,

( )m n m n

n m n m d

21

pure noise

1( )

thermal light

nen

1( )1

n

n

nP n

n

Poisson

transformation

Roy J. Glauber, nucl-th/0604021

Quantum Optics and Heavy Ion PhysicsQuantum Optics and Heavy Ion Physics

Page 46: Numerical  modelling of BEC *

4646KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.2 0.4 0.6 0.8 1.0

-0.030.000.03

C2(

E)

E [GeV]

0.8

0.9

1.0

1.1

1.2

1.3

1.4

0.0 0.2 0.4 0.6 0.8 1.0-0.030.000.03

C2(

E)

E [GeV]

Page 47: Numerical  modelling of BEC *

4747KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

B.B. Back, et al. (PHOBOS Coll.), Nucl.Phys. A774 (2006) 631-634B.B. Back, et al. (PHOBOS Coll.), Nucl.Phys. A774 (2006) 631-634

B.B. Back, et al. (PHOBOS Coll.), Nucl.Phys. A774 (2006) 631-634B.B. Back, et al. (PHOBOS Coll.), Nucl.Phys. A774 (2006) 631-634

Page 48: Numerical  modelling of BEC *

4848KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

2

1 TBjorken

m dN

R dy

J.D. Bjorken, Phys. Rev. D 27 (1983) 140

Page 49: Numerical  modelling of BEC *

4949KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

“ From these comparisons one can conclude that both MC models reproduce the data well while neither of them is particularly preferred. The perturbative parton shower, on which both MC models are based, seems to play an important role in the origin of the dynamical fluctuations and correlations in e+e− annihilation. The observed differences between the two MC descriptions indicate that the last steps of the hadronization process are not described correctly [2]. Contributions from additional mechanisms to the observed fluctuations and cor-relations are not excluded. “

G.Abbiendi et al., (OPAL Coll.) Eur.Phys.J. C11 (1999) 239-250

Page 50: Numerical  modelling of BEC *

5050KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Page 51: Numerical  modelling of BEC *

5151KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

Page 52: Numerical  modelling of BEC *

5252KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

J.A.Casado and S.Daté, Phys. Lett. B344 (1995) 441J.A.Casado and S.Daté, Phys. Lett. B344 (1995) 441

Page 53: Numerical  modelling of BEC *

5353KrakówKraków 2006 2006Oleg UtyuzhOleg Utyuzh

( )U x

x

( ) ipxp x e

20

0 2

( )

x

X xipX

p x e

Numerical symmetrization – (C)Numerical symmetrization – (C)

Page 54: Numerical  modelling of BEC *

5454KrakówKraków 2006 2006KrakówKraków 2006 2006Oleg UtyuzhOleg UtyuzhOleg UtyuzhOleg Utyuzh

0,0 0,5 1,0 1,5 2,00,9

1,0

1,1

1,2

1,3

C2(Q

i)

Qi [GeV]

Qinv

QE Q

Px

P=0.7*e-E/T, T=3.5 GeV, =0*T