nucleic acids, proteins, and enzymes -...

97
Nucleic Acids, Proteins, and Enzymes 3

Upload: trinhthu

Post on 17-Jun-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Nucleic Acids,Proteins, and Enzymes

3

Page 2: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Chapter 3 Nucleic Acids, Proteins, and Enzymes

Key Concepts

• 3.1 Nucleic Acids Are Informational Macromolecules

• 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles

• 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

• 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Page 3: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Chapter 3 Opening Question

How does an understanding of proteins and enzymes help to explain how aspirin works?

Page 4: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Nucleic acids are polymers specialized for storage, transmission, and use of genetic information.

DNA = deoxyribonucleic acid

RNA = ribonucleic acid

Monomers: Nucleotides

Page 5: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Nucleotide: Pentose sugar + N-containing base + phosphate group

Nucleosides: Pentose sugar + N-containing base

Page 6: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Bases:

Pyrimidines—single rings

Purines—double rings

Sugars:

DNA contains deoxyribose

RNA contains ribose

Page 7: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.1 Nucleotides Have Three Components

Page 8: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Nucleotides bond in condensation reactions to form phosphodiester linkages.

Nucleic acids grow in the 5′ to 3′ direction.

Page 9: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.2 Linking Nucleotides Together

Page 10: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Oligonucleotides have about 20 monomers, and include small RNA molecules important for DNA replication and gene expression.

DNA and RNA are polynucleotides, the longest polymers in the living world.

Page 11: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Table 3.1 Distinguishing RNA from DNA

Page 12: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Complementary base pairing: adenine and thymine always pair (A-T)cytosine and guanine always pair (C-G)

Page 13: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Base pairs are linked by hydrogen bonds.

There are so many hydrogen bonds in DNA and RNA that they form a fairly strong attraction, but not as strong as covalent bonds.

Thus, base pairs can be separated with only a small amount of energy.

Page 14: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

RNA is usually single-stranded, but may be folded into 3-D structures, by hydrogen bonding.

Folding occurs by complementary base pairing, so structure is determined by the order of bases.

Page 15: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.3 RNA (Part 1)

Page 16: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.3 RNA (Part 2)

Page 17: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

DNA—two polynucleotide strands form a “ladder” that twists into a double helix.

Sugar-phosphate groups form the sides of the ladder, the hydrogen-bonded bases form the rungs.

Page 18: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.4 DNA (Part 1)

Page 19: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.4 DNA (Part 2)

Page 20: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

DNA is an informational molecule: genetic information is in the sequence of base pairs.

DNA has two functions:ReplicationGene expression—base sequences are copied to RNA, and specify amino acids sequences in proteins.

Page 21: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

DNA replication and transcription depend on the base pairing:

5′-TCAGCA-3′

3′-AGTCGT-5′

3′-AGTCGT-5′ transcribes to RNA with the sequence 5′-UCAGCA-3′.

Page 22: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Genome—complete set of DNA in a living organism

Genes—DNA sequences that encode specific proteins and are transcribed into RNA

Not all genes are transcribed in all cells of an organism.

Page 23: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.5 DNA Replication and Transcription

Page 24: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

DNA base sequences reveal evolutionary relationships.

Closely related living species should have more similar base sequences than species that are more distantly related.

Scientists are now able to determine and compare entire genomes of organisms to study evolutionary relationships.

Page 25: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.1 Nucleic Acids Are Informational Macromolecules

Page 26: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Major functions of proteins:

• Enzymes—catalytic proteins

• Defensive proteins (e.g., antibodies)

• Hormonal and regulatory proteins—control physiological processes

• Receptor proteins—receive and respond to molecular signals

• Storage proteins store amino acids

Page 27: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural and Metabolic Roles

• Structural proteins—physical stability and movement

• Transport proteins carry substances (e.g.,hemoglobin)

• Genetic regulatory proteins regulate when, how, and to what extent a gene is expressed

Page 28: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Protein monomers are amino acids.

Amino and carboxylic acid functional groups allow them to act as both acid and base.

The R group differs in each amino acid.

Page 29: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Only 20 amino acids occur extensively in the proteins of all organisms.

They are grouped according to properties conferred by the R groups.

Page 30: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Table 3.2 The Twenty Amino Acids in Proteins (Part 1)

Page 31: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Table 3.2 The Twenty Amino Acids in Proteins (Part 2)

Page 32: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Table 3.2 The Twenty Amino Acids in Proteins (Part 3)

Page 33: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Table 3.2 The Twenty Amino Acids in Proteins (Part 4)

Page 34: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Cysteine side chains can form covalent bonds—a disulfide bridge, or disulfide bond.

Page 35: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Oligopeptides or peptides—short polymers of 20 or fewer amino acids (some hormones and signaling molecules)

Polypeptides or proteins range in size from insulin, which has 51 amino acids, to huge molecules such as the muscle protein titin, with 34,350 amino acids.

Page 36: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Amino acids are linked in condensation reactions to form peptide linkages or bonds.

Polymerization takes place in the amino to carboxyl direction.

Page 37: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.6 Formation of a Peptide Linkage

Page 38: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Primary structure of a protein—the sequence of amino acids

Page 39: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Secondary structure—regular, repeated spatial patterns in different regions, resulting from hydrogen bonding

• α (alpha) helix—right-handed coil

• β (beta) pleated sheet—two or more polypeptide chains are extended and aligned

Page 40: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.7 B, C The Four Levels of Protein Structure

Page 41: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Tertiary structure—polypeptide chain is bent and folded; results in the definitive 3-D shape

The outer surfaces present functional groups that can interact with other molecules.

Page 42: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Page 43: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Interactions between R groups determine tertiary structure.

• Disulfide bridges hold a folded polypeptide together

• Hydrogen bonds stabilize folds

• Hydrophobic side chains can aggregate

• van der Waals interactions between hydrophobic side chains

• Ionic interactions form salt bridges

Page 44: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.8 Noncovalent Interactions between Proteins and Other Molecules

Page 45: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.9 The Structure of a Protein

Page 46: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Secondary and tertiary protein structure derive from primary structure.

Denaturing—heat or chemicals are used to disrupt weaker interactions in a protein, destroying secondary and tertiary structure.

The protein can return to normal when cooled—all the information needed to specify the unique shape is contained in the primary structure.

Page 47: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.10 Primary Structure Specifies Tertiary Structure (Part 1)

Page 48: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.10 Primary Structure Specifies Tertiary Structure (Part 2)

Page 49: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Quaternary structure—two or more polypeptide chains (subunits) bind together by hydrophobic and ionic interactions, and hydrogen bonds.

These weak interactions allow small changes that aid in the protein’s function.

Page 50: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Page 51: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.7 E The Four Levels of Protein Structure

Page 52: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.2 Proteins Are Polymers with Important Structural andMetabolic Roles

Factors that can disrupt the interactions that determine protein structure (denaturing):

• Temperature

• Concentration of H+

• High concentrations of polar substances

• Nonpolar substances

Page 53: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Living systems depend on reactions that occur spontaneously, but at very slow rates.

Catalysts are substances that speed up reactions without being permanently altered.

No catalyst makes a reaction occur that cannot otherwise occur.

Most biological catalysts are proteins (enzymes); a few are RNA molecules (ribozymes).

Page 54: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

In some exergonic reactions there is an energy barrier between reactants and products.

An input of energy (the activation energy or Ea) will put reactants into a transition state.

Page 55: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.11 Activation Energy Initiates Reactions (Part 1)

Page 56: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.11 Activation Energy Initiates Reactions (Part 2)

Page 57: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Enzymes lower the activation energy—they allow reactants to come together and react more easily.

Example: A molecule of sucrose in solution may hydrolyze in about 15 days; with sucrase present, the same reaction occurs in 1 second!

Page 58: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.12 Enzymes Lower the Energy Barrier

Page 59: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Enzymes are highly specific—each one catalyzes only one chemical reaction.

Reactants are substrates: they bind to a specific site on the enzyme—the active site.

Specificity results from the exact 3-D shape and chemical properties of the active site.

Page 60: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.13 Enzyme Action

Page 61: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

The enzyme–substrate complex (ES) is held together by hydrogen bonding, electrical attraction, or temporary covalent bonding.

The enzyme is not changed at the end of the reaction.

PEESSE +→→+

Page 62: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Enzymes may use one or more mechanisms to catalyze a reaction:

• Inducing strain—bonds in the substrate are stretched, putting it in an unstable transition state.

Page 63: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

• Substrate orientation—substrates are brought together so that bonds can form.

• Adding chemical groups—R groups may be directly involved in the reaction.

Page 64: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Binding of substrate to enzyme is like a baseball in a catcher’s mitt. The enzyme changes shape to make the binding tight—“induced fit.”

Page 65: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.14 Some Enzymes Change Shape When Substrate Binds to Them

Page 66: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Some enzymes require ions or other molecules in order to function:

• Cofactors—inorganic ions

• Coenzymes add or remove chemical groups from the substrate. They can participate in many different reactions.

• Prosthetic groups (non-amino acid groups)permanently bound to their enzymes.

Page 67: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Table 3.3 Some Examples of Nonprotein “Partners” of Enzymes

Page 68: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Rates of catalyzed reactions:

There is usually less enzyme than substrate present, so reaction rate levels off when the enzyme becomes saturated.

Saturated—all enzyme molecules are bound to substrate molecules.

Page 69: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.15 Catalyzed Reactions Reach a Maximum Rate

Page 70: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.3 Some Proteins Act as Enzymes to Speed up Biochemical Reactions

Maximum rate is used to calculate enzyme efficiency—molecules of substrate converted to product per unit time (turnover).

It ranges from 1 to 40 million molecules per second!

Page 71: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Enzyme-catalyzed reactions are part of metabolic pathways—the product of one reaction is a substrate for the next.

Page 72: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Homeostasis—the maintenance of stable internal conditions

Cells can regulate metabolism by controlling the amount of an enzyme.

Cells often have the ability to turn synthesis of enzymes off or on.

Page 73: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Chemical inhibitors can bind to enzymes and slow reaction rates.

Natural inhibitors regulate metabolism; artificial inhibitors are used to treat diseases, kill pests, and study enzyme function.

Page 74: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Irreversible inhibition—inhibitor covalently binds to a side chain in the active site. The enzyme is permanently inactivated.

Page 75: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.16 Irreversible Inhibition

Page 76: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Reversible inhibition (more common in cells):

A competitive inhibitor competes with natural substrate for active site.

A noncompetitive inhibitor binds at a site distinct from the active site—this causes change in enzyme shape and function.

Page 77: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Page 78: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.17 Reversible Inhibition (Part 1)

Page 79: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.17 Reversible Inhibition (Part 2)

Page 80: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Allosteric regulation—non-substrate molecule binds a site other than the active site (the allosteric site)

The enzyme changes shape, which alters the chemical attraction (affinity) of the active site for the substrate.

Allosteric regulation can activate or inactivate enzymes.

Page 81: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Page 82: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.18 Allosteric Regulation of Enzyme Activity

Page 83: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Protein kinases are enzymes that regulate responses to the environment by organisms.

They are subject to allosteric regulation.

The active form regulates the activity of other enzymes, by phosphorylating allosteric or active sites on the other enzymes.

Page 84: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Metabolic pathways:

The first reaction is the commitment step—other reactions then happen in sequence.

Feedback inhibition (end-product inhibition)—the final product acts as a noncompetitive inhibitor of the first enzyme, which shuts down the pathway.

Page 85: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.19 Feedback Inhibition of Metabolic Pathways

Page 86: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

pH affects enzyme activity:

Acidic side chains generate H+ and become anions.

Basic side chains attract H+ and become cations.

Page 87: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Example:

glutamic acid—COOH glutamic acid—COO– + H+

The law of mass action—the higher the H+

concentration, the more reaction is driven to the left to the less hydrophilic form.

This can affect enzyme shape and function.

Page 88: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Protein tertiary structure (and thus function) is very sensitive to the concentration of H+ (pH) in the environment.

All enzymes have an optimal pH for activity.

Page 89: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.20 A Enzyme Activity Is Affected by the Environment

Page 90: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Temperature affects enzyme activity:

Warming increases rates of chemical reactions, but if temperature is too high, non-covalent bonds can break and inactivate enzymes.

All enzymes have an optimal temperature for activity.

Page 91: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.20 B Enzyme Activity Is Affected by the Environment

Page 92: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Concept 3.4 Regulation of Metabolism Occurs by Regulation of Enzymes

Isozymes catalyze the same reaction but have different composition and physical properties.

Isozymes may have different optimal temperatures or pH, allowing an organism to adapt to changes in its environment.

Page 93: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Answer to Opening Question

Aspirin binds to and inhibits the enzyme cyclooxygenase.

Cyclooxygenase catalyzes the commitment step for metabolic pathways that produce:

Prostaglandins—involved in inflammation and pain

Thromboxanes—stimulate blood clotting and constriction of blood vessels

Page 94: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.21 Aspirin: An Enzyme Inhibitor

Page 95: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Answer to Opening Question

Aspirin binds at the active site of cyclooxygenase and transfers an acetyl group to a serine residue.

Serine becomes more hydrophobic, which changes the shape of the active site and makes it inaccessible to the substrate.

Page 96: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.22 Inhibition by Covalent Modification (Part 1)

Page 97: Nucleic Acids, Proteins, and Enzymes - Weeblygiannou.weebly.com/uploads/5/6/4/8/5648347/ch03_lecture... · 2011-08-20 · Chapter 3 Nucleic Acids, Proteins, and Enzymes Key Concepts

Figure 3.22 Inhibition by Covalent Modification (Part 2)