nuclear structure phenomenological models from molecules to atomic nuclei. standard model basic...

104
NUCLEAR STRUCTURE PHENOMENOLOGICAL MODELS From molecules to atomic nuclei. Standard model Basic concepts of nuclear physics. Units Properties of nucleons Liquid drop model Surface vibration and rotation MICROSCOPIC MODELS Nuclear force Nuclear mean field Shell model Second quantisation in the mean field Residual interaction. Collective excitations Collective model. Nilsson model

Upload: edith-freeman

Post on 21-Dec-2015

226 views

Category:

Documents


3 download

TRANSCRIPT

NUCLEAR STRUCTURE

• PHENOMENOLOGICAL MODELS• From molecules to atomic nuclei. Standard model• Basic concepts of nuclear physics. Units• Properties of nucleons• Liquid drop model• Surface vibration and rotation• MICROSCOPIC MODELS• Nuclear force • Nuclear mean field• Shell model• Second quantisation in the mean field• Residual interaction. Collective excitations• Collective model. Nilsson model

10-10m=1Å

10-15m=1fm

From molecules to atomic nuclei

Basic concepts of nuclear physics

nucleon: proton or neutron

nuclide: nucleus uniquely specified by

number of protons (Z) and neutrons (N)

mass number: A=Z+N

isotopes: nuclides with the same Z

ex: 235U and 238U

isotones: nuclides with the same N

ex: 2H, 3He

isobars: nuclides with the same A

atomic mass unit: 1u=1/12 m(12C)

=1.66 10-27kg=931.5 MeV/c2

• Electric quadrupole momentum

• Angular momentum

• Magnetic dipole momentum

• Parity

• Energy levels

• Decay rates

Basic physical observables in nuclei

Electricquadrupole

moment

Magneticdipole

moment

Units used in nuclear physicsLength

1 fm =10-15 mEnergy

1 MeV = 106 eV1 eV = 1,6 10-19 J

Basic constants

MN=938,90 MeV/c2

ħc=197,33 MeV fm e2=ħc/137=1,44 MeV fm

Properties of nucleons

proton neutron

mass 1.007276=

938.280 MeV/c2

1.008665=

939.573 MeV/c2

charge +1 0

spin 1/2 1/2

magnetic moment +2.7928 μN -1.9128 μN

parity +1 +1

Nuclear chartstability of nuclei

Limits of stable nucleiexotic nuclei

Nuclear sizefrom electron scattering experiments

1.2fmr

ArR

0

1/30

Binding energy

2enp M)c-ZMNM(ZMB

Mass defect

2A)c(MΔ

Example

Binding energy/nucleon: B/A

Liquid drop modelWeizsäcker semiempirical formula (1935)

Liquid drop energy versus (Z,N)

Surface vibration and rotationDeformation parameters

of the nuclear surface

Vibrational states

Rotational states

Total spin I and its projectionsto laboratory (M) and intrinsic (K) systems

Ω

Parameters in the intrinsic systemΩ is the rotation angle

β & γ vibrations of a deformed shape

Rotational-vibrational modelRotational bands

built on top of thevibrational band head

Sakai-Sheline rulevibrational states → rotational bands

Nuclear force

Deuteron: the simplest nuclear system

Deuteronspin & magnetic moment

Electromagnetic versus strong field

Yukawa potential

Shell model

Nuclear mean field:the selfconsistent single particle potential

created by all nucleons

Mean field potentialfor protons and neutrons

Spin-orbit interaction

Example

Shell model magic numbersappear due to the spin-orbit interaction

Spherical shell model scheme

The last nucleon of an odd-even (even-odd) nucleus determinesthe nuclear properties (spin, quadrupole and magnetic moments)

Schmidt limits for magnetic moments

Schmidt limits for quadupole moments

Second quantisation in the mean fieldEach spherical level is filled by 2j+1 nucleons

with different projections

kk'kkkkk'k

kk

δaaaa}a,{a

0a)(ψ

x

creation/annihilationoperators for

nucleons (fermions)Fermi level

Ground state is a Slater determinantobeying the Pauli exclusion principle

0......aaaΨ)](x)...ψ(x)ψ(xdet[ψ)x,...,(xΨ F21gsFF2211F1gs

Particle (croses) andhole (open circles) states

gshp aa p-h excitation:

(p,2p) reaction in the shell model

Residual interaction among nucleons in the mean field

l

12l21l )(cos)Pr,(rV)V( 21 r,r

Multipole expansionl=0 : pairingl=2 : quadrupole-quadrupole

Particle-particle (p-p) short-range interaction describes pairing correlations

QuasiparticleQuasiparticle

approximationapproximation

kkkkk avauα

Ground state Ground state =BCS vacuum=BCS vacuum

νπ

k

BCSBCSBCS

0BCSα

kkk

kkk

aaP

aaN

where

PPGNH

HamiltonianHamiltonian

Occupation probabilitiesGap parameter

Fermi level

k

kk BCS|aa|BCSGΔ

Normal system Superfluid system

Proton gap versus Z

Particle-hole (p-h) long-range interactiondescribes collective excitations:1) low-lying surface vibrations

2) giant resonance of protons against neutrons

)a(ah||Yr||pQ

aaN

where

)QQF(NH

phhp

kkk

p

h

HamiltonianHamiltonianp-h excitation

gsλμhpλph

ph

Ψ)a(aX

Distribution of collective excitationsfor various multipolarities versus energy

Giantresonance

Low-lying vibrational state

Collective model

Nilsson model of single particle statesin the deformed intrinsic system

2

2022

Nsphdef

βδ

YrωδmHH

Single particle energy versus deformation

Deformed Hamiltonian

DECAY PROCESSES

• Alpha decay, cluster emission

• Beta decay

• Gamma decay

• Fission and fusion

Nuclear decay modes

Decay law

Γ=ħλ

Decay width

Narrow decaying resonance (Γ is small)is a quasi-stationary process

Decay rate (activity)

Alpha decay

G. Gamow "Zur Quantentheorie des Atomkernes" (On the quantum theory of the atomic nucleus), Zeitschrift für Physik, vol. 51, 204-212 (1928).

The first probabilistic interpretationof the wave function

int extARext

Internal region External region

Quantum penetration explainsGeiger-Nuttall law for α

and cluster decays (C, O, Ne, Mg, Si)

Coulomb parameter

Q

eZZ

v

eZZχ

221

221

Beta decay

Fermi & Gamow-Teller transitions

Gamma decay

Parity rules for gamma transitions

Decay operatorsin second quantisation:

gamma transitions beta transitions

λμλ

λμ YrV

if,

nipfλμ- aain,|V|fp,β

if,

τiτfλμnp,τ

τ aai,|V|f,eγ

σV

1V

GT

F

if,

pinfλμ aaip,|V|fn,β

Fission & fusion

Fission - liquid drop model

Energy release for various processes

Strutinsky shell-model correctionThe double humped barrier

determines the occurrence of superhevy nuclei

liquid drop shell model

Density of levels

Superheavy nucleiare formed by fusion

and detected by alpha decay chains

Fusion energy

The Sun