nuclear fission

18
W. Udo Schröder, 2007 Spontaneous Fission 1

Upload: zeke

Post on 23-Feb-2016

60 views

Category:

Documents


0 download

DESCRIPTION

Nuclear Fission. Liquid-Drop Oscillations. Bohr&Mottelson II, Ch. 6. Surface & Coulomb energies important: Stability limit C l  0. Fissility. Mostly considered: small quadrupole and hexadecapole deformations b 2 =a 20 ≠0 ≠ b 4 = a 40 But b 3 = 0 (odd electrostatic moment forbidden). - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

1

Page 2: Nuclear Fission

W. Udo Schröder, 2007

Spon

tane

ous F

issio

n 2

Liquid-Drop Oscillations

0 2

2 2

:

( , , ) 1 ( ) ( , )

:

ˆ2 2

Shape function

R t R t Y

Small amplitude vibrations

dB CHdt

20

2 22 3

1 3 00

1. . : ( ) , . :216.93 ( 1): ( 1)( 2) 1.252 (2 1)

sLDM s

Qu M harmonic oscillator C Deform

a MeVa e ZLDM C Ar fmr A

5 200 0

3: 4irrot m mInertia irrotational flow B R AR

Bohr&Mottelson II, Ch. 6

Surface & Coulomb energies important: Stability limit C 0

Page 3: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

3

Fissility

Mostly considered: small quadrupole and hexadecapole deformations 220 ≠0 ≠ 4=40 But 3=0 (odd electrostatic moment forbidden)

2 22 2 2 2 2 2

2 22 2 2 2

2 1( ) ( 0) 1 ( ) ( 0) 15 52 2, ( ) (0) ( 0) (0)5 5

s s Coul Coul

Coul Coul s s

E E E E

Stability if E E E E

Bohr-Wheeler fissility parameter (0)2 (0)Coul

s

ExE

2 3 2 1 3

2

2

2

22

( , 0) 17.8 ( , 0) 0.71

((

: ) 50)

s Cou

cri

l

t

E A MeV E Z A MeV

x f Z A

Spontaneous fission instabi Z A Z Ality

Stability if x < 1

Page 4: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

4

Fission Potential Energy Surface

Fission path

2

4 PES

Cut along fission path

CN

Saddle

FF1

F

F 2

2mFc2

mCNc2

Q

Typical fission process:

*235 236

* *1 2 ( )

thU n U

F F n Q

Page 5: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

5

LDM-Fission Saddle Shapes

Cohen & Swiatecki, 1974

Page 6: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

6

Systematics of Fission Total Kinetic Energies

Viola, Kwiatkowski & Walker, PRC31, 1550 (1985)

Average total kinetic energy <EK>of both fission fragments as function of fissioning compound nucleus (CN) Z and A:

2

1 3( , ) 0.1189 0.0011 (7.3 1.5)CNK CN CN

CN

ZE Z A MeVA

Page 7: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

7

Viscosity in Fission

For high fissilities (elongated scission shapes) kinetic energies smaller than calculated from saddle Coulomb repulsion: TKE < Tf (∞) viscous energy dissipation.Nix/Swiatecki : Wall and window formula (nucleon transfer, wall motion)

2

2 2

34

3 216

F iiwall iwall

F i ii ii iwind

dE dr ddt d

dE dr drdt d d

Davies et al. PRC13, 2385 (1976)

Viscosity 25% of strength in

HI collisions

FF1 FF2

r

Page 8: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

8

Kramers’ Stochastic Fission Model

V()

sadd

le p

oint

P(,t)

time Collective d.o.f. coupled weakly to internal (nucleonic) d.o.f.

( )( )

. .

relax coll

damped viscous coll motionfor average tLagrange Rayleigh Equ o Motion

*

*

2 2

( , )( ) :

( , ) ( , ) ( )( )1( , ) ( ) coth2 2

( ) ( )( )

locallocal

local

Fokker Planck Equation for P tTransport diffusion coefficient

D T T T

T TT

V B frequency

d dt viscosity c

Fluctation Dissipation Theore

oe i

m

ff

cient

Gradual spreading of probability distribution over barrier (saddle). Probability current from jF =0 to stationary value at t ∞

Grange & Weidenmüller, 1986

trans

Page 9: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

9

Fission Transient and Delay Times

Concepts revisited by H. Hofmann, 2005/2006

1*

0

1 ( )2 ( * )E Esad

statM sadCN

dE EE

Statistical Model fission life time:

Level Density

V()

Inverted parabolaOscill frequ. sad

( ) sad

Reduced friction coefficientB

21

12

statMKramers

F Kramers trans

long for

(0) 90% ( )trans

F F

Transient timej j

Page 10: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

10

Prescission Neutron Emission

21

1.:

, , , ,(2 5) 10

n n

sad sc TKE

sad sc

Mean neutron evaporation timeNumerical transport calculations

T TKE

s fit to experiment

D. Hinde et al., PRC45, 1229 (1992)

Exptl. setup detects FF, lcps, and n in coincidence decompose angular distributionsSources CN, FF1, FF2

Systematics: WUS et al. Berlin Fission Conf. 1988

2135 15 10F s

Short fission times for high E*> 300-500 MeV ?

Page 11: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

11

Fission Fragment Mass Distributions

H. Schmitt et al., PR 141, 1146 (1966)

E* Dependence of FF Mass Distribution: asymm symm

n(A

)

Neutron emission in fission: ≈ 2.5±0.1

232Th(p, f)

Ep =

Croall et al., NPA 125, 402 (1969)

yiel

d

n(A)n(A)

FF Mass A

Pre-neutron emission Post-neutron emissionRadio-chemical data

Page 12: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

12

Fission Fragment Z Distributionsyi

eld

Vandenbosch & Huizenga, 1973

Zp: The most probable ZSame Gaussian A(Z-Zp)

<Alig

ht>

<A h

eavy

>

ACN

Bimodal mass distributions: With increasing ACN more symmetric.<Aheavy> ≈ 139 shell stabilized via <Zheavy>≈ 50

Page 13: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

13

Models for Isobaric Charge Distributions

21 2

1 1 2 2 1 1 2 2

1 1

( , , , ) ( , ) ( , )

: 0

LD LDsc

pA

e Z ZV Z A Z A E Z A E Z AR

VMost probable Z ZZ

Rsc

Minimum Potential Energy (MPE) Models

App. correct for asymmetric fission (Z ≈ +0.5).Incorrect: o-e effects, trends Z ≈ -0.5 at symmetry.

Unchanged charge distribution (UCD):Experimentally not observed, but

1 1 2 2

, ,

:0.5 0.5

UCD CN CN

H H UCD L L UCDZ Z

Z Z A Z A Z AZ Z Z Z

2 2

1 1 1 21

1( | ) ( | ) 3.2 0.3 ( )2p pA

c

VV Z A V Z A Z Z c MeV per Z unitZ

MPE variance: expand V around Z=Zp:

V P(Z)

Z

Page 14: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

14

Models for Isobaric Charge Distributions

Rsc

21 1 11( | ) ( | ) 3.2 0.3 ( )2p pV Z A V Z A c Z Z c MeV per Z unit

2 2 21 1 1( ) exp 2pP Z A Z Z T c

Try thermal equilibrium (T):

Linear increase of 2 with T not observed, but ≈ const. up to E*<50MeV

N

Z V(Z,N)

P(Z,N)

A

A=const.

2 2 2 2 2( ) 1 /:

Z N NZ A

NZ

Nucleon exchange diffusion

Z A

correlation coefficient

Studied in heavy-ion reactions.

dynamics? NEM ?

Page 15: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

15

Mass-Energy Correlations

lightheavy

FF mass ratio

Pleasanton et al., PR174, 1500 (1968)

235U +nth Fission Energies

235U +nth EF1-EF2 Correlation

Pulse heights in detectors affected by pulse height defect

1p

2 1p p

asymmetric fission: p conservation

TKE

TKE

Page 16: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

16

Fine Structure in Fission Excitation Functions

J. Blons et al., NPA 477, 231 (1988)

match to incoming wave

I II

Also: and n decay from II class states

Class I and II vibrational states coupled

Page 17: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

17

Shell Effects in Fission

LDM barrier only approximate, failed to account for fission isomers, structure details of f.Shell effects for deformation Nilsson s.p. levels accuracy problem Strutinsky Shell Corr.

222

2

222

2

2 ( ) 2 ( )

1( )2

2 2 ( )2

LDM SM SM LDM

SM

i

i

i

i i i ii

E E U U E E

U d g N d g

average g e

n d e E n n

In some cases: more than 2 minima, different 1., 2., 3. barriers

Page 18: Nuclear Fission

Spon

tane

ous F

issio

n

W. Udo Schröder, 2007

18

Angular Distribution of Symmetry Axis2( ) (2 1) ( , , )I I

MK MKW I D