nuclear energy conversion

26
© 2006 1 A Research Program: Nuclear Energy Conversion Missouri Energy Summit April 22-23, 2009 Mark A. Prelas*, Tushar K. Ghosh, Sudarshan K. Loyalka, Robert V. Tompson, Dabir S. Viswanath, Robert Schott, Ryan Meyer Nuclear Science and Engineering Institute, University of Missouri- Columbia, Columbia, MO 65211

Upload: mohd-akhlaque

Post on 08-Nov-2014

33 views

Category:

Documents


3 download

DESCRIPTION

Nuclear Energy Conversion

TRANSCRIPT

Page 1: Nuclear Energy Conversion

© 2006 1

A Research Program: Nuclear Energy Conversion

Missouri Energy SummitApril 22-23, 2009

Mark A. Prelas*, Tushar K. Ghosh, Sudarshan K. Loyalka, Robert V. Tompson, Dabir S. Viswanath,

Robert Schott, Ryan MeyerNuclear Science and Engineering Institute, University

of Missouri-Columbia, Columbia, MO 65211

Page 2: Nuclear Energy Conversion

© 2006 2

Steps: Nuclear Energy Conversion

– Topping cycle• Products from nuclear reactions producing narrow-band light

(~ 50%)• Light is transported to photovoltaic cells (80-100% efficiency)• Photovoltaic cell converts light to electricity (80-90%

efficiency)

– With residual high grade heat remaining, bottom cycles make possible system efficiencies of 70%.

Page 3: Nuclear Energy Conversion

© 2006 3

Applications of Nuclear Energy Conversion

– Fission Reactors

– Radioisotopes

– Fusion Reactors

Page 4: Nuclear Energy Conversion

© 2006 4

History of Group

• We have been involved in nuclear energy conversion research and nuclear battery work since 1980

Page 5: Nuclear Energy Conversion

© 2006 5

• Production and applications of light produced by nuclear reactions– M.A. Prelas, “A Potential UV Fusion Lightbulb for Energy

Conversion,” Bulletin Am. Phys. Soc., 26, 7, 1045 (1981).—e.g., Nuclear Lightbulb

Light Production from Nuclear Reactions

NuclearLightbulb

PV

Page 6: Nuclear Energy Conversion

© 2006 6

Chemical Synthesis From Nuclear Reactions

• Lasers and chemical synthesis

– Prelas, M.A., Loyalka, S.K., "A Review of the Utilization of Energetic Ions for the Production of Excited Atomic and

Molecular States and Chemical Synthesis," Prog. in Nucl. Energy, 8, 35-53 (1981).

Page 7: Nuclear Energy Conversion

© 2006 7

Hydrogen Production From Nuclear Reactions

• Production of synthetic fuels from nuclear reactions– Prelas, M.A., Romero, J.B., and Person, E.F., "A Critical Review of Fusion

Systems for Radiolytic Conversion of Inorganics to Gaseous Fuels," Nuclear

Technology/Fusion, 2(2), 143-164 (1982).

Page 8: Nuclear Energy Conversion

© 2006 8

Aerosol core Reactor Energy Conversion System (ARECS)

• Optical transport in nuclear reactors–M. A. Prelas, J. F. Kunze, and F. P. Boody, "A Compact Aerosol Core Reactor/Laser Fueled with Reflective Micropellets,", Laser Interactions and Related Plasma Phenomena, Vol.7, H. Hora and G. Miley,

editors, Plenum Publishing Corporation, 143-154 (1986).

Page 9: Nuclear Energy Conversion

© 2006 9

Direct Energy Conversion of Fission Reactions

• Multi-Cycle High Efficiency Energy Conversion (~70%)– M. A. Prelas, F. P. Boody, J. F. Kunze, and G. H. Miley, "Nuclear-Driven

Flashlamps", Lasers and Particle Beams, 6(1), 25-55,(1988).

Page 10: Nuclear Energy Conversion

© 2006 10

Photon Intermediate Direct Energy Conversion (PIDEC)

• Photon Intermediate Direct Energy Conversion– M. A. Prelas, E. J. Charlson, F. P. Boody, and G. H. Miley, "Advanced Nuclear Energy

Conversion Using a Two Step Photon Intermediate Technique", Prog. In Nuclear Energy, 23 (3), pp. 223-240 (1990).

Page 11: Nuclear Energy Conversion

Fluorescence Efficiency

Page 12: Nuclear Energy Conversion

Fluorescer/PV Match

© 2006 12

Page 13: Nuclear Energy Conversion

PIDEC Capabilities

• Useful for fission, radioisotopes or fusion

• Can use ions, electrons and gamma rays

• Topping cycle efficiency of 30-43%

• With bottom cycle total system efficiency of 50-70%

© 2006 13

Page 14: Nuclear Energy Conversion

© 2006 14

Radioisotope: Photovoltaic Energy conversion of Nuclear energy System (PENS)

• M. Prelas, E. J. Charlson, E. M. Charlson, J. Meese, G. Popovici, and T. Stacy, "Diamond Photovoltaic Energy Conversion," Second International Conference on the Applications of Diamond Films and Related Materials,

Editors M. Yoshikawa, M. Murakawa, Y. Tzeng and W. A. Yarbrough, MYU Tokyo, Pages 5-12 (1993).

Page 15: Nuclear Energy Conversion

© 2006 15

Page 16: Nuclear Energy Conversion

© 2006 16

Solid State Radioisotope Electrical Generator

• Prelas, Mark A.; Sved, John; Jennings, Howard J.; Dann, Allister; Mountford, Andrew.  (British Nuclear Fuels, PLC, UK).    “Solid state electric generator using radionuclide-induced exciton production,”´PCT Int. Appl. 

(1999),     46 pp.  Application: WO  99-US380  19990115.  Priority: US  98-71667  19980116. 

Page 17: Nuclear Energy Conversion

© 2006 17

Radioisotope Energy Conversion System (RECS)

• Eric V. Steinfelds, Tushar K. Ghosh, Mark A. Prelas, Robert V. Tompson, Sudarshan K. Loyalka “Development of Radioisotope Energy Conversion Systems – Efficient Radioisotopic Power”, ICAPP Conference Proceeding, Space Nuclear Power, (May 2003).

Page 18: Nuclear Energy Conversion

© 2006 18

RECS capabilities

• RECS is capable of high efficiencies

• RECS is capable of scaling from microwatts to 100’s of kilowatts

• RECS is capable of long operational lifetimes

Page 19: Nuclear Energy Conversion

© 2006 19

Compact Nuclear Battery

• IP WBG Beta and Alpha Voltaic and Micro bubble (Industrial Interest US Semiconductor Corporation) 2003 – Note: we have not publish a lot of work to protect IP

Page 20: Nuclear Energy Conversion

© 2006 20

Status of Nuclear Energy Conversion Work

• Fluorescence efficiencies measured using nuclear reactions (1981-95 using MURR & University of Illinois TRIGA)

• Wide band-gap photovoltaic Cells fabricated and tested1985-present

• Coupling of excimer lamps to wide band-gap photovoltaic cells (1989-97)

• Radioisotopes coupled PV cells (1986-present)• Radioisotopes tested with RECS configuration

Page 21: Nuclear Energy Conversion

© 2006 21

Diamond PV Cell• G. Popovici, A. A. Melnikov, V. Varichenko, T. Sung, M. Prelas, R. G. Wilson, S. K. Loyalka , "Diamond Ultraviolet

Photovoltaic Cell Obtained by Lithium and Boron Doping," J. Appl. Phys, 81(5), 1 March. 1997.

Page 22: Nuclear Energy Conversion

© 2006 22

Aluminum Nitride PV

• Fall 2001

Page 23: Nuclear Energy Conversion

© 2006 23

Nuclear Battery

• SiC PV cell array

Page 24: Nuclear Energy Conversion

© 2006 24

RECS Test Stand

Page 25: Nuclear Energy Conversion

Conclusions

• Direct Conversion of Nuclear Energy can be efficient (overall 50-70%)

• PIDEC can be used to convert fission energy, energy from radioisotopes and fusion energy

Page 26: Nuclear Energy Conversion

© 2006 26

Time lines• Nuclear Lightbulb 1980

– Fission– Fusion– radioisotopes

• Nuclear hydrogen production 1980– Fission– Fusion– radioisotopes

• Wide band-gap p-n junctions for nuclear energy conversion 1981• ARECS 1981• PIDEC 1985• PENS 1993• Solid State Radioisotope Electrical Generator 1997• Beta/Alpha voltaic using Wide Band-Gap Materials 1997• Diamond p-n junction 1996• RECS 2001• AlN p-n junction 2001• Microbubble technology 1997 and 2003