non-uniform graph partitioning - fields institute · introduction algorithm non-uniform graph...

87
Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute Technion Microsoft Research Microsoft Research Roy Schwartz Non-Uniform Graph Partitioning

Upload: others

Post on 10-Sep-2019

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

Non-Uniform Graph Partitioning

Robert Seffi Roy KunalKrauthgamer Naor Schwartz Talwar

WeizmannInstitute

Technion MicrosoftResearch

MicrosoftResearch

Roy Schwartz Non-Uniform Graph Partitioning

Page 2: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Problem Definition

Non-Uniform Graph Partitioning

Input:G = (V,E), w : E → R+.

Capacities n1, n2, . . . , nk s.t.∑kj=1 nj > n.

Output:A partition S1, . . . , Sk of V where each |Sj | 6 nj minimizing:

1

2

k∑j=1

δ(Sj) .

Note:Number of parts k might depend on n.Capacities might be of different magnitudes.

Roy Schwartz Non-Uniform Graph Partitioning

Page 3: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Problem Definition

Non-Uniform Graph Partitioning

Input:G = (V,E), w : E → R+.

Capacities n1, n2, . . . , nk s.t.∑kj=1 nj > n.

Output:A partition S1, . . . , Sk of V where each |Sj | 6 nj minimizing:

1

2

k∑j=1

δ(Sj) .

Note:Number of parts k might depend on n.Capacities might be of different magnitudes.

Roy Schwartz Non-Uniform Graph Partitioning

Page 4: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Problem Definition

Non-Uniform Graph Partitioning

Input:G = (V,E), w : E → R+.

Capacities n1, n2, . . . , nk s.t.∑kj=1 nj > n.

Output:A partition S1, . . . , Sk of V where each |Sj | 6 nj minimizing:

1

2

k∑j=1

δ(Sj) .

Note:Number of parts k might depend on n.Capacities might be of different magnitudes.

Roy Schwartz Non-Uniform Graph Partitioning

Page 5: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Example - Cloud Computing

processes

Roy Schwartz Non-Uniform Graph Partitioning

Page 6: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Example - Cloud Computing

processes

Roy Schwartz Non-Uniform Graph Partitioning

Page 7: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Example - Cloud Computing

processes

servers

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9

Roy Schwartz Non-Uniform Graph Partitioning

Page 8: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Example - Cloud Computing

processes

servers

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8 𝑛9

Roy Schwartz Non-Uniform Graph Partitioning

Page 9: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Motivation

Theoretical:Captures well studied problems:Min-Bisection, Min b-Balanced-Cut, Min k-Partitioning.

Practical:Cloud and Parallel Computing: parallelism.

Hardware design: VLSI layout, circuit testing.

Data mining: clustering.

Social network analysis: community discovery.

Vision: pattern recognition.

Scientific Computing: linear systems.

Roy Schwartz Non-Uniform Graph Partitioning

Page 10: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Motivation

Theoretical:Captures well studied problems:Min-Bisection, Min b-Balanced-Cut, Min k-Partitioning.

Practical:Cloud and Parallel Computing: parallelism.

Hardware design: VLSI layout, circuit testing.

Data mining: clustering.

Social network analysis: community discovery.

Vision: pattern recognition.

Scientific Computing: linear systems.

Roy Schwartz Non-Uniform Graph Partitioning

Page 11: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work

Heuristics:[Barnes-82], [Barnes-Vanneli-Walker-88], [Sanchis-89], [Hadley-Mark-Vanneli-92],[Rendl-Wolkowicz-95] ...Mainly use spectral theory, local search and quadratic programming.

Worst Case GuaranteeNo meaningful known bounds.

Roy Schwartz Non-Uniform Graph Partitioning

Page 12: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work

Heuristics:[Barnes-82], [Barnes-Vanneli-Walker-88], [Sanchis-89], [Hadley-Mark-Vanneli-92],[Rendl-Wolkowicz-95] ...Mainly use spectral theory, local search and quadratic programming.

Worst Case GuaranteeNo meaningful known bounds.

Roy Schwartz Non-Uniform Graph Partitioning

Page 13: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work (Cont.)

Balanced Graph Partitioning: (nj ≡ n/k)

Min-Bisection: (k = 2)

True Approx.{

O(log3/2 n) [Feige-Krauthgamer-02]O (logn) [Racke-08]

Bicriteria Approx.{

O (logn) [Leighton-Rao-99]O

(√logn

)[Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]

Bicriteria Approx.

{(O (logn) , 2) [Even-Naor-Rao-Schieber-99](O

(√logn log k

), 2

)[Krauthgamer-Naor-S-09]{

(O(ε−2 log3/2 n), 1 + ε) [Andreev-Racke-06](O(logn), 1 + ε) [Feldmann-Forschini-12]

Roy Schwartz Non-Uniform Graph Partitioning

Page 14: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work (Cont.)

Balanced Graph Partitioning: (nj ≡ n/k)Min-Bisection: (k = 2)

True Approx.{

O(log3/2 n) [Feige-Krauthgamer-02]O (logn) [Racke-08]

Bicriteria Approx.{

O (logn) [Leighton-Rao-99]O

(√logn

)[Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]

Bicriteria Approx.

{(O (logn) , 2) [Even-Naor-Rao-Schieber-99](O

(√logn log k

), 2

)[Krauthgamer-Naor-S-09]{

(O(ε−2 log3/2 n), 1 + ε) [Andreev-Racke-06](O(logn), 1 + ε) [Feldmann-Forschini-12]

Roy Schwartz Non-Uniform Graph Partitioning

Page 15: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work (Cont.)

Balanced Graph Partitioning: (nj ≡ n/k)Min-Bisection: (k = 2)

True Approx.{

O(log3/2 n) [Feige-Krauthgamer-02]O (logn) [Racke-08]

Bicriteria Approx.{

O (logn) [Leighton-Rao-99]O

(√logn

)[Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]

Bicriteria Approx.

{(O (logn) , 2) [Even-Naor-Rao-Schieber-99](O

(√logn log k

), 2

)[Krauthgamer-Naor-S-09]{

(O(ε−2 log3/2 n), 1 + ε) [Andreev-Racke-06](O(logn), 1 + ε) [Feldmann-Forschini-12]

Roy Schwartz Non-Uniform Graph Partitioning

Page 16: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work (Cont.)

Balanced Graph Partitioning: (nj ≡ n/k)Min-Bisection: (k = 2)

True Approx.{

O(log3/2 n) [Feige-Krauthgamer-02]O (logn) [Racke-08]

Bicriteria Approx.{

O (logn) [Leighton-Rao-99]O

(√logn

)[Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]

Bicriteria Approx.

{(O (logn) , 2) [Even-Naor-Rao-Schieber-99](O

(√logn log k

), 2

)[Krauthgamer-Naor-S-09]{

(O(ε−2 log3/2 n), 1 + ε) [Andreev-Racke-06](O(logn), 1 + ε) [Feldmann-Forschini-12]

Roy Schwartz Non-Uniform Graph Partitioning

Page 17: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work (Cont.)

Balanced Graph Partitioning: (nj ≡ n/k)Min-Bisection: (k = 2)

True Approx.{

O(log3/2 n) [Feige-Krauthgamer-02]O (logn) [Racke-08]

Bicriteria Approx.{

O (logn) [Leighton-Rao-99]O

(√logn

)[Arora-Rao-Vazirani-08]

Related to Sparsest-Cut and Min b-Balanced-Cut.

Min k-Partitioning: (general k)

NP-Hardness no true approximation [Andreev-Racke-06]

Bicriteria Approx.

{(O (logn) , 2) [Even-Naor-Rao-Schieber-99](O

(√logn log k

), 2

)[Krauthgamer-Naor-S-09]{

(O(ε−2 log3/2 n), 1 + ε) [Andreev-Racke-06](O(logn), 1 + ε) [Feldmann-Forschini-12]

Roy Schwartz Non-Uniform Graph Partitioning

Page 18: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Related Work (Cont.)

Capacitated Metric Labeling:The same as Non-Uniform Graph Partitioning with additional assignment costs.

(O (logn) , O((log k))) nj ≡ n/k [Naor-S-05](O (logn) , 1) constant k [Andrews-Hajiaghayi-Karloff-Moitra-11]

NP * ZPTIME(npolylog(n)

) ⇒No finite approximation that violates capacities by O(log1/2−ε k), ∀ε > 0.[Andrews-Hajiaghayi-Karloff-Moitra-11]

Roy Schwartz Non-Uniform Graph Partitioning

Page 19: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

DefinitionsRelated WorkOur Result

Our Result

Theorem [Krauthgamer-Naor-S-Talwar-13]

There is a bicriteria approximation algorithm achieving a guarantee of:

(O (log n) , O(1))

for Non-Uniform Graph Partitioning.

Roy Schwartz Non-Uniform Graph Partitioning

Page 20: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Known Techniques - Issues

1 Recursive Partitioning:How many vertices to cut in each step?

2 Spreading Metrics:Only spreading with average capacity - insufficient.

3 Racke’s Tree Decomposition:Dynamic programming does not seem to yield poly running time.

Our Approach

Configuration LP.Randomized rounding + concentration via stopping times.

Roy Schwartz Non-Uniform Graph Partitioning

Page 21: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Known Techniques - Issues

1 Recursive Partitioning:How many vertices to cut in each step?

2 Spreading Metrics:Only spreading with average capacity - insufficient.

3 Racke’s Tree Decomposition:Dynamic programming does not seem to yield poly running time.

Our Approach

Configuration LP.Randomized rounding + concentration via stopping times.

Roy Schwartz Non-Uniform Graph Partitioning

Page 22: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Known Techniques - Issues

1 Recursive Partitioning:How many vertices to cut in each step?

2 Spreading Metrics:Only spreading with average capacity - insufficient.

3 Racke’s Tree Decomposition:Dynamic programming does not seem to yield poly running time.

Our Approach

Configuration LP.Randomized rounding + concentration via stopping times.

Roy Schwartz Non-Uniform Graph Partitioning

Page 23: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Known Techniques - Issues

1 Recursive Partitioning:How many vertices to cut in each step?

2 Spreading Metrics:Only spreading with average capacity - insufficient.

3 Racke’s Tree Decomposition:Dynamic programming does not seem to yield poly running time.

Our Approach

Configuration LP.Randomized rounding + concentration via stopping times.

Roy Schwartz Non-Uniform Graph Partitioning

Page 24: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Configuration LP

Fj , {S : S ⊆ V, |S| 6 nj}

(P) min1

2

k∑j=1

∑S∈Fj

δ(S) · xS,j

s.t.

k∑j=1

∑S∈Fj :u∈S

xS,j > 1 ∀u ∈ V

∑S∈Fj

xS,j 6 1 ∀j = 1, . . . , k

xS,j > 0 ∀j = 1, . . . , k,∀S ∈ Fj

Roy Schwartz Non-Uniform Graph Partitioning

Page 25: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Configuration LP

Fj , {S : S ⊆ V, |S| 6 nj}

(P) min1

2

k∑j=1

∑S∈Fj

δ(S) · xS,j

s.t.

k∑j=1

∑S∈Fj :u∈S

xS,j > 1 ∀u ∈ V

∑S∈Fj

xS,j 6 1 ∀j = 1, . . . , k

xS,j > 0 ∀j = 1, . . . , k,∀S ∈ Fj

Roy Schwartz Non-Uniform Graph Partitioning

Page 26: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Configuration LP (Cont.)

Theorem

(P) can be efficiently solved up to a loss of O(log n) in the objective.

Proof Outline:Dual separation oracle of (P) relates to Min ρ-Unbalanced-Cut.Techniques from [Racke-08] give an O(log n) approximation.

Difficulty: Applying the above in algorithms for solving mixedpacking/covering LPs yields O(log n) loss in cost and capacity.

Solution: Scaling constraints differently. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 27: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Configuration LP (Cont.)

Theorem

(P) can be efficiently solved up to a loss of O(log n) in the objective.

Proof Outline:Dual separation oracle of (P) relates to Min ρ-Unbalanced-Cut.Techniques from [Racke-08] give an O(log n) approximation.

Difficulty: Applying the above in algorithms for solving mixedpacking/covering LPs yields O(log n) loss in cost and capacity.

Solution: Scaling constraints differently. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 28: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Configuration LP (Cont.)

Theorem

(P) can be efficiently solved up to a loss of O(log n) in the objective.

Proof Outline:Dual separation oracle of (P) relates to Min ρ-Unbalanced-Cut.Techniques from [Racke-08] give an O(log n) approximation.

Difficulty: Applying the above in algorithms for solving mixedpacking/covering LPs yields O(log n) loss in cost and capacity.

Solution: Scaling constraints differently. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 29: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Configuration LP (Cont.)

Theorem

(P) can be efficiently solved up to a loss of O(log n) in the objective.

Proof Outline:Dual separation oracle of (P) relates to Min ρ-Unbalanced-Cut.Techniques from [Racke-08] give an O(log n) approximation.

Difficulty: Applying the above in algorithms for solving mixedpacking/covering LPs yields O(log n) loss in cost and capacity.

Solution: Scaling constraints differently. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 30: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding

Assumption:

n1 > n2 > . . . > nk and each nj is a power of 2.

Notation:

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8= = = = => > >

𝑊1 𝑊2 𝑊3

Wi ,{j : nj = 2−(i−1)n1

}i = 1, 2, . . . , `

ki , |Wi|

Roy Schwartz Non-Uniform Graph Partitioning

Page 31: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding

Assumption:

n1 > n2 > . . . > nk and each nj is a power of 2.

Notation:

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8= = = = => > >

𝑊1 𝑊2 𝑊3

Wi ,{j : nj = 2−(i−1)n1

}i = 1, 2, . . . , `

ki , |Wi|

Roy Schwartz Non-Uniform Graph Partitioning

Page 32: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding

Assumption:

n1 > n2 > . . . > nk and each nj is a power of 2.

Notation:

𝑛1 𝑛2 𝑛3 𝑛4 𝑛5 𝑛6 𝑛7 𝑛8= = = = => > >

𝑊1 𝑊2 𝑊3

Wi ,{j : nj = 2−(i−1)n1

}i = 1, 2, . . . , `

ki , |Wi|

Roy Schwartz Non-Uniform Graph Partitioning

Page 33: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding (Cont.)

Idea: Covering vertices by random cuts.

Rounding - General Approach1 Hi ← ∅ for every i = 1, . . . , `.2 While V 6= ∅:

Choose j ∼ Unif [1, . . . , k].Choose S ∈ Fj w.p. xS,j .Let r be the mega-bucket s.t. j ∈Wr.Hr ← Hr ∪ {S ∩ V }.V ← V \ S.

Roy Schwartz Non-Uniform Graph Partitioning

Page 34: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding (Cont.)

Idea: Covering vertices by random cuts.

Rounding - General Approach1 Hi ← ∅ for every i = 1, . . . , `.2 While V 6= ∅:

Choose j ∼ Unif [1, . . . , k].Choose S ∈ Fj w.p. xS,j .Let r be the mega-bucket s.t. j ∈Wr.Hr ← Hr ∪ {S ∩ V }.V ← V \ S.

Roy Schwartz Non-Uniform Graph Partitioning

Page 35: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝐻3 = 𝜙

𝐻2 = 𝜙

𝐻1 = 𝜙

𝐻ℓ = 𝜙

Roy Schwartz Non-Uniform Graph Partitioning

Page 36: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝐻3 = 𝜙

𝐻2 = 𝜙

𝐻1 = 𝜙

𝐻ℓ = 𝜙

𝑆1, 𝑗1 𝑗1 ∈ 𝑊3

𝑆1

Roy Schwartz Non-Uniform Graph Partitioning

Page 37: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝐻3 = 𝑆1

𝐻2 = 𝜙

𝐻1 = 𝜙

𝐻ℓ = 𝜙

𝑆1, 𝑗1 𝑗1 ∈ 𝑊3

𝑆1

Roy Schwartz Non-Uniform Graph Partitioning

Page 38: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝐻3 = 𝑆1

𝐻2 = 𝜙

𝐻1 = 𝜙

𝐻ℓ = 𝜙

𝑆2, 𝑗2 𝑗2 ∈ 𝑊1

𝑆1𝑆2

Roy Schwartz Non-Uniform Graph Partitioning

Page 39: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝐻3 = 𝑆1

𝐻2 = 𝜙

𝐻1 =

𝐻ℓ = 𝜙

𝑆2, 𝑗2 𝑗2 ∈ 𝑊1

𝑆1𝑆2

𝑆2\𝑆1

Roy Schwartz Non-Uniform Graph Partitioning

Page 40: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝐻3 = 𝑆1

𝐻2 = 𝜙

𝐻1 = 𝑆2\𝑆1

𝐻ℓ = 𝜙

𝑆3, 𝑗3 𝑗3 ∈ 𝑊3

𝑆1𝑆2

𝑆3

Roy Schwartz Non-Uniform Graph Partitioning

Page 41: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝑆1, 𝑆3\ 𝑆1 ∪ 𝑆2𝐻3 =

𝐻2 = 𝜙

𝐻1 = 𝑆2\𝑆1

𝐻ℓ = 𝜙

𝑆3, 𝑗3 𝑗3 ∈ 𝑊3

𝑆1𝑆2

𝑆3

Roy Schwartz Non-Uniform Graph Partitioning

Page 42: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝑆1, 𝑆3\ 𝑆1 ∪ 𝑆2𝐻3 =

𝐻2 = 𝜙

𝐻1 = 𝑆2\𝑆1

𝐻ℓ = 𝜙

𝑆4, 𝑗4 𝑗4 ∈ 𝑊2

𝑆1𝑆2

𝑆3

𝑆4

Roy Schwartz Non-Uniform Graph Partitioning

Page 43: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝑆1, 𝑆3\ 𝑆1 ∪ 𝑆2𝐻3 =

𝐻2 = 𝑆4\ 𝑆2 ∪ 𝑆3

𝐻1 = 𝑆2\𝑆1

𝐻ℓ = 𝜙

𝑆4, 𝑗4 𝑗4 ∈ 𝑊2

𝑆1𝑆2

𝑆3

𝑆4

Roy Schwartz Non-Uniform Graph Partitioning

Page 44: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝑆1, 𝑆3\ 𝑆1 ∪ 𝑆2𝐻3 =

𝐻2 = 𝑆4\ 𝑆2 ∪ 𝑆3

𝐻1 = 𝑆2\𝑆1

𝐻ℓ = 𝜙

𝑆5, 𝑗5 𝑗5 ∈ 𝑊ℓ

𝑆1𝑆2

𝑆3

𝑆4

𝑆5

Roy Schwartz Non-Uniform Graph Partitioning

Page 45: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding - Example

𝑆1, 𝑆3\ 𝑆1 ∪ 𝑆2𝐻3 =

𝐻2 = 𝑆4\ 𝑆2 ∪ 𝑆3

𝐻1 = 𝑆2\𝑆1

𝐻ℓ =

𝑆5, 𝑗5 𝑗5 ∈ 𝑊ℓ

𝑆1𝑆2

𝑆3

𝑆4

𝑆5

𝑆5\ 𝑆1 ∪ 𝑆2

Roy Schwartz Non-Uniform Graph Partitioning

Page 46: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding (Cont.)

Question: What to do when all vertices are covered?

Merge: While |Hi| > ki merge smallest two cuts in Hi.

Theorem - Cost Analysis

E [cost(ALG)] 6 2 · cost (P) .

Proof Outline:

Pr [u and v covered in different iterations] 6k∑j=1

∑S∈Fj :(u,v)∈δ(S)

xS,j .

Roy Schwartz Non-Uniform Graph Partitioning

Page 47: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding (Cont.)

Question: What to do when all vertices are covered?

Merge: While |Hi| > ki merge smallest two cuts in Hi.

Theorem - Cost Analysis

E [cost(ALG)] 6 2 · cost (P) .

Proof Outline:

Pr [u and v covered in different iterations] 6k∑j=1

∑S∈Fj :(u,v)∈δ(S)

xS,j .

Roy Schwartz Non-Uniform Graph Partitioning

Page 48: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Randomized Rounding (Cont.)

Question: What to do when all vertices are covered?

Merge: While |Hi| > ki merge smallest two cuts in Hi.

Theorem - Cost Analysis

E [cost(ALG)] 6 2 · cost (P) .

Proof Outline:

Pr [u and v covered in different iterations] 6k∑j=1

∑S∈Fj :(u,v)∈δ(S)

xS,j .

Roy Schwartz Non-Uniform Graph Partitioning

Page 49: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt I

Observation - Interchanging Cuts Within Wi

It suffices to upper bound:

Ni , number of vertices covered by Hi at the end .

Note:E [Ni] 6 ki · 2−(i−1)n1.` = O(log k) by merging every Wi with ki 6 2

1/2(i−1) into W1.(` is number of mega-buckets)

Conclusion: Markov + union bound ⇒ O(log k) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 50: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt I

Observation - Interchanging Cuts Within Wi

It suffices to upper bound:

Ni , number of vertices covered by Hi at the end .

Note:E [Ni] 6 ki · 2−(i−1)n1.

` = O(log k) by merging every Wi with ki 6 21/2(i−1) into W1.

(` is number of mega-buckets)

Conclusion: Markov + union bound ⇒ O(log k) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 51: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt I

Observation - Interchanging Cuts Within Wi

It suffices to upper bound:

Ni , number of vertices covered by Hi at the end .

Note:E [Ni] 6 ki · 2−(i−1)n1.` = O(log k) by merging every Wi with ki 6 2

1/2(i−1) into W1.(` is number of mega-buckets)

Conclusion: Markov + union bound ⇒ O(log k) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 52: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt I

Observation - Interchanging Cuts Within Wi

It suffices to upper bound:

Ni , number of vertices covered by Hi at the end .

Note:E [Ni] 6 ki · 2−(i−1)n1.` = O(log k) by merging every Wi with ki 6 2

1/2(i−1) into W1.(` is number of mega-buckets)

Conclusion: Markov + union bound ⇒ O(log k) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 53: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt II

Martingale

Mi,t , E [Ni | (S1, j1), . . . , (St, jt)]

{Mi,t}∞t=0 is a martingale with respect to {(St, jt)}∞t=1.

Note:Mi,0 = E [Ni].|Mi,t −Mi,t−1| 6 ki · 2−(i−1)n1. (Lipschitz)Number of iterations to cover V : T = Θ(k log n).

Conclusion: Azuma + union bound ⇒ O(√k log n log log k)

capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 54: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt II

Martingale

Mi,t , E [Ni | (S1, j1), . . . , (St, jt)]

{Mi,t}∞t=0 is a martingale with respect to {(St, jt)}∞t=1.

Note:Mi,0 = E [Ni].

|Mi,t −Mi,t−1| 6 ki · 2−(i−1)n1. (Lipschitz)Number of iterations to cover V : T = Θ(k log n).

Conclusion: Azuma + union bound ⇒ O(√k log n log log k)

capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 55: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt II

Martingale

Mi,t , E [Ni | (S1, j1), . . . , (St, jt)]

{Mi,t}∞t=0 is a martingale with respect to {(St, jt)}∞t=1.

Note:Mi,0 = E [Ni].|Mi,t −Mi,t−1| 6 ki · 2−(i−1)n1. (Lipschitz)

Number of iterations to cover V : T = Θ(k log n).

Conclusion: Azuma + union bound ⇒ O(√k log n log log k)

capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 56: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt II

Martingale

Mi,t , E [Ni | (S1, j1), . . . , (St, jt)]

{Mi,t}∞t=0 is a martingale with respect to {(St, jt)}∞t=1.

Note:Mi,0 = E [Ni].|Mi,t −Mi,t−1| 6 ki · 2−(i−1)n1. (Lipschitz)Number of iterations to cover V : T = Θ(k log n).

Conclusion: Azuma + union bound ⇒ O(√k log n log log k)

capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 57: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt II

Martingale

Mi,t , E [Ni | (S1, j1), . . . , (St, jt)]

{Mi,t}∞t=0 is a martingale with respect to {(St, jt)}∞t=1.

Note:Mi,0 = E [Ni].|Mi,t −Mi,t−1| 6 ki · 2−(i−1)n1. (Lipschitz)Number of iterations to cover V : T = Θ(k log n).

Conclusion: Azuma + union bound ⇒ O(√k log n log log k)

capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 58: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III

Worst Conditional Variance:Let (T1, r1), . . . , (Tt−1, rt−1) be the realization that maximizes:

Var[Mi,t −Mi,t−1|(S1, j1) = (T1, r1), . . . , (St−1, jt−1) = (Tt−1, rt−1)

].

vi,t is the worst variance value.

Note:For every t a different conditioning might be chosen.Martingale concentration via bounded variances (Bernstein) isnot sufficient:∑t>1 vi,t might be too big!

Roy Schwartz Non-Uniform Graph Partitioning

Page 59: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III

Worst Conditional Variance:Let (T1, r1), . . . , (Tt−1, rt−1) be the realization that maximizes:

Var[Mi,t −Mi,t−1|(S1, j1) = (T1, r1), . . . , (St−1, jt−1) = (Tt−1, rt−1)

].

vi,t is the worst variance value.

Note:For every t a different conditioning might be chosen.Martingale concentration via bounded variances (Bernstein) isnot sufficient:∑t>1 vi,t might be too big!

Roy Schwartz Non-Uniform Graph Partitioning

Page 60: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Pr

∑t>1

Var[Mi,t −Mi,t−1|(S1, j1), . . . , (St−1, jt−1)

]is small

> ?

Theorem - Conditional Variances Sum

Pr

[∑t>1

Var[Mi,t −Mi,t−1 | (S1, j1), . . . , (St−1, jt−1)

]> 2α · ki · 2−(i−1)n21

]6 1/α .

Intuition: In later iterations the changes are smaller in expectation. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 61: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Pr

∑t>1

Var[Mi,t −Mi,t−1|(S1, j1), . . . , (St−1, jt−1)

]is small

> ?

Theorem - Conditional Variances Sum

Pr

[∑t>1

Var[Mi,t −Mi,t−1 | (S1, j1), . . . , (St−1, jt−1)

]> 2α · ki · 2−(i−1)n21

]6 1/α .

Intuition: In later iterations the changes are smaller in expectation. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 62: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Pr

∑t>1

Var[Mi,t −Mi,t−1|(S1, j1), . . . , (St−1, jt−1)

]is small

> ?

Theorem - Conditional Variances Sum

Pr

[∑t>1

Var[Mi,t −Mi,t−1 | (S1, j1), . . . , (St−1, jt−1)

]> 2α · ki · 2−(i−1)n21

]6 1/α .

Intuition: In later iterations the changes are smaller in expectation. �

Roy Schwartz Non-Uniform Graph Partitioning

Page 63: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Martingale

{Mi,t}∞t=0

Good Event

Variances are small.

↘ ↙

???

Freedman’s Inequality

(stopping-time based concentration)

Roy Schwartz Non-Uniform Graph Partitioning

Page 64: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Martingale

{Mi,t}∞t=0

Good Event

Variances are small.

↘ ↙

???

Freedman’s Inequality

(stopping-time based concentration)

Roy Schwartz Non-Uniform Graph Partitioning

Page 65: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Martingale

{Mi,t}∞t=0

Good Event

Variances are small.

↘ ↙

???

Freedman’s Inequality

(stopping-time based concentration)

Roy Schwartz Non-Uniform Graph Partitioning

Page 66: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Immediate Conclusion:Freedman’s inequality yields O(log log k) capacity violation.

Question

How do we get O(1) capacity violation?

Roy Schwartz Non-Uniform Graph Partitioning

Page 67: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Capacity Analysis - Attempt III (Cont.)

Immediate Conclusion:Freedman’s inequality yields O(log log k) capacity violation.

Question

How do we get O(1) capacity violation?

Roy Schwartz Non-Uniform Graph Partitioning

Page 68: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 69: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 70: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 71: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 72: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 73: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 74: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 75: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 76: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 77: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 78: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 79: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation

𝑊1

𝑊2

𝑊3

𝑊4

𝑊5

𝑊6

𝑊7

𝑊8

𝑊9

Roy Schwartz Non-Uniform Graph Partitioning

Page 80: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 81: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 82: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 83: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 84: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 85: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 86: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Instance Transformation (Cont.)What is an instance transformation?

Total capacity of non-empty Wi grows by a constant c.Inverse transformation moves cuts from Wi to some Wj , j 6 i.Inverse transformation incurs a c capacity violation.

What does an instance transformation provide?

Large total capacity of Wi

⇓Better concentration as the total capacity increases

⇓Sum of conditional variances might be higher

⇓Probability that sum of conditional variances is small increases

Conclusion: O(1) capacity violation.

Roy Schwartz Non-Uniform Graph Partitioning

Page 87: Non-Uniform Graph Partitioning - Fields Institute · Introduction Algorithm Non-Uniform Graph Partitioning Robert Seffi Roy Kunal Krauthgamer Naor Schwartz Talwar Weizmann Institute

IntroductionAlgorithm

TechniquesRoundingAnalysis

Thank You!

Questions?

Roy Schwartz Non-Uniform Graph Partitioning