noise constraints effecting optimal propeller designs · noise constraints effecting optimal...

17
NASA Technical Memorandum 86967 Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John P. Sullivan Purdue University West Lafayette, Indiana Prepared for the SAE General Aviation Aircraft Meeting and Exposition sponsored by the Society of Automotive Engineers Wichita, Kansas, April 16-19, 1985 https://ntrs.nasa.gov/search.jsp?R=19850011613 2020-03-19T13:12:14+00:00Z

Upload: others

Post on 15-Mar-2020

25 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

NASA Technical Memorandum 86967

Noise Constraints Effecting Optimal Propeller Designs

Christopher J. Miller Lewis Research Center Cleveland, Ohio

and

John P. Sullivan Purdue University West Lafayette, Indiana

Prepared for the SAE General Aviation Aircraft Meeting and Exposition sponsored by the Society of Automotive Engineers Wichita, Kansas, April 16-19, 1985

https://ntrs.nasa.gov/search.jsp?R=19850011613 2020-03-19T13:12:14+00:00Z

Page 2: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

ABSTRACT AERODYNAMIC ANALYSIS

A p r e l i m i n a r y d e s i g n t o o l f o r advanced pro- p e l l e r s has been developed combining a f a s t v o r t e x l a t t i c e aerodynamic a n a l y s i s , a f a s t sub- s o n i c p o i n t s o u r c e n o i s e a n a l y s i s , and an o p t i - m i z a t i o n scheme u s i n g a c o n j u g a t e d i r e c t i o n s method. T w i s t , chord and sweep d i s t r i b u t i o n s a r e op t imized t o s imul t aneous ly improve bo th t h e aerodynamic performance and t h e n o i s e observed a t a f i x e d r e l a t i v e p o s i t i o n .

f o r s t r a i g h t and advanced concept b l a d e s a r e p re sen ted . The t echn iques used i n c l u d e i n c r e a s - i n g t h e b l a d e number, b l ade sweep, r educ ing t h e r o t a t i o n a l speed , s h i f t i n g t h e spanwise load ing and d i a m e t e r changes . Some methods y i e l d i m - provement i n bo th e f f i c i e n c y and n o i s e .

~

The op t ima l no ise /per formance t r a d e - o f f s

INTKODUCTIOh

PREVIOUS WORK (1,2)* HAS IDENTIFIED THE pe r - formance g a i n s and n o i s e r e d u c t i o n s a v a i l a b l e through t h e u s e o f advanced concept p r o p e l l e r b l a d e s . These works opt imized t h e per formance o n l y ; n o i s e w a s cons ide red as a s e p a r a t e i s s u e . To p r o p e r l y i n v e s t i g a t e advanced p r o p e l l e r con- c e p t s a s w e l l a s conven t iona l geomet r i e s , a d e s i g n t o o l should be a b l e t o op t imize bo th p e r - formance and n o i s e a t t h e same t ime. Th i s pape r d e s c r i b e s t h e development o f such a d e s i g n t o o l and t h e no i se /pe r fo rmance t r a d e - o f f s a v a i l a b l e from o p t i m a l geomet r i e s .

(1) a v o r t e x l a t t i c e method f o r t h e aerodynamic per formance p r e d i c t i o n ; ( 2 ) a subson ic compact s o u r c e model i n t h e t ime domain f o r t h e n o i s e p r e d i c t i o n ; and ( 3 ) an o p t i m i z a t i o n scheme us ing a c o n j u g a t e d i r e c t i o n s method.

I h e d e s i g n program c o n s i s t s o f t h r e e p a r t s :

qiuunibers i n p a r e n t h e s e s d e s i g n a t e r e f e r e n c e s a t end o f paper .

The v o r t e x l a t t i c e method has been used by v a r i o u s r e s e a r c h e r s ( 2 t o 7) i n t h e s t u d y of p r o p e l l e r per formance . The b a s i c c a l c u l a t i o n geometry i s shown i n F ig . 1. There i s a s i n g l e curved l i f t i n g l i n e d i v i d e d spanwise i n t o a s e t o f ho r seshoe v o r t i c e s . Th i s l i f t i n g l i n e i s a long t h e qua r t e r - chord l i n e of t h e b l ade . A t c o n t r o l p o i n t s on t h e t h r e e - q u a r t e r chord l i n e , a boundary c o n d i t i o n of no f low th rough t h e mean camber s u r f a c e i s imposed. The t r a i l i n g vor- t i c e s r e p r e s e n t i n g t h e wake a r e p r e s c r i b e d t o l i e on t h e s u r f a c e swept o u t by t h e q u a r t e r - chord l i n e w i t h p i t c h d e f i n e d by t h e advance r a t i o . Th i s method i s a s t e a d y symmetric a n a l - y s i s , s o t h e r a d i a l c i r c u l a t i o n d i s t r i b u t i o n i s t h e same f o r a l l b l a d e s .

The e q u a t i o n s t o be so lved a r e based on t h e boundary c o n d i t i o n t h a t t h e r e i s no f low th rough t h e chord p l a n e s u r f a c e a t t h e c o n t r o l p o i n t s . The boundary c o n d i t i o n f o r t h e j t h v o r t e x l a t t i c e e lement i s t h e r e f o r e :

V . * f ; . = .vinflow, + r. xu + v . ;i. = o 3

< ’ J r J J

(1)

where

-v V . t o t a l v e l o c i t y a t -;$

n . normal t o t h e chord p l a n e a t t h e con-

J J

J t r o l p o i n t

A

--rc r . c o n t r o l p o i n t p o s i t i o n J 2

,L s h a f t speed and a x i s [ r a d i a n s / s e c )

2 V . t o t a l induced v e l o c i t y a t 2:.

J J

1

Page 3: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

The B i o t - S a v a r t Law i s u s e d t o c a l c u l a t e t h e i n d u c e d v e l o c i t i e s d u e t o t h e h o r s e s h o e v o r - t i c i e s . The i n d u c e d v e l o c i t y a t t h e c o n t r o l p o i n t o f l a t t i c e e l e m e n t j o f b l a d e 1 d u e t o t h e v o r t e x o f e l e m e n t i o f b l a d e k i s g i v e n b y i

w h e r e

r . c i r c u l a t i o n s t r e n g t h o f h o r s e s h o e v o r t e x i p e r u n i t l e n g t h

K t i p p r o p e l l e r t i p r a d i u s

d h i k 2

d i f f e r e n t i a l segment o f t h e h o r s e s h o e v o r t e x .

S i n c e t h e c i r c u l a t i o n s a re t h e unknowns , t h e b o u n d a r y c o n d i t i o n p r o v i d e s a se t o f s i m u l t a n - e o u s e q u a t i o n s f o r t h e c i r c u l a t i o n s .

t h e f o r c e s on e a c h e l e m e n t a r e c a l c u l a t e d u s i n g t h e K u t t a - J o u k o w s k i l a w . T h e s e f o r c e s a r e summed t o p r o v i d e t h e o v e r a l l f o r c e s on t h e p r o p e l l e r . The b l a d e f o r c e s f o r t h e j t h e l e m e n t a r e g i v e n b y :

Once t h e c i r c u l a t i o n s h a v e b e e n d e t e r m i n e d ,

cd o z e r o l i f t d r a g c o e f f i c i e n t

C c h o r d l e n g t h

K d r a g p o l a r c o n s t a n t .

A s a v e r i f i c a t i o n , F i g s . 2 t o 5 compare t h e p r e d i c t e d r e s u l t s w i t h e x p e r i m e n t a l t e s t d a t a . The d a t a i n b i g s . 2 and 3 a r e f o r a r e p r e s e n t a - t i v e g e n e r a l a v i a t i o n p r o p e l l e r t e s t e d a t t h e hASA Lewis k e s e a r c h L e n t e r ( A ) . F i g s . 4 and 5 , t a k e n f rom R e f . (?), a r e f o r a q u a r t e r s c a l e g e n e r a l a v i a t i o n p r o p e l l e r modeled a f t e r t h e b l a d e on a C e s s n a 1 7 2 : t h e PlcCauley lL160. I n b o t h c a s e s , t h e p r e d i c t e d p e r f o r m a n c e a g r e e s w e l l , b u t t h e p r e d i c t e d v a r i a t i o n o f power c o e f f i c i e n t ( w i t h a d v a n c e r a t i o ( J )

r e s u l t s . The f i x e d wake model i s p a r t i a l l y t o b lame: t h e i n d u c e d v e l o c i t i e s would i n c r e a s e t h e wake h e l i x a n g l e , and h e n c e would i n c r e a s e t h e i n d u c e d d r a g a t t h e h i g h e r l o a d i n g s . T h i s f a c t o r would r a i se t h e h i g h l o a d i n g p r e d i c t i o n of Cp and s t r a i g h t e n t h e c u r v e .

I n t h e s e f i g u r e s , t h e f o l l o w i n g s y m b o l s a r e u s e d

n b l a d e number

The d a t a i n

h a s more c u r v a t u r e t Y a n t h e e x p e r i m e n t a l

8314 b l a d e p i t c h a t t h e 3 / 4 r a d i u s

J V/nD = a d v a n c e r a t i o

where

p o d e n s i t y

s bound v o r t e x l e n g t h

I . j t h bound v o r t e x segment c i r c u l a t i o n

V t o t a l v e l o c i t y a t t h e bound s e g m e n t mid-

A

J AIL1

' p o i n t

Dv v i s c o u s d r a g e s t i m a t e .

Here t h e v i s c o u s d r a g i s c a l c u l a t e d b a s e d on t h e s e c t i o n l i f t c o e f f i c i e n t o f t h e e l e m e n t , L, :

= 1 s c (VM * VM, D v 2 Po J J

(5)

V a x i a l i n f l o w v e l o c i t y ( f l i g h t v e l o c i t y )

A V/iik = J / n = a l t e r n a t e a d v a n c e r a t i o

C T T/ (p0n2D4) = t h r u s t c o e i f i c i e n t

~p p/(p,n3~5) = power c o e f f i c i e n t .

hOISE ANALYSIS

The n o i s e a n a l y s i s method i s b a s e d on t h e work o f Lowson (lo). t h a t t h e r e i s n o mean f l o w ( s t a t i c o p e r a t i o n ) and t h a t t h e c o n t i n u o u s d i s t r i b u t i o n o f n o i s e s o u r c e s o n t h e b i a d e c a n be r e p r e s e n t e d by p o i n t s o u r c e s . T h e s e a s s u m p t i o n s a r e m e t when c o n s i d - e r i n g low s p e e d o p e r a t i o n , a s i n t a k e - o f f and c l i m b , s u c h t h a t t h e h e l i c a l t i p s p e e d s a r e l e s s t h a n a b o u t Plach 0.75.

Lowson d i d n o t c o n s i d e r t h e n o i s e p r o d u c e d by a r a d i a l f o r c e i n h i s a n a l y s i s . S o , a n a d d i - t i o n a l t e r m f o r t h e r a d i a l f o r c e n o i s e h a s b e e n d e r i v e d f o r u s e i n t h i s s t u d y . The e q u a t i o n w h i c h must be s o l v e d f o r t h e n o r m a l i z e d p r e s s u r e p e r t u r b a t i o n p r o d u c e d by t h e p r o p e l l e r i s :

T h i s a n a l y s i s a s s u m e s

where

'd v i s c o u s d r a g c o e f f i c i e n t

2

Page 4: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

2

9 a n g l e f rom R a x i s .

.[XT j - ( X r M r - xs) (k? ++)I

R - r s i n ( $ ) s i n ( @ )

1 - M +

s o b s

r 0

( 6 )

s p e e d o f sound

a m b i e n t p r e s s u r e

i i r / a o

-Ms ( robs / r ) s i n ( $ ) s i n ( e )

i iRs/ao

I Iri l I = I I x i - y i l I

( x ,Y ,o ) = ( r o b s c o s ( $ ) , r o b s s i n ( $ ) , 0) = o b s e r v e r p o s i t i o n

( X s , R s c o s ( e ) , Rs s i n ( e ) ) = s o u r c e p o s i t i o n

f o r c e c o e f f i c i e n t s o n a n e l e m e n t

mass f l u x as f o r c e t e r m = aoqm/ p . n 2 ~ 4

volume f l u x

s h a f t s p e e d [ r p s / s ]

p r o p e l l e r d i a m e t e r

s p e c i f i c h e a t r a t i o = 1 . 4

a z i m u t h a l a n g l e

F o r t h e n o i s e a n a l y s i s , t h e x - a x i s i s t h e f o r - ward a x i s of r o t a t i o n (ii). T h i s e q u a t i o n i s e v a l u a t e d a t t h e n o r m a l i z e d r e t a r d e d t i m e 6 , f o r t h e o b s e r v e r t i m e d e t e r m i n e d b y :

w h e r e

A B S sweep i n t r o d u c e d d e l a y .

The p r o p e l l e r i s modeled a s a d i s t r i b u t i o n o f p o i n t n o i s e s o u r c e s w i t h s t r e n g t h s p r o p o r - t i o n a l t o t h e l o c a l l o a d i n g a n d t h i c k n e s s . Each o f t h e v o r t e x l a t t i c e e l e m e n t s i s modeled as two n o i s e e l e m e n t s i n t h e s p a n w i s e d i r e c t i o n ( o r a l o n g t h e h u b t o hub q u a r t e r - c h o r d l i n e f o r t h e b i - b l a d e ) t o improve t h e a s s u m p t i o n o f compact - n e s s . The l a y o u t o f n o i s e s o u r c e s i s shown i n F i g . 6.

The f o r c e c o e f f i c i e n t s , (ACT,AC~,ACR), o n t h e n o i s e e l e m e n t s a r e h a l f o f t h e c o e f f i c i e n t o n t h e p a r e n t a e r o d y n a m i c e l e m e n t , a n d t h e t h i c k n e s s s o u r c e t e r m i s w r i t t e n i n t h e f o r m o f a f o r c e c o e f f i c i e n t ( A K ~ ) f o r c a l c u l a t i o n e a s e . The s t r e n g t h a n d p o s i t i o n s o f t h e s o u r c e - s i n k p a i r u s e d t o r e p r e s e n t t h i c k n e s s a re c h o s e n s o t h a t t h e K a n k i n e body p r o d u c e d h a s t h e same c h o r d a s t h e l o c a l b l a d e s e c t i o n , a n d t h e same f r o n t a l area a s t h e n o i s e e l e m e n t .

s u r e p e r t u r b a t i o n (Eq. ( 6 ) ) i s c a l c u l a t e d a t e q u a l l y s p a c e d p o i n t s i n r e t a r d e d t i m e , e , a l o n g w i t h t h e a s s o c i a t e d o b s e r v e r t imes , t . T h e s e p r e s s u r e s a r e t h e n i n t e r p o l a t e d t o a n e q u a l l y s p a c e d s e t i n o b s e r v e r t i m e . The a d v a n t a g e o f t h i s m e t h o d , d u e t o l l u n r o (G), i s t h a t t h e t i m e consuming s d l u t i o n f o r t h e r e t a r d e d t i m e a s s o c i - a t e d w i t h a g i v e n o b s e r v e r t i m e i s e l i m i n a t e d . A l s o , t h e d i s t r i b u t i o n o f p o i n t s i n o b s e r v e r t i m e i s d e n s e s t i n t h e r e g i o n o f t h e p r e s s u r e p e a k s w h i s h r e s u l t s i n a n a c c u r a t e i n t e r p o l a t i o n o f t h e p e a k s . The m u l t i p l e b l a d e waveform i s c r e a t e d f r o m t h i s s i n g l e b l a d e waveform by s u p e r p o s i t i o n w i t h t h e p r o p e r p h a s e d e l a y s .

h a s b e e n p r o d u c e d , a F a s t F o u r i e r T r a n s f o r m i s u s e d t o o b t a i n t h e h a r m o n i c m a g n i t u d e s . The o v e r a l l sound p r e s s u r e l e v e l (OASPL) n o i s e meas- u r e i s t h e n c a l c u l a t e d f r o m t h e s e h a r m o n i c s b o t h i n dB and u s i n g t h e A-weighted s c a l e f o r dBA.

u r e d n e a r f i e l d n o i s e , o n e t i p r a d i u s away i n t h e p l a n e of r o t a t i o n f o r t h e q u a r t e r s c a l e p r o p e l l e r t e s t d a t a i n R e f s . (2) a n d (12) t o (lit). a i c t i o n and t h e e x p e r i m e n t a l d a t a , b u t t h e wave- f o r m s h a p e and m a g n i t u d e a r e i n e x c e l l e n t a g r e e - ment . A d d i t i o n a l d a t a i s a v a i l a b l e b o t h a h e a d o f a n d b e h i n d t h e p l a n e o f r o t a t i o n . T h e s e d a t a a r e compared w i t h p r e d i c t i o n s i n R e f . (E). The c o m p a r i s o n s show t h e same p h a s e s h i f t a l o n g w i t h a sma l l m a g n i t u d e d i f f e r e n c e . T h i s m a g n i t u d e

To i n c r e a s e t h e e x e c u t i o n s p e e d , t h e p r e s -

Once t h e p e r t u r b a t i o n p r e s s u r e t i m e h i s t o r y

F i g u r e 7 c o m p a r e s t h e p r e d i c t e d and meas-

T h e r e i s a p h a s e s h i f t b e t w e e n t h e p r e -

3

Page 5: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

d i f f e r e n c e r e s u l t s i n a few t e n t h s o f a dB d i f - f e r e n c e i n t h e OASPL.

r ( i ) b 1 a d e e 1 e m e 11 t c i r c u 1 a t i o n s

OPTIMIZATION MCTHOD

An o p t i m i z a t i o n method a u t o m a t e s t h e p r o c - e s s of c h o o s i n g v a l u e s o f t h e i n d e p e n d e n t v a r i - a b l e s t o c r e a t e a " b e s t " r e s u l t . I n t h i s work , t h e i n d e p e n d e n t v a r i a b l e s a r e t h e t w i s t , c h o r d , a n d sweep d i s t r i b u t i o n s , w h i l e t h e m e a s u r e o f t h e r e s u l t i s c a l l e d t h e I n d e x o f P e r f o r m a n c e . The I n d e x o f P e r f o r m a n c e (IP) c o n t a i n s b o t h t h e a e r o d y n a m i c p e r f o r m a n c e and n o i s e o f t h e p r o - p e l l e r and i s f o r m u l a t e d s o t h a t a n optimum g e o m e t r y c o r r e s p o n d s t o a minimum o f t h e f u n c - t i o n . D i f f e r e n t o p t i m a l g e o n L e t r i e s a r e o b t a i n e d by c h a n g i n g t h e r e l a t i v e i m p o r t a n c e o f n o i s e v e r s u s e f f i c i e n c y i n t h e I P .

The c o n j u g a t e d i r e c t i o n s method u s e d f o r t h e o p t i m i z a t i o n i s t h a t o f P o w e l l (16) a s modi- f i e d by L a n g w i l l (E). A f t e r s e a r c h i n g a l o n g e a c h of t h e c u r r e n t s e t o f s e a r c h d i r e c t i o n s , t h e t e c h n i q u e s e a r c h e s a l o n g t h e d i r e c t i o n re- s u l t i n g f r o m t h e end p o i n t s o f t h e i n t e r m e d i a t e s t e p s . T h i s c o m p o s i t e d i r e c t i o n i s t h e c a n d i - d a t e c o n j u g a t e d i r e c t i o n . I f t h e s e a r c h p r o v e s r r u i t f u l , t h e c o n j u g a t e d i r e c t i o n r e p l a c e s o n e o f t h e p r e v i o u s s e a r c h d i r e c t i o n s .

r a t i c f i t t o t h r e e f u n c t i o n e v a l u a t i o n s . I f t h e e s t i m a t e d minimum l i e s o u t s i d e t h e f i t i n t e r v a l , t h e i n t e r v a l i s s h i f t e d t o w a r d s t h e minimum u n t i l t h e minimum i s b r a c k e t e d . Then , i f t h e p r e d i c t i o n f o r t h e v a l u e o f t h e o b j e c t i v e f u n c - t i o n d o e s n o t a g r e e w i t h t h e computed v a l u e , t h e f i t i n t e r v a l w i d t h may b e r e d u c e d . The minimum i n t e r v a l w i d t h a l l o w a b l e i s b a s e d on t h e r e l a - t i v e m a g n i t u d e o f t h e random p o r t i o n o f t h e o b j e c t i v e f u n c t i o n . T h i s method i s r a p i d and p r o v i d e s some immuni ty t o n u m e r i c a l n o i s e i n t h e o b j e c t i v e f u n c t i o n .

The I n d e x o f P e r f o r m a n c e ( 1 P ) i n c o r p o r a t e s t h e c o n s t r a i n t s i n t h e manner o f t h e SUMT f o m - i l l a t i o n d e v e l o p e d by F i a c c o and PlcCormick (2) :

The l i n e s e a r c h e s are d o n e u s i n g a quad-

where

LT p r o p e l l e r t h r u s t c o e f f i c i e n t

( P p r o p e l l e r power c o e f f i c i e n t

($"'get p a r a m e t e r t o o b t a i n t h e d e s i r e d Cp

I\ OASPL n o i s e m e a s u r e i n (dU) o r (CiBA)

m limit l i m i t v a l u e o f t o t a l sweep

a t h e r e l a t i v e i v p o r t a n c e o f e f f i c i e n c y v e r s u s n o i s e

b n o r m a l i z a t i o n f o r n o i s e

n e l s number o f b l a d e e l e m e n t s

Wc Cp w e i g h t i n g

wz w e i g h t on sweep

12' w e i g h t on sweep " k i n k " c o n s t r a i n t

WS L w e i g h t to f o r c e h i - b l a d e s y m m e t r i c l o a d i n g .

l h e m e a s u r e o f sweep, S', i s g i v e n by

a n d t h e m e a s u r e o f i n t e r - e l e m e n t a n g l e i s

( 9 )

w h e r e

xh' 1 , Y l i th node p o i n t c o o r d i n a t e s

t a n g e n t to t h e bound segment b e t w e e n n o d e s j and j + 1.

?!

B e c a u s e o f t h e n u m e r i c a l n o i s e p r e s e n t i n t h e c a l c u l a t i o n , t h e w e i g h t i n g s i n (8) a r e n o t d e c r e a s e d t o z e r o a s would be c u s t o m a r y . I n - s t e a d , t h e w e i g h t i n g s a r e h e l d c o n s t a n t and t h e o f f s e t t a r g e t v a l u e s a r e a d j u s t e d . T h i s p r e - v e n t s t h e a i n p l i f i c a t i o n o f t h e random n o i s e i n t h e IP.

To f u r t h e r s p e e d t h e o p t i m i z a t i o n , t h e scheme i s c l o s e l y c o u p l e d w i t h t h e a e r o d y n a m i c a n a l y s i s r o u t i n e . T h i s i s d o n e by r e c a l c u l a t i n g o n l y t h o s e p o r t i o n s o f t h e model a f f e c t e d by g e o m e t r y c h a n g e s . F o r e x a m p l e , i f a n e l e m e n t i s r e t w i s t e d , o n l y t h e i n d u c e d v e l o c i t i e s a t t h e c o n t r o l p o i n t c h a n g e . The i n d u c e d v e l o c i t i e s a t t h e bound segment and a l l i n d u c e d v e l o c i t i e s on t h e o t h e r e l e m e n t s r e m a i n t h e same and a r e re- u s e d to c a l c u l a t e t h e p e r f o r m a n c e . T h i s i s most b e n e f i c i a l i n i t i a l l y when t h e s e a r c h d i r e c t i o n s c o r r e s p o n d t o s i n g l e g e o m e t r i c q u a n t i t i e s . Com- p a r e d w i t h a c o m p l e t e s o l u t i o n f o r a d e s i g n s t a t e , t h i s t e c h n i q u e i s 2 t o 24 t imes f a s t e r f o r e v a l u a t i o n s of a 1 2 e l e m e n t b l a d e m o d e l .

method was t o maximize s t r a i g h t b l a d e i d e a l An i n i t i a l t e s t c a s e f o r t h e o p t i m i z a t i o n

4

Page 6: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

e f f i c i e n c y a s a f u n c t i o n o f t h e t w i s t d i s t r i b u - t i o n . G o l d s t e i n ' s c i r c u l a t i o n d i s t r i b u t i o n (g), w h i c h y i e l d s t h e maximum i d e a l e f f i c i e n c y u n d e r t h e s e a s s u m p t i o n s , was o b t a i n e d , v e r i f y i n g t h e method.

F o r a more r e a l i s t i c p r e d i c t i o n , a v i s c o u s d r a g e s t i m a t e i s i n c l u d e d . T h i s e s t ima te a s s u m e s a l a m i n a r f l o w s e c t i o n o p e r a t i n g i n t h e l a m i n a r b u c k e t w i t h t h e same d e p e n d e n c e o f c d o on s e c t i o n t h i c k n e s s a s f o r a Clark-Y a i r f o i l ( t o b e c o n s e r v a t i v e ) . The C i f o r s t a l l was c h o s e n t o h e 1 . 2 , a n d s t a l l was modeled b y a s h a r p i n c r e a s e i n t h e s e c t i o n d r a g c o e f f i c i e n t . T h i s d r a g model i s j u s t i f i e d b e c a u s e g i v e n t h e d e s i g n l i f t c o e f f i c i e n t , t h e c o r r e s p o n d i n g a i r - f o i l s h a p e c a n h e f o u n d . By i n c l u d i n g v i s c o u s e f f e c t s , t h e c h o r d d i s t r i b u t i o n c a n h e a d e s i g n v a r i a b l e i n a d d i t i o n t o t h e t w i s t d i s t r i b u t i o n .

To i n v e s t i g a t e t h e t r a d e - o f f s i n v o l v e d when n o i s e i s c o n s i d e r e d , v a r i o u s t e c h n i q u e s f o r n o i s e r e d u c t i o n a r e a p p l i e d t o a s t r a i g h t , a p r o p l e t e d a n d a h i - b l a d e d p r o p e l l e r . T h e s e t e c h n i q u e s i n c l u d e : r e d u c i n g t h e d i a m e t e r t o r e d u c e t i p s p e e d , s h i f t i n g t h e l o a d i n g i n b o a r d , a n d r e d u c - i n g t h e r o t a t i o n a l r a t e t o r e d u c e t i p s p e e d . F o r t h e s e t r a d e - o f f s , t h e d e s i g n v a r i a b l e s a r e t h e t w i s t , c h o r d and sweep d i s t r i b u t i o n s .

N o i s e r e d u c t i o n s a r e a c h i e v e d t h r o u g h two m e c h a n i s m s : p h a s e c a n c e l l a t i o n and n o i s e s o u r c e s t r e n g t h r e d u c t i o n . P h a s e c a n c e l l a t i o n i s a c c o m p l i s h e d e i t h e r by a d d i n g b l a d e s or t h r o u g h sweep. The s o u r c e s t r e n g t h d e p e n d e n c e o n p r o - p e l l e r p a r a m e t e r s d e p e n d s o n t h e t y p e o f n o i s e s o u r c e . The p r e s s u r e p e r t u r b a t i o n s d u e t o t h i c k n e s s t e r m s a re p r o p o r t i o n a l t o r e l a t i v e Mach number s q u a r e d , a n d t h e p e r t u r b a t i o n s d u e t o f o r c e t e r m s a r e p r o p o r t i o n a l t o Mach number c u b e d . L o a d i n g n o i s e i s l i n e a r l y p r o p o r t i o n a l t o t h e b l a d e l o a d i n g s t h o u g h . Hence , r e d u c i n g t h e r e l a t i v e Mach number t h r o u g h a r e d u c t i o n o f t h e r o t a t i o n a l s p e e d or a r e d u c t i o n o f t h e p r o - p e l l e r d i a m e t e r a r e e x p e c t e d t o h a v e a l a r g e e f f e c t on t h e n o i s e .

i n F i g s . 8 t o 1 0 f o r t h e t h r e e b l a d e t y p e s . The n o i s e i s c a l c u l a t e d a t a f i x e d p o s i t i o n , 333 t i p r a d i i away, and 30" b e h i n d t h e p l a n e o f r o t a - t i o n . T h i s a n g l e i s n e a r t h e maximum o f t h e d i r e c t i v i t y p a t t e r n , and a t a d i s t a n c e a p p r o p r i - a t e f o r s i d e l i n e m e a s u r e m e n t s i n t a k e - o f t . The t r a d e - o f f c u r v e s were o b t a i n e d by v a r y i n g t h e p a r a m e t e r s i n t h e I P , Lq. (8). The w e i g h t i n g v a l u e , a , was s h i f t e d f rom c o n s i d e r a t i o n o f o n l y a e r o d y n a m i c p e r f o r m a n c e t o w a r d s c o n s i d e r a - t i o n o f n o i s e o n l y . Eor e a c h v a l u e o f t h e w e i g h t i n g p a r a m e t e r , t h e p r o p e l l e r g e o m e t r y was r e - o p t i m i z e d . T h e s e o p t i m a l g e o m e t r i e s p r o d u c e t h e c u r v e s shown.

t h e s t r a i g h t b l a d e . A s i m p l e a n d v e r y e f f e c t i v e t e c h n i q u e f o r p e r f o r m a n c e improvement i s t o i n c r e a s e t h e b l a d e number. The b l a d e number a s shown s t a r t s a t t h r e e and i n c r e a s e s i n i n c r e - m e n t s o f o n e . When e i t h e r ttle p r o p e l l e r s o l i d - i t y i s h e l d c o n s t a n t , o r t h e b l a d e p l a n f o r m i s h e l d c o n s t a n t , t h e n o i s e i s d e c r e a s e d w h i l e t h e e f f i c i e n c y g o e s up . A d d i t i o n a l b l a d e s r e d u c e

The r e s u l t i n g o p t i m i z e d t r a d e - o f f s a r e shown

F i g u r e 8 shows t h e t r a d e - o f f r e s u l t s f o r

t h e n o i s e by i n t r o d u c i n g p h a s e c a n c e l l a t i o n f o r c e r t a i n h a r m o n i c s w h i l e t h e s t r e n g t h s o f t h e r e m a i n i n g h a r m o n i c s a r e c o n s t a n t . The e f f i - c i e n c y i s i n c r e a s e d b e c a u s e of r e d u c e d t i p a n d s w i r l l o s s e s . The c o n s t a n t s o l i d i t y c a s e s h a v e h i g h e r e f f i c i e n c i e s t h a n t h e c o n s t a n t p l a n f o r m c a s e s b e c a u s e t h e v i s c o u s d r q i s l o w e r .

t i v e method shown. T h i s t r a d e - o f f s t a r t s w i t h n o sweep, and e n d s u p w i t h t h e t i p swept h a c k a b o u t 45" f rom t h e i n i t i a l g e o m e t r y . The p o i n t s a l o n g t h e c u r v e r e p r e s e n t e q u a l i n c r e m e n t s i n t h e w e i g h t i n g s , b u t u n e q u a l c h a n g e s i n sweep. Sweep r e d u c e s t h e n o i s e by i n t r o d u c i n g a p h a s e s h i f t a n d s u b s e q u e n t p h a s e c a n c e l l a t i o n b e t w e e n n o i s e f r o m d i f f e r e n t s e c t i o n s o f t h e b l a d e . I f t h e s w e p t b l a d e i s c o n c u r r e n t l y r e t w i s t e d t o m a i n t a i n t h e r a d i a l l o a d d i s t r i b u t i o n , t h e e f f i - c i e n c y w i l l r e m a i n n e a r l y t h e s a m e . A drawback t o sweep i s t h a t f o r a b l a d e w i t h a low r o t a - t i o n a l Mach number , t h e amount of sweep n e e d e d f o r a u s e f u l r e d u c t i o n i n n o i s e i s l a r g e .

R e d u c i n g t h e r o t a t i o n a l s p e e d c a n r e d u c e t h e n o i s e w i t h a s m a l l e f f i c i e n c y p e n a l t y . The c h a n g e s shown c o r r e s p o n d t o 5 p e r c e n t c h a n g e s i n r o t a t i o n a l s p e e d . The h i g h e r a d v a n c e r a t i o r e s u l t s i n h i g h e r b l a d e l o a d i n g s , h e n c e g r e a t e r t i p a n d s w i r l l o s s e s , b u t t h e r e i s a l a r g e d e c r e a s e i n t h e n o i s e p r o d u c e d .

t h e n o i s e , b u t w i t h a s i z e a b l e e f f i c i e n c y pen- a l t y . The e f f i c i e n c y d r o p s b e c a u s e t h e e f f e c - t i v e d i a m e t e r i s r e d u c e d , i n c r e a s i n g t h e d i s k l o a d i n g . The i n b o a r d s h i f t of t h e l o a d i n g r e d u c e s t h e n o i s e by r e d u c i n g t h e s t r e n g t h o f t h e h i g h Mach number s o u r c e s , and i n c r e a s i n g t h e s t r e n g t h of t h e low Mach number s o u r c e s . A l t h o u g h h a r d t o q u a n t i f y , t h e l o a d i n g s shown a r e s h i f t e d so t h a t t h e p e a k moves f rom t h e 75 p e r c e n t r a d i u s i n b o a r d t o a b o u t t h e 60 p e r c e n t r a d i u s .

A v e r y i n e f f e c t i v e method f o r r e d u c i n g t h e n o i s e i s shown t o be r e d u c i n g t h e d i a m e t e r . Changes h e r e c o r r e s p o n d t o 5 p e r c e n t r e d u c t i o n s i n d i a m e t e r . The n o i s e i s r e d u c e d by t h e r e m o v a l o f t h e h i g h Mach number t i p s o u r c e s . The r e m a i n i n g s o u r c e s a r e i n c r e a s e d i n s t r e n g t h t h o u g h , w h i c h o f f s e t s some o f t h e r e d u c t i o n s . The e t f i c i e n c y d r o p s s h a r p l y b e c a u s e o f t h e i n c r e a s e d d i s k l o a d i n g . T h i s p e r t o r m a n c e pen- a l t y i s l a r g e a n d makes t h e method u n d e s i r a b l e .

F i g u r e 9 shows t h e t r a d e - o f f r e s u l t s f o r a p r o p l e t e d b l a d e . The c h a r a c t e r o f some o f t h e t r a d e - o f f c u r v e s h a s c h a n g e d f rom t h e s t r a i g h t b l a d e r e s u l t s . Most n o t a b l e i s t h e b l a d e number t r a d e - o f f w h i c h n o l o n g e r shows a n i n c r e a s e i n e f f i c i e n c y w i t h t h e d e c r e a s e i n n o i s e . T h i s c u r v e i s f o r a c o n s t a n t p l a n f o r m ; f o r s t r u c t u r a l r e a s o n s , t h e t i p t h i c k n e s s and c h o r d a r e f i x e d . W i t h i n c r e a s i n g b l a d e number , t h e c o n s t a n t b l a d e p l a n f o r m p r o p e l l e r h a s i n c r e a s e d v i s c o u s d r a g . S i n c e t h e t i p d e v i c e i s most b e n e f i c i a l a t h i g h e r b l a d e l o a d i n g s , i n c r e a s i n g t h e b l a d e number w i l l a l s o r e d u c e t h e e f f i c i e n c y g a i n . T h i s r e d u c e d e f f i c i e n c y g a i n , a l o n g w i t h t h e v i s c o u s d r a g i n c r e a s e , combine t o r e d u c e t h e e f f i c i e n c y o f a p r o p l e t e d p r o p e l l e r . F u r t h e r ,

Sweeping t h e b l a d e i s t h e n e x t most e f f e c -

S h i f t i n g t h e l o a d i n g i n b o a r d c a n r e d u c e

5

Page 7: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

w h i l e t h e t o t a l l o a d i n g r e m a i n s a p p r o x i m a t e l y c o n s t a n t , t h e a d d i t i o n a l t i p t h i c k n e s s n o i s e o f f s e t s t h e n o i s e r e d u c t i o n s f rom i n c r e a s e d b l a d e number.

u n t a v o r a b l e t r e n d s s i m i l a r t o t h o s e f o r t h e s t r a i g h t b l a d e . L o a d i n g s h i f t p e n a l i z e s a p r o - p l e t r d p r o p e l l e r inure by u n l o a d i n g t h e t i p and p r o p l e t , w h i l e t h e p r o p l e t ' s e f f e c t a t h ig l i l o a d i n g s b e n e f i t s t h e d i a m e t e r r e d u c t i o n c a s e s .

a b l e for t h e p r o p l e t e d p r o p e l l e r t h a n t h e s t r a i g h t b l a d e p r o p e l l e r . As t h e r o t a t i o n a l s p e e d i s r e d u c e d t o d e c r e a s e t h e n o i s e , t h e l o a d i n g i n c r e a s e s . S i n c e p r o p l e t s p e r f o r m b e t - t e r a t t h e h i g h e r l o a d i n g s , t h e r e i s l e s s e f f i - c i e n c y l o s s .

b l a d e p r o p e l l e r . A g a i n , t h e l o a d i n g s h i f t and d i a m e t e r r e d u c t i o n methods h a v e u n f a v o r a b l e t r e n d s . B l a d e number i n c r e a s e s a r e f o r a f i x e d p l a n f o r m , t o s u p p o r t t h e t i p d e v i c e , and s o i n c r e a s e t h e v i s c o u s d r a g w h i l e d e c r e a s i n g t h e e f f e c t i v e n e s s of t h e t i p d e v i c e . R o t a t i o n a l s p e e d r e d u c t i o n i s more f a v o r a b l e t h a n f o r e i t h e r t h e s t r a i g h t b l a d e or p r o p l e t e d p r o p e l - l e r . T h i s i s a r e s u l t of t h e more e f f e c t i v e t i p d e v i c e r e t a i n i n g more o f t h e e f f i c i e n c y as t h e l o a d i n g i n c r e a s e s . U s i n g a r o t a t i o n a l s p e e d r e d u c t i o n , t h e t h r e e way b i - b l a d e p r o p e l l e r h a s a b o u t 1 dBA l e s s n o i s e a t t h e same e f f i c i e n c y a s t h e s i x way c o n s t a n t p l a n f o r m s t r a i g h t b l a d e p r o p e l l e r .

T h e m o s t i n t e r e s t i n g c u r v e i s f o r t h e e f f r c t o f sweep on a b i - b l a d e p r o p e l l e r . A f t e r a i l i n i t i a l d e c r e a s e i n e f f i c i e n c y w i t h d e c r e a s - i n g n o i s e , t h e t r e n d f l a t t e n s . I f t h e c u r v e i s e x t r a p o l a t e d t o t h e e f f i c i e n c y of a th ree-way c o n s t a n t p l a n f o r m s t r a i g h t b l a d e p r o p e l l e r , t h e Lliree-way b i - b l a d e p r o p e l l e r would h a v e a n o i s e l e v e l t h a t i s 1 4 dBA l o w e r t h a n for t h e s t r a i g h t b l a d e p r o p e l l e r .

s UI'PlAKi

L o a d i n g s h i f t and d i a m e t e r r e d u c t i o n show

R o t a t i o n a l s p e e d r e d u c t i o n i s more f a v o r -

F i g u r e 10 p r e s e n t s t h e t r a d e - o f f s f o r a b i -

A u n i q u e p r e l i m i n a r y d e s i g n t o o l h a s b e e n d e v e l o p e d w i t h t h e a b i l i t y t o s i m u l t a n e o u s l y o p t i r i z e t h e p e r f o r m a n c e and n o i s e o f a p r o p e l - l e r . liy u s i n g a v o r t e x l a t t i c e a e r o d y n a m i c a n a l y s i s , a s u b s o n i c conipact s o u r c e n o i s e a n a l - y s i s , and a n o p t i m i z a t i o n scheme, a n e f f e c t i v e dnci f a s t p r e l i m i n a r y d e s i g n t o o l was c r e a t e d . T h i s p r o g r a m was t h e n u s e d t o i n v e s t i g a t e t h e n o i s e / p e r f o r m a n c e t r a d e - o f f s f o r a s t r a i g h t , a p r o p l e t e d , and a b i - b l a d e p r o p e l l e r .

W h i l e t h e r e s u l t s d e m o n s t r a t e t h e u t i l i t y o f s u c h a d e s i g n t o o l , more i m p o r t a n t l y , t h e r e l a t i v e m e r i t s o f t h e d i f f e r e n t n o i s e r e d u c t i o n t e c h n i q u e s a r e i d e n t i f i e d f o r o p t i n , i z e d geome- t r i e s . In s h o r t , f o r s t r a i g h t b l a d e s , i n c r e a s - i n g t h e b l a d e number w i l l i n c r e a s e e f f i c i e n c y a n d d e c r e a s e t h e n o i s e . Reducing t h e r o t a t i o n a l s p e e d w i l l a l s o r e d u c e t h e n o i s e h u t w i l l d e c r e a s e t h e e f f i c i e n c y s l i g h t l y . F o r a p r o - p l e t e d lade, t h e most f a v o r a b l e method i s t o r e d u c e t h e r o t a t i o n a l s p e e d , b u t a g a i n t h e r e i s a n e r f i c i e n c y p e n a l t y for n o i s e r e d u c t i o n .

F i n a l l y , f o r a h i - b l a d e p r o p e l l e r , e i t h e r a r o t a t i o n a l s p e e d r e a u c t i o n or s w e e p i n g t h e b l a d e w i l l r e d u c e n o i s e e f f e c t i v e l y . B u t , w i t h i t s i n i t i a l l y g r e a t e r e f f i c i e n c y , t h e r e i s a r e g i o n where t h e h i - b l a d e p r o p e l l e r h a s a h i g h e r e f f i - c i e n c y arid a l o w e r n o i s e l e v e l t h a n a s i m i l a r s t r a i g h t b l a d e p r o p e 1 l e r .

REFERENCES

1. L . K . Chang, and J . P . S u l l i v a n , " O p t i m i z a t i o n o f P r o p e l l e r B l a d e Shape by a n A n a l y t i c a l I ' l e thod ," A I A A P a p e r 82-1125, J u n e 1982.

2 . J . P . S u l l i v a n , L .K . Chang, and C . J . M i l l e r , "'The E f f e c t o f P r o p l e t s and R i - b l a d e s on t h e Pc,rformance and N o i s e of P r o p e l l e r s , " SAE P a p e r 810600, A p r i l 1981.

3. V . E . B a s k i n , L.S. V i l d g r u h e , Vozhdayev , Ye. S . , and G . I . Maykapar , "Theory o f t h e L i f t i n g A i r s c r e w , " NASA TT-F-823, F e b r u a r y 1 9 7 6 .

4 . L . J . B o b e r , and L . K . Chang, " F a c t o r s I n f l u e n c i n g t h e P r e d i c t e d P e r f o r m a n c e o f Advanced P r o p e l l e r D e s i g n s , " NASA TM-82676, 1 9 8 1 .

5. L . K . Chang, "The T h e o r e t i c a l P e r f o r m a n c e o f High E f f i c i e n c y P r o p e l l e r s , " Ph.D. T h e s i s , P u r d u e U n i v e r s i t y , 1980.

6. T .A . C g o l f , O . L . A n d e r s o n , D . E . Edwards , a n d A . J . L a n d g r e b e , "An A n a l y s i s f o r High Speed P r o p e l l e r - N a c e 1 l e Aerodynamic P e r f o r m a n c e P r e d i c t i o n . " Volume 1 , Theory and I n i t i a l A p p l i c a t i o n , NASA CR-169450, and Volume 2 , User ' s X a n u a l f o r t h e Computer Program, NASA CR-169451, (K79-912949-19, U n i t e d ' T e c h n o l o g i e s R e s e a r c h C e n t e r ; KASA C o n t r a c t NAS3-20961), J u n e 1979.

7. J . P . S u l l i v a n , "The E f f e c t o f B l a d e Sweep on P r o p e l l e r P e r f o r m a n c e , " AZAA P a p e r 77-716, J u n e 1977.

8. R . J . J e r a c k i , and G . A . f i t i t c h e l l , "Low and High Speed P r o p e l l e r s f o r G e n e r a l A v i a t i o n - P e r f o r m a n c e P o t e n t i a l and R e c e n t Wind T u n n e l T e s t R e s u l t s , " SAE P a p e r 811090, A p r i l 1981. N o t e : T h i s r e f e r e n c e d e s c r i b e s t h e t e s t s i n w h i c h t h e 0 . 5 6 6 s c a l e d a t a were o b t a i n e d . The d a t a c o n t a i n e d h e r e i n h a v e n o t y e t b e e n p u b l i s h e d and w e r e o b t a i n e d i n a p r i v a t e c o m m u n i c a t i o n w i t h R o b e r t J . J e r a c k i , P r o p e l l e r R e s e a r c h S e c t i o n , P r o p u l s i o n Aerodynamics D i v i s i o n , NASA L e w i s R e s e a r c h C e n t e r , C l e v e l a n d , O h i o , J a n u a r y 1983.

9 . G.P. S u c c i , D . H . Munro, J.A. Zimmer, P.D. Dunbeck , E . E . L a r a b e e , K . U . I n g a r d , and . J . L . K e r r e b r o c k , "Noise and P e r f o r m a n c e o f P r o p e l l e r s f o r L i g h t A i r c r a f t ," KASA CK-165732, 1981.

6

Page 8: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

1 0 . M . V . Lowson, "The Sound F i e l d f o r S i n g u l a r i t i e s i n M o t i o n , " P r o c e e d i n g s o f t h e R o y a l S o c i e t y (London) , Vol . A286, 1 9 6 5 , pp . 559-572.

11. D . H . Munro, "The P r o d u c t i o n o f Sound b y Moving O b j e c t s , " Ph.D. T h e s i s , MIT, J u n e 1980.

1 2 . G.P. S u c c i , "Computed and E x p e r i m e n t a l P r e s s u r e S i g n a t u r e s f r o m Two 1 / 4 S c a l e G e n e r a l A v i a t i o n P r o p e l l e r s , " NASA CR-165 728, 1980.

1 3 . G.P. S u c c i , "Noise and P e r f o r m a n c e of G e n e r a l A v i a t i o n A i r c r a f t : A Review o f t h e MIT S t u d y , " SAE P a p e r 810586, A p r i l 1981.

1 4 . G.P. S u c c i , D . H . Munro, a n d J . A . Z i m m e r , " E x p e r i m e n t a l V e r i f i c a t i o n o f P r o p e l l e r N o i s e P r e d i c t i o n , " AIAA J o u r n a l , Vol . 2 0 , No. 11, November 1 9 8 2 , pp. 1483-1491.

1 5 . C . J . M i l l e r , " O p t i m a l l y D e s i g n e d P r o p e l l e r s C o n s t r a i n e d by N o i s e , " Ph.D. T h e s i s , P u r d u e U n i v e r s i t y , 1984.

1 6 . M . J . D . P o w e l l , "An E f f i c i e n t Method f o r F i n d i n g t h e Minimum o f a F u n c t i o n o f S e v e r a l V a r i a b l e s w i t h o u t C a l c u l a t i n g D e r i v a t i v e s , " Computer J o u r n a l , Vol . 7 , No. 2 , J u l y 1 9 6 4 , pp. 155-162.

1 7 . W . I . Z a n g w i l l , W . I . , "Minimiz ing a F u n c t i o n w i t h o u t C a l c u l a t i n g D e r i v a t i v e s , " Computer J o u r n a l , Vol . 1 0 , 1 9 6 7 , pp. 293-296.

18. A . V . F i a c c o , and G.P. McCormick, " N o n l i n e a r Programming," N e w York , J o h n W i l e y & Sons, 1968.

19 . S . G o l d s t e i n , "On t h e V o r t e x Theory o f S c r e w P r o p e l l e r s , " P r o c e e d i n g s of t h e R o y a l S o c i e t y o f London, S e r i e s A , Vol . 1 2 3 , 1 9 2 9 , pp. 440-465.

7

Page 9: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John
Page 10: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

R &

0 NODE POINTS 0 CONTROL POINT

HELICAL HORSESHOE

STRENGTH r----

Figure 1. - L i f t ing l i n e geometry.

.25

.20

+ 0 . 15 +- m 3 CC I + s .10 + z w I=! LL LL

.05

0

-. 05 i

- A NASA TEST DATA, MACH = 0.11, B = 3 0 PREDICTION, p 3 / 4 = 28O, INVISCID 0 PREDICTION, p 3 / 4 = 28O, VISCOUS ESTIMATE

n A 32

.6 . 8 1.0 1.2 1.4 1.6 ADVANCE RATIO, J = V l n D

Figure 2. - Comparison of analyt ical and experimental t h r u s t coeff icients for t he LT10282+4 propeller. Experiniental data f ron, re ference [jl.

Page 11: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

.25

.20

a 0

cf

0 a LL

+ z

- . 15

s 0 .10

w 0 8 .05 U U

0

0

NASA TEST DATA, M4CH = 0.11, B = 3 0 PREDICTION, B314 = 28O, INVISCID 0 PREDICTION, p 3 / 4 = 28O, VISCOUS ESTIMATE

- A

A

A a

a A 32

-. 05

ADVANCE RATIO, J = V i n D

F igu re 3. - Com2ar ison of ana ly t i ca l a n d exper imenta l power coef f i c ien ts fo r t h e LT10282+4 propel ler . Exper imenta l data f ro r r re fe rence @I.

.10

.08

k- 0 +- .06 Ln 3 C Y I t- LL

k- 0 . 0 4

0 - 5

0" .02 U LL

0

0

-. 02 0 .1 .2 . 3 . 4

ADVANCE RATIO, A = V / R R

F igu re 4. - Compar ison of ana ly t i ca l and exper imenta l t h r u s t coe f f i c ien ts fo r t h e 1C160 prope l le r . Exper i - men ta l data f r o m re fe rence [Q].

Page 12: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

. 7

. 6

. 5

a 0

m- .4 s 0 a U

+ z w

0 . 3

0 u .2 5 L L

0

.1

0

-. 1 0

p

- 'RED ICTION

INVISCID

- \\ \ FnnMrln

J . 1 .2 . 3 . 4 ADVANCE RATIO, h = V / R R

Figure 5. - Comparison of analyt ical and experimental power coeff icients for t he 1C160 propeller. Experi- menta l data f r m reference [u] reduced in value by ha If.

I MASS SINKS:

Z

F igure 6. - Noise source locations.

Page 13: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

PRED ICTIGN, VISCOUS -..

‘L THEORY

- EXPERIMENT

I -5 0 -1.5 -1. 0 -. 5 D . 5 1 .0 1.5

TIME, ms

F igu re 7. - A n a l y t i c a l a n d exper i r , en ta l compar ison of near - f ie ld no i se for prope l le r 1C160 in t h e p lane of rotation. Exper imenta l data a n d t h e o r y f ro l r l r e f e r - ences [&I, l a 5 1 .

Page 14: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

m 8 1 r

.79 *801 BLADE NUMBER C 0 N S TAN T SOLIDITY \ BLADE NUM3ER C ON STA N T

SHIFT /

s 3

63 65 67 69 71 OASPL, dBA

.74

F igu re 8. - Opt imized n o i s e l p e r f o r m a n c e trade-of fs s t a r t i n g f ro r r t h e t h r e e way s t r a i g h t blade 6 3 ) base l ine con f igu ra t i on . Des ign po in t : J = 0.8, Cp = 0.154.

Page 15: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

.79

.78

t 0 z W - 0 .77 U U W

.76

.75

s B3 .79 r

- R R E D U

-

-

-

.78

& .77 - 5 0 LL L L

.76

.75

.74

SPL, dBA

Figure 10. - Optimized noise lper formance trade-offs s tar t ing frorr, the th ree way syrnm?trical ly loaded bi-blade (SB3) baseline configuration. Design point ; J = 0. 8, Cp = 0.154.

0 R E D U -

-

-

-

LOADING SHIFT

Page 16: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John
Page 17: Noise Constraints Effecting Optimal Propeller Designs · Noise Constraints Effecting Optimal Propeller Designs Christopher J. Miller Lewis Research Center Cleveland, Ohio and John

1. Report No.

NASA TM-86967

Noise Constraints Effecting Optimal Propeller Designs

2. Government Accession No

7. Author(s)

Christopher J. Miller, Lewis Research Center, and John P. Sullivan, Purdue University, West Lafayette, Indiana

9. Performing Organization Name and Address

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Washington, D.C. 20546

Security Classif (of this report) 20 Security Classif (of this page) 21 No of pages

Unclassified Unclassified

3. Recipient's Catalog NO I

22 Price'

5. Report Date

~

6 Performing Organization Code

505-45-58 _____I

a P+rforrning Organizntror~ Report No

E-2449 Work Unit No.

_____- .____--

1 1 Contract or Grant No

13. Type of Report and Period Covered

Technical Memoranduiri ___- _..

14. Sponsoring Agency Code

FSupplementary Notes

Prepared for the SAE General Aviation Aircraft Meeting and Exposition sponsored by the Society of Automotive Engineers, Wichita, Kansas, April 16-19, 1985.

j. Abstract

A preliminary design tool for advanced propellers has been developed combining a fast vortex lattice aerodynamic analysis, a fast subsonic point source noise analysis, and an optimization scheme using a conjugate directions method. chord and sweep distributions are optimized to simultaneously improve both the aerodynamic performance and the noise observed at a fixed relative position. optimal noise/performance trade-offs for straight and advanced concept blades are presented. The techniques used include increasing the blade number, blade sweep, reducing the rotational speed, shifting the spanwise loading and diameter changes. Some methods yield improvement in both efficiency and noise.

Twist,

The

18. Distribution Statement Key Words (Suggested by Author@))

Performance; Aircraft; Aerodynamics; Blade; Optimization

Unclassified - unlimited STAR Category 02