neutron reflectometry

39
Neutron reflectometry Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada

Upload: aaron

Post on 19-Mar-2016

57 views

Category:

Documents


0 download

DESCRIPTION

Neutron reflectometry. Helmut Fritzsche NRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada. Application/advantages of neutron reflectometry Theoretical background Instrumental setup Experiments: Photoactive azobenzene films Hydrogen storage in MgAl films - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Neutron reflectometry

Neutron reflectometry

Helmut FritzscheNRC-SIMS, Canadian Neutron Beam Centre, Chalk River, Canada

Page 2: Neutron reflectometry

Canadian Neutron Beam Centre

Outlook

Application/advantages of neutron reflectometry

Theoretical background

Instrumental setup

Experiments:• Photoactive azobenzene films• Hydrogen storage in MgAl films• Element-specific hysteresis curves in ErFe2 / DyFe2 multilayers

Supermirrors (non-polarizing and polarizing)

Page 3: Neutron reflectometry

Canadian Neutron Beam Centre

What can be measured with neutron reflectometry?

Film thickness (2 – 200 nm):swelling of polymer films due to water uptake film expansion during illumination of photoactive filmsfilm expansion during hydrogen absorptiongrowth of oxide layer

In-plane structures on nm and m scale

Scattering length density profile:profile of absorbed gas/liquidinterdiffusion magnetic structuresmagnetic field penetration into superconductors

Page 4: Neutron reflectometry

Canadian Neutron Beam Centre

Specific advantages of neutron reflectometry

Large penetration depth (for most materials):Buried layersIn-situ measurements (cryostats, cryomagnets, high-pressure cells, furnaces)

Spin and non-spin flip reflectivity:Magnetization reversal, magnetic structure

No diamagnetic background of substrate for ferromagnetic samples:Determination of absolute magnetic moment

High sensitivity to hydrogen:Determine hydrogen profile in hydrogen storage materials

Change of contrast by using isotopes:swelling of films during water (vapor or liquid) uptake (H2O / D2O)expansion of films during hydrogen absorption (H2 / D2)

Page 5: Neutron reflectometry

Canadian Neutron Beam Centre

Reflection and refraction

specularly reflected

refracted

incoming wave

Physical origin:

different index of refraction for two media

medium 1: n1

medium 2: n2

Refraction: Snell‘s law

n1 sin 1 = n2 sin 2

2

1

Reflection:

r = 1

r

Page 6: Neutron reflectometry

Canadian Neutron Beam Centre

Reflection and refraction:the critical angle

reflectedrefracted

medium 1: n1

medium 2: n2 90°

c

Critical angle: n1 sin 1 = n2 sin 90° sin c = n2 / n1

For 1 > c : no refracted beam exists, only a reflected beam

Total reflection (100% reflectivity) occurs in the medium with the larger n

Page 7: Neutron reflectometry

Canadian Neutron Beam Centre

Index of refraction for light

For light with = 656 nm:

Material n c (for n2=1)

Vacuum 1.00 -Water 1.33 48.8Quartz glass 1.46 43.2Benzene 1.50 41.8

What is the index of refraction for neutrons?

Note: the index of refraction depends on the wavelength

Page 8: Neutron reflectometry

Canadian Neutron Beam Centre

Index of refraction for neutrons

z

Ez

}Ekin,1

V SLD

Ekin,2

bkVm

kk

nVmk

mk

2

21

21

222

221

2121

22

bm

V 22 Fermi’s pseudopotential:

m: neutron mass: neutron wavelengthb: nuclear scattering length: density of atomsb: scattering length density (SLD)

Page 9: Neutron reflectometry

Canadian Neutron Beam Centre

Scattering lengths

X-rays

X-rays: b Z (electron density)

Neutrons

Neutrons: no systematics

Important: not absolute number but contrast of SLX-rays and neutrons are complementary probes

0 5 10 15 20 25 300

1020304050607080

b (f

m)

atomic number

Ne

Ca

H

FeCr

Ti

ArS

SiMg

OC

BeHe

Ni

0 5 10 15 20 25 30-5

0

5

10

15

b (f

m)

atomic number

H

D

He

Li

Be

BC

N

O FNe

Na

Mg

AlSi

P

S

Cl

Ar

KCa

Sc

Ti

V

Cr

Mn

Fe

Co

58Ni

Cu

Page 10: Neutron reflectometry

Canadian Neutron Beam Centre

Index of refraction for neutrons:some examples

For neutrons with = 0.237 nm:

Material n b (10-4 1/nm2)

Vacuum 1.00 0Water (H2O) 1.000001 -0.561Si 0.999998 2.073Quartz glass 0.999997 4.185Heavy water (D2O) 0.999994 6.36658Ni 0.999988 13.16

Note: n 1-10-5

The deviation of nneutron from 1 is much smaller than for light,because the interaction of neutrons with matter is much weaker

Page 11: Neutron reflectometry

Canadian Neutron Beam Centre

Reflectometry setup on D3

S1

S2

S3S4

sample

PG filter

analyzer

detector

Focusing PG monochromator

Polarizing supermirror

Spin-down neutrons

spin flipper

Page 12: Neutron reflectometry

Canadian Neutron Beam Centre

Reflectometry setup on D3

S1

S2

S3S4

sample

PG filter

analyzer

detector

Focusing PG monochromator

Polarizing supermirror

Spin-down neutrons

spin flipper

Spin-up neutrons

Page 13: Neutron reflectometry

Canadian Neutron Beam Centre

The reflectometry experiment

detector

sample

slit system

q2

q: scattering vector: scattering angle

sin4

ir kkq

geometry:sample moves by detector moves by 2

Page 14: Neutron reflectometry

Canadian Neutron Beam Centre

The reflectometry experiment

detector

sample

slit system

q

Reflectometry:Measuring the reflected intensity as a function of q

Page 15: Neutron reflectometry

Canadian Neutron Beam Centre

Visualization of a reflectivity curve (Si wafer)

z

Ez

refle

ctiv

ity

q

nucbm

V 22

}

qc

bq ccc sin4

Si: c=0.11º (for =2.37 Å)58Ni: c=0.28º (for =2.37 Å)

Page 16: Neutron reflectometry

Canadian Neutron Beam Centre

Kiessig fringes

A u S izd

V

0.00 0.02 0.04 0.06 0.08 0.1010-5

10-4

10-3

10-2

10-1

100

Ref

lect

ivity

q (Å-1)

Oscillations due to total film thicknessq 1/d

q=2/d

qc

Page 17: Neutron reflectometry

Canadian Neutron Beam Centre

Multilayer Bragg peaks

bilayer Bragg peaks at q=2/t

q = n · 2/62.8 Å-1 = n · 0.1 Å-1

0.00 0.05 0.10 0.15 0.20 0.25 0.301E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

refle

ctiv

ity

q (Å-1)

Short period oscillations:Kiessig fringes

Fe

SLD

Cr

Fe

CrSi wafer

Fe

Cr}Bilayer thickness tt = 32.8 Å + 30 Å = 62.8 ÅIn total: 20 repetitions

•••

Page 18: Neutron reflectometry

Canadian Neutron Beam Centre

Magnetic interaction

magnuc VVV Bbm

22 magnuc bbm

22

Hext: external magnetic fieldB : magnetic inductionµ : magnetic moment of neutrons

Page 19: Neutron reflectometry

Canadian Neutron Beam Centre

PNR: bulk Fe

0.00 0.05 0.10 0.151E-6

1E-5

1E-4

1E-3

0.01

0.1

1 R+

R-

Runmag

refle

ctiv

ityq (1/Å)

Different reflectivity for spin-up and spin-down neutrons

Determination of the absolute magnetic moment possible

qc- qc

+

Vnuc

BVmag

BVmag

V

spin up (R+) spin down (R-)

Vnuc

Page 20: Neutron reflectometry

Canadian Neutron Beam Centre

PNR: Fe/Cr multilayers

1.3 nm C r

M gO (001)

2 .5 nm Fe

x 20

d struc

B

H ex t

2 .5 nm Fe1.3 nm C r

1 .3 nm C r

M gO (001)

2 .5 nm F e

x 20

d st ruc

B

H ex t

2.5 nm F e1 .3 nm C r

d A F

0.00 0.05 0.10 0.15 0.201E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

R+

R-

refle

ctiv

ity

q (1/Å)0.00 0.05 0.10 0.15 0.20

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

R+

R-

refle

ctiv

ity

q (1/Å)

Structural peakStructural peak

AF peak

Ferromagnetic coupling:Magnetic period = chemical period

Antiferromagnetic coupling:Magnetic period = 2 x chemical period

Page 21: Neutron reflectometry

Canadian Neutron Beam Centre

In-situ setup for photoactive films

lenses

shutter mirror

Neutron reflectometry and Laser illumination at the same time

Page 22: Neutron reflectometry

Canadian Neutron Beam Centre

Results for azobenzene films

0.0 h

0.4 h2.5 h

8.0 h

Laser irradiation time

Smaller q larger film thickness

Page 23: Neutron reflectometry

Canadian Neutron Beam Centre

Co-sputtering of MgAl alloy films

Mg Al Pd

Vacuum Chamber

<100> Si Wafer

Page 24: Neutron reflectometry

Canadian Neutron Beam Centre

Hydrogen absorption

Hydrogen gas cylinderAbsorption cell for thin filmson wafers with up to 100 mm diameter

Page 25: Neutron reflectometry

Canadian Neutron Beam Centre

Hydrogen desorptionequipment

Reflectometry furnace:

Ar atmosphere or vacuum300 K < T < 670 K

sampleheater

thermocouple

Page 26: Neutron reflectometry

Canadian Neutron Beam Centre

Mg0.6 Al0.4 at 298 K

0.00 0.02 0.04 0.06 0.08 0.101E-6

1E-5

1E-4

1E-3

0.01

0.1

1

exp. data simulation

Si / 52 nm Mg0.6

Al0.40

/ 10 nm Pd

Ref

lect

ivity

q (Å-1)

T = 298 K

0 100 200 300 400 500 600 700 8000.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

Si / 52 nm Mg0.6

Al0.4

/ 10 nm Pd

SLD

(Å-2

)

z (Å)

Mg0.6Al0.4PdSiO2

Si

Fit:

Pd: t = 104 Å = 4.4 ÅMgAl: t = 520 Å = 15.7 Å

Page 27: Neutron reflectometry

0 100 200 300 400 500 600 700 8000.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

without hydrogen with hydrogen

Si / 52 nm Mg0.6Al0.4 / 10 nm Pd

SLD

(Å-2

)

z (Å)

Canadian Neutron Beam Centre

Absorption in Mg0.6 Al0.4

• increase of film thickness by about 20%• hydrogen content is 83 at.% = 3.2 weight %

SLDbH < 0

t

0.00 0.02 0.04 0.06 0.08 0.101E-6

1E-5

1E-4

1E-3

0.01

0.1

1 without hydrogen with hydrogen

Si / 52 nm Mg0.6Al0.4 / 10 nm Pd

Ref

lect

ivity

q (Å-1)

Page 28: Neutron reflectometry

Canadian Neutron Beam Centre

Annealing of a desorbed Mg0.7 Al0.3 film

Pd layer does not exist anymore after 9 h:Pd diffuses into the MgAl layer

0 100 200 300 400 500 600 700 8000.0

1.0x10-6

2.0x10-6

3.0x10-6

4.0x10-6

5.0x10-6

1 h @ 473 K 3 h @ 473 K 9 h @ 473 K

SLD

(Å-2

)

z (Å)

0.00 0.02 0.04 0.06 0.08 0.10

1E-5

1E-4

1E-3

0.01

0.1

1

1 h @ 473 K 3 h @ 473 K 9 h @ 473 K

Ref

lect

ivity

q (Å-1)

Page 29: Neutron reflectometry

Canadian Neutron Beam Centre

DyFe2 / ErFe2 multilayer:element-specific hysteresis

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

0H = 6.0 T

q (Å-1)

Ref

lect

ivity

1E-4

1E-3

0.01

0.1

1

fit of R- -

fit of R+ +

H = 1.0 T

1E-4

1E-3

0.01

0.1

1

R- -

R+ +

H = 0.4 TMagnetization reversal at 100 KAfter saturation at µ0H = –6 T(6 nm DyFe2 / 6 nm ErFe2)40

0 1 2 3 4 5 6-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

DyFe2

ErFe2

averageM

(T)

0H (T)

ErFe2 and DyFe2 magnetizations are not parallelDyFe2: easy-axis loopErFe2: hard-axis loop

Page 30: Neutron reflectometry

Canadian Neutron Beam Centre

PNR is element-specific

ErFe2 DyFe2

R+ = R-

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 TM

ErFe2 = 0 T

q (Å-1)

Ref

lect

ivity

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 TM

ErFe2 = -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 TMErFe2 = 0.13 T

nonmagnetic layers

Page 31: Neutron reflectometry

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 TM

ErFe2 = 0 T

q (Å-1)

Ref

lect

ivity

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 TM

ErFe2 = -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 TMErFe2 = 0.13 T

ErFe2 DyFe2

ErFe2 DyFe2

R+ = R-

~R+ ~R-H

D y F e 2

E rF e 2

nonmagnetic layers

Page 32: Neutron reflectometry

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 TM

ErFe2 = 0 T

q (Å-1)

Ref

lect

ivity

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 TM

ErFe2 = -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 TMErFe2 = 0.13 T

ErFe2 DyFe2

ErFe2 DyFe2

R+ = R-

~R+ ~R-H

D y F e 2

E rF e 2

nonmagnetic layers

Page 33: Neutron reflectometry

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 TM

ErFe2 = 0 T

q (Å-1)

Ref

lect

ivity

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 TM

ErFe2 = -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 TMErFe2 = 0.13 T

ErFe2 DyFe2

R+ = R-

ErFe2 DyFe2

~R- ~R+

ErFe2 DyFe2

~R+ ~R-H

D y F e 2

E rF e 2

H

D y F e 2

E rF e 2

nonmagnetic layers

Page 34: Neutron reflectometry

Canadian Neutron Beam Centre

PNR is element-specific

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0 TM

ErFe2 = 0 T

q (Å-1)

Ref

lect

ivity

1E-4

1E-3

0.01

0.1

1

MDyFe2

= 0.13 TM

ErFe2 = -0.13 T

1E-4

1E-3

0.01

0.1

1 R+ +

R- -

MDyFe2

= -0.13 TMErFe2 = 0.13 T

ErFe2 DyFe2

ErFe2 DyFe2

R+ = R-

~R+ ~R-

ErFe2 DyFe2

~R- ~R+

H

D y F e 2

E rF e 2

H

D y F e 2

E rF e 2

nonmagnetic layers

Page 35: Neutron reflectometry

Canadian Neutron Beam Centre

supermirror

goal:Extend the range of neutron reflectionbeyond the regime of total reflection

concept:continuous Bragg reflection from a multilayercomposed of bilayerswith a variation of the thickness

realization:Ni/Ti multilayer, bNi = 10.3 fm, bTi = -3.4 fm100 bilayers,qc = 2 x qc, Ni

Page 36: Neutron reflectometry

Canadian Neutron Beam Centre

supermirror

m-value: m = qc / qc, Ni

Ni

SLD

Ni

Ti Ti Ti

Ni

z

Page 37: Neutron reflectometry

Canadian Neutron Beam Centre

Polarizing supermirror

concept:Using the supermirror concept with a magnetic/non-magnetic bilayerThe SLD of the bilayer is index-matched for spin-down neutronsno multilayer Bragg peaks for down-neutronsSpin-up neutrons show supermirror behavior with extended critical edge

Fe/Co

SLD

spin-up neutrons

Si

Fe/Co

Si

spin-down neutrons

Fe/Co

SLD

Si Fe/Co Si

Index matching

Page 38: Neutron reflectometry

Canadian Neutron Beam Centre

Polarizing supermirror:Fe-Co/Si

0.0 0.2 0.4 0.6 0.8 1.0 1.20

1000

2000

3000

4000

5000

R_down R_up

refle

cted

neu

trons

(cou

nts)

(deg)

supermirror 5127u with =0.472 nm

0.0 0.2 0.4 0.6 0.8 1.0 1.20

1000

2000

3000

4000

T_down T_up

trans

mitt

ed n

eutro

ns (c

ount

s)

(deg)

supermirror 5127u with =0.472 nm

Reflected intensity Transmitted intensity

Page 39: Neutron reflectometry

Canadian Neutron Beam Centre

Flipping ratio

0.0 0.2 0.4 0.6 0.8 1.0 1.20

20

40

60

80

100

transmission reflectivity

flipp

ing

ratio

(deg)

supermirror 5127u with =0.472 nm

RRRR

Flipping ratio =

usable range25