network design evolution -- (t-mobile usa case study) · pdf filenetwork design evolution --...

24
Network Design Evolution -- (T-Mobile USA Case Study) Issa AbuEid NANOG68 October 18 2016

Upload: nguyenkhue

Post on 01-Feb-2018

234 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Network Design Evolution -- (T-Mobile USA Case Study)

Issa AbuEid NANOG68

October 18 2016

Page 2: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Abstract

§ In  this  session,  we  will  describe  the  main  design  model  and  components  used  to  build  the  T-­‐Mobile  USA  network,  present  major  evolu?ons  in  the  last  ten  years  such  as  architecture,  technology,  and  rou?ng  protocol  changes.  Finally,  some  lessons  and  recommenda?ons  learned  from  our  experience  will  be  shared.  

Monday,  October  17,  16   2  

Page 3: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Agenda

§ Hierarchical  Network  Design  Model    § T-­‐Mobile  Network  at  a  glance    § T-­‐Mobile  Design  Model  Evolu?on  

o Architecture  Evolu?on  o Technology  Evolu?on  o Rou?ng  Protocol  Evolu?on  o BGP  RR  Evolu?on    

§ Lessons  Learned  and  Recommenda?on  

Monday,  October  17,  16   3  

Page 4: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Hierarchal Network Design Model § T-­‐Mobile  USA  decided  to  use  The  three-­‐(ered  hierarchy  model  as  the  preferred  approach  to  network  design.    In  the  three-­‐layer  network  design  model,  network  devices  and  links  are  grouped  according  to  three  layers:      o Core  o Distribu?on  o Access  

§ A  hierarchical  network  design  model  breaks  the  complex  problem  of  network  design  into  smaller,  more  manageable  problems.    o Op(mize  network  hardware  and  soVware  to  perform  specific  roles  in  each  (er  o E.g.,  devices  at  the  access  ?er  accept  traffic  into  a  network  and  pass  to  the  higher  layers    

§ The  three-­‐layer  model  is  a  conceptual  framework  ─  similar  to  the  concept  of  the  (OSI)  reference  model    Monday,  October  17,  16   4  

Page 5: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

The Core Layer

§ The  core  layer,  aka  backbone,  provides  an  op(mized  and  reliable  transport  structure  by  forwarding  traffic  at  very  high  speeds.  In  other  words,  the  core  layer  switches  packets  as  fast  as  possible.    

§ The  major  features  of  Core  layer  :  o Resilient  o Few  changes    o Few  features  o High  bandwidth  

Monday,  October  17,  16   5  

8G / 20G / 40G port-channel

WAN Link1G / 10G

WAN Link1G / 10G

1G / 10G 1G / 10G

Distribution Router (PE)

Core Router (P)

Access Router (CE)10G / 20G

port-channel

Core Layer Loc-BCore Layer Loc-A

MSO C

Access Layer

Distribution Layer

Core Layer

Page 6: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

The Distribution Layer § The  distribu(on  layer  is  located  between  the  Access  and  Core  layers  and  helps  differen?ate  the  core  from  the  rest  of  the  network.    

§ The  purpose  of  this  layer  is  to  ensure  packets  are  routed  properly  between  subnets  and  VLANs  in  the  enterprise.    

§ Moreover,  this  layer  provides  both  aggrega(on  and  redundancy.    

   

Monday,  October  17,  16   6  

8G / 20G / 40G port-channel

WAN Link1G / 10G

WAN Link1G / 10G

1G / 10G 1G / 10G

Distribution Router (PE)

Core Router (P)

Access Router (CE)10G / 20G

port-channel

Core Layer Loc-BCore Layer Loc-A

MSO C

Access Layer

Distribution Layer

Core Layer

Page 7: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

The Access Layer

§ The  access  layer  supplies  traffic  to  the  network  and  performs  network  entry  control.    o End  users/services  access  network  resources  by  way  of  the  access  layer.    

§ Ac?ng  as  the  front  door  to  a  network,  the  access  layer  employs  access  lists  designed  to  prevent  unauthorized  users  from  gaining  entry.    

Monday,  October  17,  16   7  

8G / 20G / 40G port-channel

WAN Link1G / 10G

WAN Link1G / 10G

1G / 10G 1G / 10G

Distribution Router (PE)

Core Router (P)

Access Router (CE)10G / 20G

port-channel

Core Layer Loc-BCore Layer Loc-A

MSO C

Access Layer

Distribution Layer

Core Layer

Page 8: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Two-Tier Collapsed Design §  The  three-­‐(er  hierarchical  design  maximizes  performance,  network  availability,  and  the  ability  to  scale  the  network  design.  

§  However,  many  networks  do  not  grow  significantly  larger  over  ?me.  Therefore,  a  two-­‐(er  hierarchical  design  where  two  layers  are  collapsed  into  one  layer  is  oVen  more  prac?cal:    o  Op?on  1:  The  core  and  distribu(on  layers  are  collapsed  into  one  layer    

o  Op(on  2:  The  Distribu(on  and  Access  layers  are  collapsed  into  one  layer  

§  The  primary  mo?va?on  for  the  collapsed  core  design  is  reducing  network  cost,  while  maintaining  most  of  the  benefits  of  the  three-­‐?er  hierarchical  model.  

Monday,  October  17,  16   8  

8G / 20G / 40G port-channel

WAN Link1G / 10G

WAN Link1G / 10G

1G / 10G 1G / 10G

DRCx1 DRCx2

ORC21 ORC22

PE/CE Nodes

Core Router (P)ORC21 ORC22

ORC BORC A

Distribution/Access Layer

Core Layer

Servers Servers

Page 9: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile’s Network At a Glance

Monday,  October  17,  16   9  

Management Network: Out of Band, e.g. ssh, alarming, logging, monitoring

TMO Unified Core

C us t o mer  N et wo r k

Border Routers [ISP, IXP, Partners, ExtraNet

Backhaul Network [Cell

Sites, BTS, NodeB, eNodeB]

2 G Nodes: [BSC]

3 G Nodes:RNC

Packet Core Nodes: [SGSN/GGSN/S/GW/

PGW/DNS/NAT

LTE Nodes: MME, EPG

Voice Nodes: MGW/MSS/

VoLTE

HSS/USD

IMS/MSS/SMS, E911, ...

E n t er pr is e  N et wo r k

Billing

Web/Email Servers

LDAP/VPN Concentrators

Subscribers Provisioning/

Activation

PCI Database

HR Systems

Retail Stores

DMZ

RBO/Call Centers, NOC...

Customer ↔ Enterprise must pass

FW to Comply with Regulations

Page 10: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile LTE Service INTERNET CORENET

Voice Core – Call Server

Voice Core -MGW

HRCxxx01 HRCxxx02

HRC

3G/LTE Packet Core

MME Service Block

IMS Service BlockMADxxx01

RR xxx.xxx.x.x.x

MADxxx02RR xx.xx

x.x.x.x

T4/0/0

T4/0/1

T5/0/0

T5/0/1

T4/0/0

T4/0/1

T5/0/0

T5/0/1

T5/0/3T6/0/3

T5/0/3T6/0/3

###.###.###.###/##Po ##

.###

.###

Packet Core SB- SGSN [3G]

ISP BISP A

Node B

Legacy SGSN

MSS

MGW

USD

GGSN/S-GW, P-GW

MME

IMS

Signaling Nodes

Backhaul Network

Distribution Core

Border Routers

Core Layer

Cell Site

BTS

RNC

Metro Ethernet ProviderMetro E to BTS

SigtranUMA

JDSU Probe

JDSU Probe

(OMW)Sec64,LBG,FWG

eNode B

Layer 3

Layer 3

Layer 3

Layer 3

Layer 3

Layer 3

Laye

r 3La

yer 3

Layer 3

Laye

r 3

Layer 3

Monday,  October  17,  16   10  

Page 11: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Architecture Evolution

Phase  1:  Three  different  Core  Networks  –    logically  and  physically  separated  

§ Customer  Core  Network,  designed  for  subscribers’  traffic  § Management  Core  Network,  designed  for  Management  access  to  TMO  infrastructure  nodes  

§ Enterprise  Core  Network,  designed  for  Enterprise  applica?ons  and  services  along  with  Extranet/Partner  Networks    

§ Customer  Core  Network  and  Enterprise  Core  Network  communicates  using  a  Firewall  complex  known  as  EIT-­‐CoreNet  S?tch  (to  comply  with  IT  regula?ons,  e.g.,  PCI)  

Monday,  October  17,  16   11  

Page 12: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Architecture Evolution Phase  2:  Dual  Core  Networks  

§ Once  MPLS  Layer  3  VPN  technology  was  introduced  to  T-­‐Mobile  network,  management  traffic  was  integrated  into  Customer  Core  Network,  and  Management  Core  Network  was  decommissioned.    

 § S?ll,  Enterprise  Core  Network  was  running  due  to  the  need  to  support  ExtraNet/Partner  networks.  

 § Using  MPLS  Layer  3  VPN  to  support  Management  traffic  was  not  trivial  at  the  beginning  due  to  a  limita?on  in  exis?ng  technology  where  they  were  not  able  to  support  out  of  band  traffic  sourced  from  a  VRF.  To  overcome  this  issue  “hairpin”  workaround  was  used.  

Monday,  October  17,  16   12  

Page 13: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Architecture Evolution

Phase  3:  Unified  Core  Network  § Run  Single  Core  Network  that  can  support  all  T-­‐Mobile  Applica?on,  e.g.,  Customers,  Management,  and  Enterprise.  

 § This  Core  was  equipped  with  several  technologies  (Traffic  engineering,  Fast  Re-­‐Route  tunnel,  and  auto-­‐bw)  to  guarantee  resiliency  and  the  ability  to  accommodate  failures  without    impac?ng    signaling  and  real-­‐?me  applica?ons.  

Monday,  October  17,  16   13  

Page 14: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Technology Evolution Phase  1:  IP  Core  Based  

§ Forwarding  packets  is  done  using  tradi?onal  Layer  3  rou?ng  protocol  (mainly  OSPF  as  IGP  protocol).  

 § In  cases,  where  traffic  engineering  was  needed,  Policy  based  rou?ng  was  used  to  forward  packets  based  on  their  Source/Des?na?on  IP  addresses,  and/or  Layer  4  port  informa?on.  

 § Only  IPv4  packets  were  supported  during  this  phase.      

Monday,  October  17,  16   14  

Page 15: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Technology Evolution Phase  2:  MPLS  Core  Based  with  Layer  3  VPN  TE/FRR  Tunnel  

§ MPLS  technology  was  implemented  in  T-­‐Mobile  Network  with  the  following  applica?ons/services:  o OSPF  rou?ng  protocol  in  Core  and  Distribu?on  Layer  o LDP  as  signaling  protocol  o Layer  3  VPN  through  using  VRF  and  MP-­‐BGP  protocol    o Dynamic  Traffic  Engineering  in  the  Core  along  with  auto-­‐backup  tunnels  to  support  NHOP  and  NNHOP  Fast  Re-­‐route  during  failures  

o BFD  protocol  was  u?lized  when  possible  (rou?ng  protocols,  RSVP,  links,  etc.)  o IPv6  was  introduced  in  T-­‐Mobile  network  using  VPNv6  along  with  IPv6  VRF.  This  technology  impacted  only  Distribu?on  and  Access  layer,  however  Core  Layer  was  intact  

Monday,  October  17,  16   15  

Page 16: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Technology Evolution Phase  3:  MPLS  Core  Based  with  TE/FRR  Tunnel  and  Auto-­‐BW  

§ Introduce  the  concept  of  Auto-­‐BW  in  T-­‐Mobile  Core  Network:  o Auto-­‐Bandwidth:  It  runs  directly  on  the  router;  it  can  respond  to  changing  traffic  condi?ons  more  rapidly,  with  less  overhead  

o Every  sta?s?cs  interval,  bandwidth  over  an  LSP  is  measured    o Every  adjusted  interval,  the  largest  sample  from  the  process  above  is  used  to  calculate  the  new  LSP  bandwidth  (e.g.,  15  samples  and  adjust  every  3600  seconds)  

o If  the  change  is  larger  than  a  user-­‐configured  minimum  threshold,  the  new  bandwidth  value  is  re-­‐assigned  across  RSVP.    

o Ideally  using  a  make-­‐before-­‐break  configura?on    

Monday,  October  17,  16   16  

Page 17: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Routing Protocol Evolution

Phase  1:  OSPF  as  IGP  and  BGP  as  EGP:  § OSPF  was  the  main  IGP  protocol  in  T-­‐Mobile  Network  

o Mul?-­‐areas  were  first  used,  however  due  to  some  code  issues,  we  moved  a  lot  of  our  sites  to  area  0  

o If  needed,  sta?c  routes  were  also  used  to  accommodate  some  requirements  and  they  were  injected  in  OSPF  process  

o BGP  was  mainly  used  in  our  Border  routers  to  exchange  rou?ng  updates  with  ISP    

Monday,  October  17,  16   17  

Page 18: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –Routing Protocol Evolution

Phase  2:  OSPF  as  Core  protocol  and  BGP  everywhere  else  § A  New  design  was  implemented  in  our  Core  with  the  following  enhancements:  o OSPF  Backbone  area  will  be  used  between  T-­‐Mobile  Core  and  Distribu?on  layer  only    o All  Rou?ng  protocols  between  Distribu?on  Layer  and  Access  layer  is  based  on  BGP  protocol  (eBGP)  

o In  Typical  cases,  Distribu?on  Layer  nodes  will  inject  Default  route  only  to  Access  Layer  nodes    

o If  Access  layer  nodes  need  to  receive  routes  from  different  T-­‐Mobile  Rou?ng  contexts  (e.g.,  VRF),  Lite  VPN  will  be  implemented  

o In  some  services,  access  layers  can  run  internal  OSPF  process  to  exchange  local  updates  

Monday,  October  17,  16   18  

Page 19: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –BGP RR Evolution

Phase  1:  Using  BGP  Route  Reflectors  in  all  Core  LocaRons  § Since  BGP  RR  Servers  un?l  recently,  will  adver?se  best  updates  from  their  perspec?ve  and  not  based  on  RR  clients,  T-­‐Mobile  decides  to  implement  BGP  RR  servers  in  all  Core  Loca?ons    

 § Each  node  in  T-­‐Mobile  network  will  have  two  BGP  peers  with  RR  servers  in  two  different  markets    

Monday,  October  17,  16   19  

Page 20: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

T-Mobile Design Model Evolution –BGP RR Evolution

Phase  2:  Using  BGP  Route  Reflectors  in  Four  Core  LocaRons  only  § Introduced  the  concept  of  Add  Path  feature  to  BGP  process  where  RR  Servers  can  adver?se  not  only  the  best  update  but  up  to  all  updates  to  BGP  RR  Clients  

   § As  a  result,  T-­‐Mobile  decided  to  reduce  number  of  BGP  RR  servers  to  four  Core  loca?ons  only    

   

Monday,  October  17,  16   20  

Page 21: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Lessons Learned and Recommendation § Design  standards  must  be  enforced  everywhere;  devia?ons  from  standards  (due  to  some  corner  cases  and  applica?on  needs)  must  be  documented  and  approved  before  deployment.  

§ Use  Bundles  (aka  Port  channels)  from  day  1:  it  is  much  easier  to  add  more  links  to  an  exis?ng  bundle  than  to  transi?on  a  produc?on  link  to  a  bundle.  

§ Validate  your  design  by  running  failover  test  in  services  and  infrastructure  nodes.  This  test  should  be  part  of  any  service/node  acceptance  in  your  network.  

§ Evaluate  WAN  circuits  you  are  using  to  connect  Core  Nodes  and/or  Core/Distribu?on  nodes  and  make  sure  they  meet  diversity  requirements.  

 

Monday,  October  17,  16   21  

Page 22: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Lessons Learned and Recommendation § When  Bundles  are  used  (aka  port  channels)  use  minimum  links  feature  properly  to  decide  when  Bundle  will  go  down  (e.g.,  min-­‐links  =  #  of  links,  or  min-­‐links  =  #  of  links  –x)  o For  LAN  links  with  N+1  redundancy,  Set  minimum  links  to  #  of  links  o For  WAN  links,  set  min  links  based  on  capacity  and  diversity  level  (avoid  site  isola?on)  

§ Architecture/Design  reference  documents  must  include  proper  data  flows  and  opera?on  support  sec?ons.  

§ Your  design  should  avoid  using  propriety  features  (e.g.,  vPC)  to  “…keep  your  op?ons  open…”  

 

 

Monday,  October  17,  16   22  

Page 23: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Lessons Learned and Recommendation § When  choosing  what  vendor/plarorm  to  use  and  where,  give  this  process  a  lot  of  thoughts,  examples  are:  o Understands  your  need:  Technology  should  advance  the  business    o Engage  right  people:  e.g.,  Engineers,  finance,  legal,  security  o Establish  your  requirements:  Architecture,  maturity,  cost,  serviceability,  reliability  of  the  product,  support,  and  company  stability  

o Focus  on  the  total  cost  of  ownership,  not  just  ini?al  cost  o Keep  your  op?ons  open:  Nego?ate,  deal  with  mul?ple  vendors  simultaneously  o Be  a  good  customer.  The  win/win  approach  is  at  the  heart  of  all  good  vendor  agreements.  "Both  sides  must  benefit  from  the  rela?onship”  

o An?cipate  the  future  o Don't  let  technology  turn  your  head  

 

 

Monday,  October  17,  16   23  

Page 24: Network Design Evolution -- (T-Mobile USA Case Study) · PDF fileNetwork Design Evolution -- (T-Mobile USA Case Study) ... MGW/MSS/ VoLTE ... MGW USD GGSN/S-GW, P-GW MME IMS Signaling

Q & A

Monday,  October  17,  16   24