nanomechanical characterization of cdse qd-polymer nanocomposites

50
1 Eddie McCumiskey Master’s Thesis Presentation 23 January 2008 Virginia Commonwealth University

Upload: curtistaylor80

Post on 02-Jun-2015

4.351 views

Category:

Technology


1 download

TRANSCRIPT

Page 1: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

1

Eddie McCumiskeyMaster’s Thesis Presentation23 January 2008Virginia Commonwealth University

Page 2: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

2

1. Motivation2. Problem Statement3. Challenges4. Approach5. Experimental Details6. Results7. Conclusion8. Acknowledgements9. Questions

2

Page 3: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

3

Low-cost, light-weight, rollable solar cells

Low-power, high-resolution displays Flexible circuitry

3

Sony’s 3-mm thick TVwww.sonystyle.com/oled

http://www.solardirect.com/pv/consumer-ready/power-film.htm#fea

Page 4: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

4

Nanostructure-polymers hybrids exhibit: Increased Efficiency Tunable Band Gap Tunable Electrical Properties

4

http://www.nn-labs.com/CdSe-orderform.htm

Commercial CdSe Quantum Dots

Page 5: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

5

In order for QD-polymer hybrids to be commercially viable, their reliability

and durability must be known.

5

Mechanical Characterization

Page 6: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

6

Polymer-Clay Nanocomposites invented by Toyota (1985)Greatly enhanced strength, elastic modulus

Large Interaction between NPs and filler material due to high interfacial area

CNT-polymer nanocomposites: Increased hardness, elasticmodulus

6

Nanocomposite Mechanical Properties

Page 7: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

7

Theoretically, QDs should be stiffer than bulk Lattice contraction due to high surface energy

Nanoscale structures shown to impede dislocation formation

Nanoindentation of QD films reveals:* Polymeric behavior of QDs with ligands attached Granular behavior of QD films without ligands

7

*D. Lee et al., Phys. Rev. Lett. 98.2 (2007)

Page 8: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

8

Large gap in research on mechanical properties of QD-polymer nanocomposite films

Challenges Mechanical characterization of thin films (<100 nm) Interference from the underlying substrate Obtaining uniform QD Dispersion

8

Page 9: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

9

glass substrate

Applied Load

QDs in a polymer matrix

Conceptual Design of ExperimentExample from the literature: organic solar cell made with blended CdSe nanoparticles and OC1C10-PPV*

*Figure from: B. Sun, E. Marx, and N. C. Greenham, “Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers.” Nano Lett. 3.7 (2003), pp. 691-963.

blended nanoparticle-

polymer thin film

Nanoindenter tip

9

Characterizing the Mechanical Properties of Nanocomposite Films

Page 10: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

10

I. Prepare QD-Polymer Solutions

II. Deposit Films onto Glass

III. Characterize Film Uniformity

IV. Mechanical Characterization

Nanoindentation

TEMAFM

Stirring Sonicating

Spin-coating

10

Page 11: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

11

CdSe QDs NN-Labs # CSE 620-100 Capped with ODA Ligand Dispersed in Toluene (5 mg/mL) Abs 620 nm; PL ~630 nm

CdSe

ODA Ligands

5.6 nm

CdSe QDs

Source: http://www.nn-labs.com/CdSe-orderform.htm

11

Page 12: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

12

MEH-PPV* Polymer American Dye Source # ADS200RE Abs 490 nm; PL ~585 nm

MEH-PPV Structure

Dry MEH-PPV

*poly[2-methoxy-5-2(2΄-ethylhexyloxy-phenylenevinylene)]

Source: http://www.adsdyes.com/products/pdf/homopolymers/ADS200RE_DATA.pdf

12

Page 13: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

13

Fabrication and Characterization

of QD-Polymer Films

13

Page 14: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

14

1. Dissolve MEH-PPV in TolueneA. Weigh MEH-PPVB. Add toluene (5 mg MEH-PPV / mL toluene)C. Stir ~12 hrs at 300 RPM at room temp.

2. Mix MEH-PPV & QD SolutionsA. Add equal volume of QD solution to make 50

wt% QDs in MEH-PPV

B. Stir ~12 hrs at 300 RPM at room temp.

+

MEH-PPV in toluene

QDs in toluene

MEH-PPV + QDs in toluene

14

Page 15: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

15

A. Ultrasonicate Combined Solutions for 30 minsB. Filter through a 1.0-µm PTFE filter (optional) C. Spin-Coat @ 1,000-2,000 RPM, 30 secondsD. Anneal on hot plate @ 120 °C, 10 mins

A. SonicateC. Deposit via Spin-

Coating

D. Anneal

Filtering

B.

15

Page 16: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

16

Unfiltered Filtered

Aggregation

Aggregation observed at the micrometer scale

Filtering removes manylarge aggregates

16

20 μm

200 μm200 μm

Page 17: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

17

Dispersion is a common problem through the literature

Ligands may lead to aggregationLigands also unfavorable for

devices*

* N. C. Greenham, X. Peng, and A. P. Alivisatos, “Charge Transport in Conjugated-Polymer/ Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity.” Phys Rev. B 54.24 (1996), pp. 17628-17637.

ligand

17

Page 18: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

18

Ligand is an insulator

Removing ligands: enhances charge

separation & transport;

quenches PL more realistic for

commercial applications

QDs w/ Ligands

QDs w/o Ligands

LIGAND

Need to remove the ligands

18

Page 19: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

19

QDs precipitated in pyridine 1 mL QD solution 1 mL pyridine ~10 mL hexanes

Retrieved via centrifugation 9,000+ RPM 30 mins

Change to binary solvent: 8% pyridine, 92% choloroform**** Modified method of Sun et al. ** suggested by Dr. David Goorskey

** B. Sun, E. Marx, and N. C. Greenham, “Photovoltaic Devices Using Blends of Branched CdSe Nanoparticles and Conjugated Polymers.” Nano Lett. 3.7 (2003), pp. 691-963.*** W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whitting, and P. Alivisatos, “Controlling the Morphology of Nanocrystal-Polymer Composites for Solar Cells.” Adv. Funct. Mater. 13.1 (2003), pp. 73-79.

2X

Centrifuge

19

Page 20: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

20

Lig

and

re

mo

ved

Lig

and

atta

che

d

Unfiltered Filtered

Improved dispersion after ligand-removal process Preliminary film preparation is complete All solutions & films henceforth made w/ ligand-removal procedures

20

Page 21: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

21

6 Films to characterize:

wt% QDs

vol% QDs*

0% 0%

50% 15.0%

75% 34.6%

90% 61.4%

95% 77.0%

100%

100%

* Vol% estimated using densities of 1 g/cm3 for MEH-PPV* (Mirzov 2004) and 5.664 g/cm3 for CdSe.** O.Mirzov et al. “Direct Exciton Quenching in Single Molecules of MEH-PPV at 77 K.” Chem. Phys. Lett. 386.4-6 (2004), pp. 286-290.*** S. Adachi, Handbook on Physical Properties of Semiconductors. Volume 3: “II-VI Compounds.” Springer-Verlag (2004).

21

Page 22: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

22

Tapping-mode AFM Resonant Freq ~260 kHz

Veeco Multimode AFM

LASER alignment

Piezo tubescanner

sample

10µm

22

Page 23: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

23

wt% QDs:

100%

0%

50%

75%

90%

95%

5 μm 5 μm

23

Ra = 3.4

Ra = 20.3

Ra = 21.0

Ra = 5.7

Ra = 11.7

Ra = 2.4Ra Average Roughness (nm)

Page 24: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

24

Drop-cast dilute (1 mg/mL) solutionsonto Cu mesh, thin-carbon film TEM grids 50 wt% QDs in MEH-PPV 90 wt% QDs in MEH-PPV

Drop-cast Original QD solution as well Dry in N2 dry box ~ 24 hrs

24

Jeol 2010F TEMTEM grid

Drop-casting

Page 25: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

25

QDs in toluene (as-received)

90 wt% QDs in MEH-PPV

50 wt% QDs in MEH-PPV

20 nm 20 nm 20 nm

5 nm 5 nm 5 nm

3-D Architecture

No QDs

Noise from amorphous

polymer

~5-6 nm25

QD

Page 26: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

26

MECHANICALCHARACTERIZATION

26

Page 27: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

27

Load

, P

Displacement, h

dPS

dh

ch

hold segment

loading segmen

tunloadin

g segmen

t

fh maxh

maxPhf hmaxhc

aspecimen

Play

h

indenter tip

27

hc

cP

HA h

2r c

dPS E A h

dh

hardnessstiffness

elastic modulus (reduced)

cross-sectional area

Page 28: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

28

Isolating Film Properties

Indenter Tip Bluntness

Viscoelasticity

Surface Roughness

28

Page 29: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

29

For thin films, substrate properties may interfere w/ measurements

Analogous to two springs in series Minimize with shallow Indentations

(<10 % film thickness)

29

*A. C. Fischer-Cripps, Nanoindentaion. Springer Mechanical Engineering Series. New York (2002).

Page 30: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

30

Time-Dependence on Deformation Leads to erroneous values of E, hc

Minimizing Creep Error: Long Hold* Rapid Unload**

Correcting throughComputation L

oad

, P

Displacement, h

“Nose”

dh

dP

ch

long hold

30

*Briscoe 1998**Yang 2004

Page 31: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

31

hc

31

Indenter Tip Geometry

-Images from: A. C. Fischer-Cripps, Nanoindentaion. Springer Mech. Engineering Series (2002).*Oliver, W. C. and G. M. Pharr. J. Mater. Res. 7.6 (1992), pp. 1564-1583.

θ = 65.3º2( ) 24.5c cA h h

Berkovich Indenter Tip

<Rounded tip>

Ideally:

In actuality: 2 1/ 2 1/ 4 1/8 1/160 1 2 3 4 5( ) ...c c c c c c cA h C h C h C h C h C h C h

Rounded at end

Page 32: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

32

100 Indentations on Fused Quartz: ~5-170 nm Calibrate using known values of

(Er,H) = (69.6 GPa, 9.25 GPa)

32

2 1/2 1/424.5 1204.8 6858.3 7914.4c cc cA h h h h h

Overlapping Load-Displacement Curves

Determine Area Function from Measured Er’s

scattered under 20 nm

Check area function

Er = 69.72 ± 3.26 GPA

H = 8.52 ± 0.75 GPA

Page 33: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

3333

Nanoindenter Setup: Hysitron Triboindenter

Page 34: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

34

Determining the Film Thickness Compare large (hundreds of nm-deep) indentations in film vs.

clean substrate

92 nm

224 nm

Page 35: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

35

Film Thicknesses

wt% QDs 0% 50% 75% 90% 95% 100%

Film Thickness (nm) 201.62 85.61 162.62 85.15 156.42 131.36

Standard Deviation (nm) 19.33 11.67 17.11 4.48 6.98 11.35

Page 36: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

3636

Nanoindentation Parameters

Load-Control Test Cycle

5 indentations each at 8 maximum loads, 3 rates Load-control feedback Drift correction enabled Diamond Berkovich indenter with 50-nm tip radius

Page 37: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

37

Add film thickness, roughness

Page 38: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

38

75 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150Contact Depth (nm)

Hard

ness

(GPa

)

38

Indentation Size Effect

0 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150Contact Depth (nm)

Hard

ness

(GPa

)

50 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150Contact Depth (nm)

Hard

ness

(GPa

)

90 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150Contact Depth (nm)

Har

dnes

s (G

Pa)

95 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150Contact Depth (nm)

Hard

ness

(GPa

)

100 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150

Contact Depth (nm)H

ardn

ess

(GPa

)

Page 39: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

39

Choose an appropriate range: > 10nm < ~10% thickness

39

Red

uced

Mod

ulus

(G

Pa)

Contact Depth (nm)

Page 40: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

40

Modulus vs. QD Loading

Modulus increases by a factor of 3Linear when plotted vs. vol%

Red

uced

Mod

ulus

(G

Pa)

Wt% QDs in MEH-PPV Vol% QDs in MEH-PPV

Page 41: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

4141

75 wt% QDs

00.5

11.5

22.5

33.5

4

0 50 100 150Contact Depth (nm)

Hard

ness

(GPa

)

Choose an appropriate range: > 50nm

Page 42: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

42

Hardness vs. QD Loading

Hardness increases by a factor of 6Linear when plotted vs. vol% QDs

Har

dnes

s (G

Pa)

Wt% QDs in MEH-PPV Vol% QDs in MEH-PPV

Page 43: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

4343

Sample0 wt% QDs(pure MEH-PPV)

100 μN/s

10 μN/s

1 μN/s

1 μN/s

Page 44: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

4444

100 µN/s

1 µN/s

Sample0 wt% QDs(pure MEH-PPV)

Page 45: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

45

Creep During the Hold Segment for Different Loading Rates0 wt% QDs

Time (s)

Cre

ep (

nm)

Page 46: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

4646

0 wt%

50 wt%

75 wt%

95 wt%

100 wt%

90 wt%

Creep During the Hold Segment for Different QD Loading

Page 47: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

47

Incorporation of QDs: Increases elastic modulus (up to 3x) Increases hardness (up to 6x) Reduces viscoelasticity

Implications: Important for assessing the durability and

reliability of QD-polymer hybrid devices Less creep more stable structure over

time

47

Page 48: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

48

Special thanks to: Dr. Curtis Taylor (Committee Chair) Dr. Jim McLeskey (Committee Member) Dr. Samy El-Shall (Committee Member) Dr. N. Chandrasekhar VCU Nanomanufacturing Lab

▪ Dr. Tarek Trad, Yezuo Wang, Dongshan Yu, Jon Kodadek, Nikolai Eroshenko

IMRE Staff▪ Dr. Saravanan Shanmugavel, Shen Lu, Dr.

Dominik Janczewski, Luong Trung Dung, Kajen Rasanayagam

Dr. David Goorskey48

Page 49: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

4949

Page 50: Nanomechanical Characterization of CdSe QD-Polymer Nanocomposites

50

Agilent PicoPlus System User’s Manual v1.2, “Aligning the Photodiode Detector.” pp. 1-18

Used with permission from http://barrett-group.mcgill.ca/yager/art.html

http://www.nanoscience.com/products/AFM_tips.html

50