nano pigment

of 39 /39
Yun Shao, Ph.D. Kobo Products, Inc. New Jersey, USA Application and Dispersion of Nano Pigments for Color Cosmetics

Author: mitsubisa

Post on 20-Jan-2016

140 views

Category:

Documents


1 download

Embed Size (px)

DESCRIPTION

nano pigment

TRANSCRIPT

  • Yun Shao, Ph.D.

    Kobo Products, Inc.New Jersey, USA

    Application and Dispersionof

    Nano Pigments for Color Cosmetics

  • Outline

    1. Introduction of nano pigments

    2. Comparison of color strength

    3. Dispersion and color development of nano pigments

    4. UV protection by nano pigments

    5. Color development of organic lakes

    6. Conclusions

  • 1. Introduction

    Color General Formula Shape Size (m)Red Fe2O3 Spheroid 0. 2 ~ 0.5Yellow Fe2O3 . H2O Acicular 0.1 ~ 0.25 x 0.6 ~ 0.8Black FeO . Fe2O3 Spheroid 0. 2 ~ 0.5Tan ZnO . Fe2O3; MgO . Fe2O3 Acicular 0.2 ~ 0.3 x 1 ~ 1.5Brown Blend of R,Y and B Mixed 0.2 0.5

    Common Iron oxides

  • 1. Introduction

    Color General Formula Shape Size (m)Red Fe2O3 Spheroid 0. 2 ~ 0.5Yellow Fe2O3 . H2O Acicular 0.1 ~ 0.25 x 0.6 ~ 0.8Black FeO . Fe2O3 Spheroid 0. 2 ~ 0.5Tan ZnO . Fe2O3; MgO . Fe2O3 Acicular 0.2 ~ 0.3 x 1 ~ 1.5Brown Blend of R,Y and B Mixed 0.2 0.5

    Common Iron oxides

    Pigmentary Titanium Dioxide

    Structure: Rutile or AnataseFormula: TiO2Size: 0.15 - 0.25 m

  • Higher opacity

    Scattering

    White light White light

    1. TiO2

    Generation of color

    Refractive Index:2.76 (R), 2.52 (A)

    White color (or opacity) is generated by scattering light.

    Maximum scattering occurs when the particle size is around 0.2 m.When size gets smaller, it will loose opacity and get transparent

  • RedRedWhite light

    Color Stronger & Deeper

    ScatteringAbsorption

    White light

    2. Iron Oxides

    Color is generated by both Scattering and Absorption Absorption will increases as the size decreases Maximum scattering occurs when size is around 0.2 m

    R.I.: 2.90 (R), 2.26 (Y), 2.42 (B)

    Generation of color

  • Drawbacks of pigmentary grades

    1. High refractive index leads to strong scattering and high opacitywhich results in a dull appearance

    2. Large particle size often generates unpleasant skin feel

    3. Size reduction can improve skin feel and absorption, but increasethe opacity in most cases.

    4. Primary particle size now comes into play

  • Transparent pigments

  • Transparent pigments

    1. Transparent oxides

    Particle size: 100 nm in length, 10 - 20 nm in widthApplication: automotive paints

    wood finishesartist coloursindustrial coatingssome plastic applicationscosmetics

  • Transparent pigments

    1. Transparent oxides

    Particle size: 100 nm in length, 10 - 20 nm in widthApplication: automotive paints

    wood finishesartist coloursindustrial coatingssome plastic applicationscosmetics

    2. Transparent TiO2

    Particle size: 10 - 60 nm, larger size for some gradesApplication: mainly for use as sunscreens

  • Common nano iron oxides

    Primary Particle Aggregate Agglomerate

    Product Supplier Primary particlesize (m)Mean Particle

    Size (m)Trans-oxide Red Cookson Matthey 0.02 x 0.1 54.9Tarox TRR -100 Sakai 0.02 x 0.1 72.5Ferroxide Red Rockwood 0.08 0.1 ---

    Trans-oxideYellow Cookson Matthey 0.02 x 0.1 56.9Tarox TRY-100 Sakai 0.02 x 0.1 72.7

    Trans-oxide Black Cookson Matthey ~ 0.01 ---Black NF Kobo 0.2 2.1

    Ferroxide Orange Rockwood 0.07 ----

  • New Grade of nano iron oxide

    FRO-3-LP ConventionalTransparent Oxide Pigmentary Oxide

    Particle shape Spherical Acicular IrregularParticle size (nm) 30 20 x 100 700Oil Absorption(cc/100g) 14 48 12

    Specific SurfaceArea (m2/g) 37 120 3

    Less aggregation and easy to disperse

    SEM Pictures of Iron Oxides (from Titan Kogyo)

  • Nano TiO2 for color cosmetics

    100nm- High UV-A protection- Low oxidation/photocatalytic activity

    - Moderate opacity (to be discussed)

    Crystal form Rutile

    TiO2 (%) 95-99

    Surface Treatment Al(OH)3

    Specific Surface Area(m2/g) 23-27

    Particle size (nm) 60

    KQ-1 from ISK

  • Nano TiO2 for color cosmetics

    Crystal form Rutile

    TiO2 (%) 94

    Surface Treatment Al(OH)3

    Specific Surface Area(m2/g) 130

    Particle size (nm) 150

    ST-490 from Titan Kogyo

    - UV-A protection- Fan shape- Easy to disperse

  • 2. Comparison of color strength

    Color Analysis (CIE Lab) of Tint Strength(std: C33-128 Cosmetic Russet; C33-8073 Cosmetic Yellow)

  • 2. Comparison of color strength

    Color Analysis (CIE Lab) of Tint Strength(std: C33-128 Cosmetic Russet; C33-8073 Cosmetic Yellow)

    -15

    -10

    -5

    0

    5

    10

    15

    L a b C H E

    RedYellow

    Color Strength vs. StdTrans Red 49.0%

    Trans Yellow 83.5%

  • 2. Comparison of color strength

    Color Analysis (CIE Lab) of Tint Strength(std: C33-128 Cosmetic Russet; C33-8073 Cosmetic Yellow)

    -15

    -10

    -5

    0

    5

    10

    15

    L a b C H E

    RedYellow

    Color Strength vs. StdTrans Red 49.0%

    Trans Yellow 83.5%

    -10

    -5

    0

    5

    10

    15

    L a b C H E

    Red

    Yellow

    Color Strength vs. StdTRR-100 56.9%TRY-100 84.6%

  • 0510

    15

    20

    25

    30

    35

    L a b

    Premix 1 2 3

    No effect of additional grindingcan be observedPremix 1st 2nd 3rd

    19 0.54 0.53 0.51 m

    1. 75% ITT treated red iron oxide in cyclomethicone2. Dispersant : KP-575

    Iron oxide dispersion (CMKP75R) -effect of size

    Color Analysis (CIE Lab) of Masstone

  • More grinding makes color

    Darker Bluer

    Dried Drawdown

    0

    10

    20

    30

    40

    L a b

    Premix 1 2 3

    Premix 1st 2nd 3rd19 0.54 0.53 0.51 m

    CMKP75R Dispersion : Masstone

  • 020

    40

    60

    L a b

    Premix 1st 2nd

    Similar to dried masstone

    More grinding results inhigher color strength

    Iron oxide : TiO2 = 15 :85

    Premix 1st 2nd 3rd

    CMKP75R : Tint strength comparison

    Color Analysis of Tint Strength

  • 95

    96

    97

    98

    99

    Premix 1st 2nd0

    0.2

    0.4

    0.6

    0.8

    Size

    ( mm

    )

    L Size

    More grinding results inslightly lower brightness

    Crowding effect

    Dispersant: Abil EM 97Solids: 70%

    Premix 1st 2nd

    Silane treated TiO2 dispersion : Effect of Size

    Color and Size Analysis

  • L45

    47

    49

    51

    53

    Premix 1st 2nd

    -10

    -8

    -6

    -4

    -2

    0a b

    Premix 1st 2nd

    More grinding Higher opacity(Opposite to masstone)Bluer Color

    TiO2 : Black iron oxide = 85 :15

    Premix 1st 2nd

    Tint strength comparison : silane treated TiO2

  • General mechanism : Shear force Impact action

    Formulation Considerations : Primary particle size Surface treatment Carrier Dispersant

    3. Dispersion of the pigment and color development

  • Chunky paste

    Chunky paste

    Viscous slurry

    Fluid

    w/o

    dis p

    ersa

    ntw

    /disp

    ers a

    n t

    A B

    C D

    15nm TiO2 : 45% *Treatment : Methicone (B & D)Vehicle : CyclopentasiloxaneDispersant : 10 % KF-6017 (C & D)

    * note : in mix A, only 33% TiO2was used (maximum amountpossible)

    Untreated Treated

    Surface Treatment -- Pre-Wetting of the Pigment

    Easy handlingBetter dispersion

  • Common surface treatments

    Chemical SurfacepropertyCompatible

    vehicleMetal Soap (AHSA)Isopropyl Titanium

    TriisostearateLipophilic EsterOil

    Organiccoating

    MethiconeDimethicone

    Triethoxy CaprylylsilaneHydrophobic SiliconesEster

    C9-15 Fluoroalcohol phosphate Lipophobic andHydrophobic Silicones

    Simethicone AmphotericWater

    OilSilicones

    TriethanolaminePolyol Hydrophilic Water

    Inorganiccoating

    SilicaAlumina

    Zirconium oxideSodium hexametaphosphate

    Hydrophilic Water

  • Effect of size on surface treatment and dispersibility

    Nano pigment: Small primary particle size, large surface area High surface energy for more severe aggregation and reactivity

    Surface treatment: Needs more coatingDispersion: Low pigment load and hard to grind

    Pigment Surface Area % ofCoatingSolids% inDC 5225C

    C33-218 Cosmetic Russet < 10 m2/g 1 2 70Trans-oxide Red ~ 80 m2/g 10 30

  • Nano iron oxide in C12-15 alkyl benzoate

    Iron Red Iron YellowTN45TOR T N70R TN45TOY TN55Y

    Raw Pigment Transoxide Pigmentary Transoxide PigmentarySurface treatment TCS ITT TCS ITTSolids,% 45 70 45 70Viscosity, cPs 178,400 247,000 210,000 85,000Dispersion size (nm) 112 290 102 350

    TCS: triethoxy carprylylsilane; ITT: isopropyl titanium dioxide

    TN45TOR TN70R TN45TOY TN55Y

  • -10

    -5

    0

    5

    10

    15

    20

    L a b C H E

    TN45TORTN45TOY

    Nano iron oxides in ester ---tint strength

    TN45TOY TN55Y

    TN45TOR TN70R

    TN45TOY TN55Y

    Color Analysis (CIE Lab) of Tint Strength

    Color Strength vs. StdTrans Red 69.3%

    Trans Yellow 120.2%

  • Dispersion of 100 nm TiO2

    Dispersion PPS(nm)Surface

    treatmentPS

    (nm) %

    INH65K9 100 ITT/w s 190 65

    IN80C 170 ITT 263 80

    Dispersion inIsononyl Isononanoate

    INH65K9 IN80C-6

    -4

    -2

    0

    2

    4

    6

    L a b C H E

    Color Analysis of Tint Strength

    TiO2 : Iron black = 85 : 15

    Result: Less opaque, bluer

  • Dispersion inCyclomethicone

    CM3K50KQM CM3FA70STC

    Dispersion PPS(nm)Surface

    treatmentPS

    (nm) %

    CM3K50KQM 60 MS 185 50

    CM3FA70STC 170 MS 280 70

    Dispersion of 60 nm TiO2

    -8

    -6

    -4

    -2

    0

    2

    4

    6

    8

    L a b C H E

    Color Analysis of Tint Strength

    TiO2 : Iron black = 85 : 15

    Result: much less opaque and more bluer

  • 4. UV Protection from nano pigments

    0

    20

    40

    60

    80

    100

    280 320 360 400 440 480 520 560 600 640 680Wavelength (nm)

    T%

    0.001%

    UV Visible

    Nano YellowNano redPig. yellowPig. red

    UV/Vis transmittance curves of nano iron oxides

  • UV/Vis transmittance curves - TiO2 Dispersions

    0

    20

    40

    60

    80

    100

    280 320 360 400 440 480 520 560 600 640 680

    Wavelength (nm)

    T%

    UV Visible

    PPS:

    60 nm

    100 nm

    180 nm

  • Premix Milled

    5. Color development of organic lakes

    Raw Pigment Red 6 Ba LakeSurface treatment ITTSolids,% 30Dispersion size (nm) 386

    Red 6 lake in synthetic wax(SW30R6B) Formula

    * Size of powder: 3 - 6 microns.

    Gloss and feel are much improved as particle size getsmilled down.

  • -2

    0

    2

    4

    6

    8

    DL* Da* Db* DC DH DE

    Masstone

    -4

    -2

    0

    2

    4

    6

    8

    DL* Da* Db* DC DH DE

    Tint Strength

    Color development of lakes - Dispersion vs. Powder

    Color property --Red 6 Ba lake dispersion vs. powder

    Color strength is greatly increased when the particle sizeis reduced to submicron

  • Conclusions:

  • Conclusions:

    1. Nano pigments have their unique properties and requiremore considerations in:

    Surface treatment Color development

  • Conclusions:

    1. Nano pigments have their unique properties and requiremore considerations in:

    Surface treatment Color development

    2. Nano pigments can provide more UVA protection and helpboost SPF.

  • Conclusions:

    1. Nano pigments have their unique properties and requiremore considerations in:

    Surface treatment Color development

    2. Nano pigments can provide more UVA protection and helpboost SPF.

    3. Milling organic lakes is important for their color development.

  • Conclusions:

    1. Nano pigments have their unique properties and requiremore considerations in:

    Surface treatment Color development

    2. Nano pigments can provide more UVA protection and helpboost SPF.

    3. Milling organic lakes is important for their color development.

    4. Although nano pigments have been available on marketplacefor many years, use in cosmetics still needs to be explored.