multivariable control systemsariable lec5

73
Multivariable Control Multivariable Control Systems Systems Systems Systems Ali Karimpour Assistant Professor Ferdowsi University of Mashhad Ferdowsi University of Mashhad

Upload: ibrahem-hussein

Post on 14-Dec-2015

288 views

Category:

Documents


5 download

DESCRIPTION

Multivariable ControlSystemsAli KarimpourAssistant ProfessorFerdowsi University of Mashhad

TRANSCRIPT

Page 1: Multivariable Control Systemsariable Lec5

Multivariable Control Multivariable Control SystemsSystemsSystemsSystems

Ali KarimpourpAssistant Professor

Ferdowsi University of MashhadFerdowsi University of Mashhad

Page 2: Multivariable Control Systemsariable Lec5

Chapter 5Chapter 5Controllability, Observability and Realization

Topics to be covered include:

• Controllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability• Output Controllability and Functional Controllability

• Canonical Decomposition of Dynamical Equation

• Realization of Proper Rational Transfer Function Matrices

• Irreducible RealizationsIrreducible realization of proper rational transfer functions

Irreducible Realization of Proper Rational Transfer Function Vectors

Ali Karimpour June 2012

2Irreducible Realization of Proper Rational Matrices

Page 3: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Canonical Decomposition of Dynamical Equation

• Realization of Proper Rational Transfer Function Matrices

• Irreducible RealizationsIrreducible realization of proper rational transfer functions

Irreducible Realization of Proper Rational Transfer Function Vectors

Irreducible Realization of Proper Rational Matrices

Ali Karimpour June 2012

3

Page 4: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability and Observability of Linear Dynamical Equations

Definition 5-1

D fi iti 5 2Definition 5-2

Ali Karimpour June 2012

4

Page 5: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability and Observability of Linear Dynamical Equations

Theorem 5-1

Ali Karimpour June 2012

5

Page 6: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability and Observability of Linear Dynamical Equations

[ ]nn bAbAAbAbbbS 11 −−= [ ]mmm bAbAAbAbbbS 111 ............=

Ali Karimpour June 2012

6

Page 7: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability and Observability of Linear Dynamical Equations

Theorem 5-2

Ali Karimpour June 2012

7

Page 8: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Canonical Decomposition of Dynamical Equation

• Realization of Proper Rational Transfer Function Matrices

• Irreducible RealizationsIrreducible realization of proper rational transfer functions

Irreducible Realization of Proper Rational Transfer Function Vectors

Irreducible Realization of Proper Rational Matrices

Ali Karimpour June 2012

8

Page 9: Multivariable Control Systemsariable Lec5

Chapter 5

Output Controllability

Definition 5-3 Output Controllability

Ali Karimpour June 2012

9

Page 10: Multivariable Control Systemsariable Lec5

Chapter 5

Functional Controllability

Definition 5-4 Functional controllability.

An m-input l-output system G(s) is functionally controllable if thenormal rank of G(s), denoted r, is equal to the number of outputs; that is, if G(s) has full row rank. A plant is functionally uncontrollable if r < l.if G(s) has full row rank. A plant is functionally uncontrollable if r l.

Remark 1: The minimal requirement for functional controllability is

that we have at least many inputs as outputs i e m ≥ lthat we have at least many inputs as outputs, i.e. m ≥ l

Remark 2: A plant is functionally uncontrollable if and only if

ωωσ ∀= 0))(( jG ωωσ ∀= ,0))(( jGl

Remark 3: For SISO plants just G(s)=0 is functionally uncontrollable.

Ali Karimpour June 2012

10

Remark 4: A MIMO plant is functionally uncontrollable if the gain is identically zero in some output direction at all frequencies.

Page 11: Multivariable Control Systemsariable Lec5

Chapter 5

Functional Controllability

⎤⎡ 21

Consider following transfer function:

⎥⎥⎥

⎢⎢⎢

⎡++=

11

11

32

11

)( sssG It is Functionally controllable

⎦⎣ ++ 11 ss

Its state space representation is:

)(2123

)(00410030

)( tutxtx⎥⎥⎥⎤

⎢⎢⎢⎡

+⎥⎥⎥⎤

⎢⎢⎢⎡

−−

=&

0010

)(

1111

)(

21001000

)( tutxtx

⎤⎡

⎥⎥

⎦⎢⎢

+

⎥⎥

⎦⎢⎢

⎣ −−

It is not state controllable

Ali Karimpour June 2012

11)(

10000010

)( txty ⎥⎦

⎤⎢⎣

⎡=

Page 12: Multivariable Control Systemsariable Lec5

Chapter 5

Functional Controllability

10000 ⎤⎡⎤⎡

Consider following state space form:

It is state controllable and output controllable

)(000110

)(010001000

)( tutxtx⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎡=&

p

)(100010

)(

0000

txty ⎥⎦

⎤⎢⎣

⎡=

⎥⎦⎢⎣⎥⎦⎢⎣

Its transfer function is:

⎤⎡ 11It is not functionally controllable.

⎥⎥⎥

⎢⎢⎢

=

32

2

11

11

)( sssG

Ali Karimpour June 2012

12

⎦⎣ 32 ss

Page 13: Multivariable Control Systemsariable Lec5

Chapter 5

Functional Controllability

� An Example: dc-dc boost converter

6

2 51

2498 3.049 10ˆ 609 3 207 10 ˆ

sx s s

⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥

+ ×+ + × 1x1

15 82

2 5

609 3.207 10 ˆ ,ˆ 2.5 10 1.217 10

609 3.207 10

s sx s

s s

ω⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

+ + ×− × + ×

+ + ×

12x

functionally uncontrollable

6

:

2498 3 049 10 12 5 s + 7 44 0

or new system design

s + ×⎡ ⎤

functionally uncontrollable

2 51

2

2498 3.049 10ˆ 609 3.207 1

12.5 s + 7

ˆ

40

4 0sx s s sx⎡ ⎤

=

+ ×+ + ×

⎢ ⎥⎣ ⎦

2 51

5 8 5

2 5 2 5

ˆ609 3.207 10ˆ2.5 10 1.217 10 10

609 3 207 10 66.2

09 3 207 15

0in

svs

s s s s

ω⎡ ⎤⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥

+ + ×− × + × ×

+ + × + + ×⎣ ⎦

⎢ ⎥⎣ ⎦

Ali Karimpour June 2012

1313

609 3.207 10 609 3.207 10s s s s+ + × + + ×⎣ ⎦

functionally controllable

Page 14: Multivariable Control Systemsariable Lec5

Chapter 5

Functional Controllability

BAsICsG 1)()( −−= is functionally uncontrollable ifAn m-input l-output system

lBrank <)(1- The system is input deficient or

2- The system is output deficient or lCrank <)(e syste s output de c e t o lCrank <)(

3- The system has fewer states than outputs lAsIrank <− )(

If the plant is not functionally controllable, i.e. lr < then there are

l-r output directions, denoted yi which cannot be affected.

rlijGjy Hi −== ,...,10)()( ωω

Ali Karimpour June 2012

14

From an SVD of G(jω) the uncontrollable output directions yi(jω) are

the last l-r columns of Y(jω).

Page 15: Multivariable Control Systemsariable Lec5

Chapter 5

Functional Controllability

Example 5-1

⎥⎥⎥⎤

⎢⎢⎢⎡

++= 421

21

1

)( sssG⎥⎦

⎢⎣ ++ 2

42

2ss

Thi i il i l 2 f G( ) i i l 1This is easily seen since column 2 of G(s) is two times column 1.

The uncontrollable output directions at low and high frequencies are, i lrespectively,

⎥⎤

⎢⎡

∞⎥⎤

⎢⎡ 21)(

11)0( yy

Ali Karimpour June 2012

15

⎥⎦

⎢⎣−

=∞⎥⎦

⎢⎣−

=15

)(,12

)0( 00 yy

Page 16: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Canonical Decomposition of Dynamical Equation

• Realization of Proper Rational Transfer Function Matrices

• Irreducible RealizationsIrreducible realization of proper rational transfer functions

Irreducible Realization of Proper Rational Transfer Function Vectors

Irreducible Realization of Proper Rational Matrices

Ali Karimpour June 2012

16

Page 17: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

ECBuAxx

++=& uBxAPBuxPAPx +=+= −1&

Pxx =EuCxy += uExCEuxCPy +=+= −1

Theorem 5-3 The controllability and observability of a linear time-invariantd i l i i i d i l f idynamical equation are invariant under any equivalence transformation.

Proof: Let we first consider controllability

[ ] [ ][ ] PSBABAABBP

PBPPAPBPPAPBPAPPBBABABABSn

nn

==

==−

−−−−−

12

1112112 ..........[ ] PSBABAABBP == .....

Similarly we can consider observability

Ali Karimpour June 2012

17

Page 18: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

ECBuAxx +=&Theorem 5-4

Consider the n-dimensional linear time –invariant dynamical equation EuCxy +=

y q

If the controllability matrix of the dynamical equation has rank n1 (where n1<n ), then there exists an equivalence transformation

Pxx =

which transform the dynamical equation to

[ ] Euxx

CCyuB

xx

AAA

xx

c

ccc

c

c

c

c

c

c

c +⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

0012

&

&

and the n1-dimensional sub-equation

uBxAx cccc +=&

Ali Karimpour June 2012

18EuxCy cc +=

is controllable and has the same transfer function matrix as the first system.

Page 19: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

Theorem 5-4 (Continue)

1Furthermore P=[q1 q2 … qn1 … qn]-1 where q1, q2, …, qn1 be any n1 linearly

independent column of S (controllability matrix) and the last n-n1 column of P

are entirely arbitrary so long as the matrix [q1 q2 … qn1 … qn] is nonsingular.

Proof: See “Linear system theory and design” Chi-Tsong Chen

ldimensiona+=+=

nEuCxyBuAxx&

ldimensiona≤+=

+=

EuxCyuBxAx

cc

cccc&Pxx =

ldimensiona−n ldimensiona1 −≤ nn

G(s)

Ali Karimpour June 2012

19Hence, we derive the reduced order controllable equation.

Page 20: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

ECBuAxx +=&Theorem 5-5

Consider the n-dimensional linear time –invariant dynamical equation EuCxy +=

y q

If the observability matrix of the dynamical equation has rank n2 (where n2<n ), then there exists an equivalence transformation

Pxx =

which transform the dynamical equation to

[ ] Euxx

CyuBB

xx

AAA

xx

o

o

o

o

o

o

oo

o +⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

⎡0

00

21

0

&

&

and the n2-dimensional sub-equation

uBxAx oooo +=&

Ali Karimpour June 2012

20is observable and has the same transfer function matrix as the first system.

EuxCy oo +=

Page 21: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

Theorem 5-5 (Continue)

Furthermore the first n row of P are any n linearly independent rows of VFurthermore the first n2 row of P are any n2 linearly independent rows of V

(observability matrix) and the last and the last n-n2 row of P is entirely arbitrary

so long as the matrix P is nonsingularso long as the matrix P is nonsingular.

Proof: See “Linear system theory and design” Chi-Tsong Chen

ldimensiona−+=+=

nEuCxyBuAxx& Pxx =

+=

+=

EuxCyuBxAx

oo

oooo&

ldimensiona−n

G(s)

ldimensiona2 −≤ nn

Ali Karimpour June 2012

21Hence, we derive the reduced order observable equation.

Page 22: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

ECBuAxx

++=&Theorem 5-6 (Canonical decomposition theorem)

Consider the n-dimensional linear time –invariant dynamical equation EuCxy +=Consider the n-dimensional linear time invariant dynamical equation

There exists an equivalence transformation

Pxx = Pxxwhich transform the dynamical equation to

[ ] Ex

CCBBx

AAAAAx ocococococ

⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡⎥⎤

⎢⎡

⎥⎤

⎢⎡

001312

&

&

d th d d di i l b ti

[ ] EuxxCCyuB

xx

AAA

xx

c

coccoco

c

co

c

co

c

co +⎥⎥⎥

⎦⎢⎢⎢

=⎥⎥⎥

⎦⎢⎢⎢

+⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

=⎥⎥⎥

⎦⎢⎢⎢

0000

0 23

&

and the reduced dimensional sub-equation

EuxCyuBxAx cocococo

+=

+=&

Ali Karimpour June 2012

22is observable and controllable and has the same transfer function matrix

as the first system.

EuxCy coco +

Page 23: Multivariable Control Systemsariable Lec5

Chapter 5

Canonical Decomposition of a Linear Time-invariant Dynamical Equation

Definition 5-5

A linear time-invariant dynamical equation is said to be reducible if and only if thereA linear time invariant dynamical equation is said to be reducible if and only if there

exist a linear time-invariant dynamical equation of lesser dimension that has the same

transfer function matrix. Otherwise, the equation is irreducible.q

Theorem 5-7

A linear time invariant dynamical equation is irreducible if and only if it is controllable

and observable.

Theorem 5-8

Ali Karimpour June 2012

23

Page 24: Multivariable Control Systemsariable Lec5

Chapter 5

Controllability, Observability and Realization

• Controllability and Observability of Linear Dynamical EquationsControllability and Observability of Linear Dynamical Equations

• Output Controllability and Functional Controllability

• Canonical Decomposition of Dynamical Equation

• Realization of Proper Rational Transfer Function Matrices

• Irreducible RealizationsIrreducible realization of proper rational transfer functions

Irreducible Realization of Proper Rational Transfer Function Vectors

Irreducible Realization of Proper Rational Matrices

Ali Karimpour June 2012

24

Page 25: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Transfer Function Matrices

Dynamical equation (state-space) description This transformation The input-output description

(transfer function matrix)

EuCxyBuAxx

+=+=& is unique

EBAsICsG +−= −1)()(

( )

The input-output description (transfer function matrix) Realization

BA&

Dynamical equation (state-space) description

This transformationEBAsICsG +−= −1)()(

EuCxyBuAxx

+=+=This transformation

is not unique

1 Is it possible at all to obtain the state-space description from the transfer function1. Is it possible at all to obtain the state-space description from the transfer function matrix of a system?

2. If yes, how do we obtain the state space description from the transfer function matrix?

Ali Karimpour June 2012

25

y , p p

Page 26: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Transfer Function Matrices

Theorem 5-9

A transfer function matrix G(s) is realizable by a finite dimensional

linear time invariant dynamical equation if and only if G(s) is a propery q y ( ) p p

rational matrix.

Proof: See “Linear system theory and design” Chi-Tsong Chen

Ali Karimpour June 2012

26

Page 27: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realizationsDefinition 5-6

Theorem 5-10

Ali Karimpour June 2012

27

Page 28: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realizations

Before considering the general case

(irreducible realization of proper rational matrices)

we start the following parts:

1. Irreducible realization of Proper Rational Transfer Functions

2 I d ibl R li ti f P R ti l T f F ti V t2. Irreducible Realization of Proper Rational Transfer Function Vectors

3. Irreducible Realization of Proper Rational Matrices

Ali Karimpour June 2012

28

Page 29: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions

0,ˆ......ˆˆ

ˆ......ˆˆ)( 01

10

110 ≠

++++++

= −

ααααβββ

nnn

nn

ssss

sg0

01

1

22

11

ˆ

ˆ

............

)(αβ

ααβββ

+++++++

= −

−−

nnn

nn

ssss

sg

)()()(ˆ)(ˆˆ

)(ˆ)(ˆˆ

)(......

......)(0

0

0

01

1

22

11 seususgsusysusu

sssssy

nnn

nnn

+=+=+++++++

= −

−−

αβ

αβ

ααβββ

......10 +++ ααα nss 01 ...... ααα +++ nss

)()(ˆ

)(ˆsusysg =

00n

)(ˆ sg

)(su

)()(ˆ

)(ˆsusysg =

ucxybuAxx0ˆ +=+=&

)()( sysg =

buAxx +=

β

&

Ali Karimpour June 2012

29

)()(

susg =

eucxuyy +=+=0

0

ˆˆ

αβ

Page 30: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions

nnn

nnn

ssss

susysg

ααβββ

++++++

== −

−−

............

)()(ˆ

)(ˆ 11

22

11

0

01

1

22

11

ˆ

ˆ

............

)(αβ

ααβββ

+++++++

= −

−−

nnn

nn

ssss

sgn)( 1

There are different forms of realization

01 ...... ααα +++ nss

Ob bl i l f li ti

There are different forms of realization

• Observable canonical form realization

• Controllable canonical form realization• Controllable canonical form realization

• Realization from the Hankel matrix

Ali Karimpour June 2012

30

• Realization from the Hankel matrix

Page 31: Multivariable Control Systemsariable Lec5

Chapter 5

Observable canonical form realization of proper rational transfer functions

nnn

nn sssg βββ +++= −

−− ......)(ˆ 1

22

110

1

22

11

ˆ

ˆ......)(

ββββ+

++++++

= −

−−

nnn

nn sssg

nnn ss αα +++ ......1

1

uuuyyy nnn

nnn βββαα +++=+++ −−− ............ )2(

2)1(

1)1(

1)( )))

)()( )

01

1 ...... ααα +++ nnn ss

)()( tytxn)=

)()()()()()()( 11)1(

11)1(

1 tutxtxtutytytx nnn βαβα −+=−+=−))

)()()()()()(.................................

)2()2()1( tttttt nnn −−− +++ ββ )))

)()()()()()()()()( 22)1(

122)1(

1)1(

1)2(

2 tutxtxtutytutytytx nnn βαβαβα −+=−+−+= −−)))

)()()()()()( )1()1()1()1()()1( nnn ββ )))

)()()(

)()(...)()()()(

11)1(

2

11)2(

1)2(

1)1(

1

tutxtx

tutytutytytx

nnn

nnnnn

−−

−−

−+=

−++−+=

βα

βαβα

Ali Karimpour June 2012

31)()()()()()(...)()()()( )1(

1)1(

1)1(

1)1(

1)()1(

1

tutxtutytutytutytytx

nnnnn

nnnnn

βαβαβαβα

+−=+−=−++−+= −−

−−

)

)))

Page 32: Multivariable Control Systemsariable Lec5

Chapter 5

)()( tytx = )

Observable canonical form realization of proper rational transfer functions

)()()()()()()()()(

)()()()()()()(

)()(

22)1(

122)1(

1)1(

1)2(

2

11)1(

11)1(

1

tutxtxtutytutytytx

tutxtxtutytytx

tytx

nnn

nnn

n

−−

−+=−+−+=

−+=−+=

βαβαβα

βαβα)))

))

)()()(

)()(...)()()()(.................................

)1(11

)2(1

)2(1

)1(1

tutxtx

tutytutytytx nnnnn

−−−−−

+=

−++−+=

βα

βαβα )))

)()()( 112 tutxtx nnn −− −+= βα

)()()()()()(...)()()()( )1(

1)1(

1)1(

1)1(

1)()1(

1

tutxtutytutytutytytx

nnnnn

nnnnn

βαβαβαβα

+−=+−=−++−+= −−

−−

)

)))

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

−−

⎥⎥⎤

⎢⎢⎡

−− n

n

n

n

xx

xx

xx

0...010...00

2

1

12

1

12

1

ββ

αα

&

&

)()()()(y nnnnn ββ

[ ]

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

⎣⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

−=

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

−− n

n

n

n

xyuxx.

10...00ˆ..

100.......

0...10.

3

2

2

1

3

2

2

1

3

2

β

βα

&

&

Ali Karimpour June 2012

32

⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣ −⎥⎦⎢⎣ nnn xxx 1...00 11 βα

Page 33: Multivariable Control Systemsariable Lec5

Chapter 5

Observable canonical form realization of proper rational transfer functions

nnn

nnn

sssssg

ααβββ

++++++

= −

−−

............)(ˆ 1

1

22

11

⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡

[ ]⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

−−−

=⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

n

n

n

n

n

n

xxx

yuxxx

xxx

10...00ˆ0...100...010...00

3

2

1

2

1

3

2

1

2

1

3

2

1

βββ

ααα

&

&

&

21 ββββ −− nn

[ ]

⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ −⎥⎥⎥

⎦⎢⎢⎢

⎣ n

n

n

n

n x

y

xx...

1...00........

3

1

23

1

23

β

β

α&

0

01

1

22

11

ˆ............)(

αβ

ααβββ

+++++++

= −

−−

nnn

nnn

sssssg

xxx 000 βα ⎤⎡⎤⎡⎤⎡⎤⎡ −⎤⎡ &

[ ] uxxx

yuxxx

xxx

n

n

n

n

n

n

0

03

2

1

2

1

3

2

1

2

1

3

2

1

ˆˆ

10...00ˆ0...100...010...00

αββ

ββ

ααα

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

−−−

=⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

&

&

Ali Karimpour June 2012

33xxx nnn

0

11

...1...00

........α

βα ⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ −⎥⎥⎥

⎦⎢⎢⎢

⎣ &

Page 34: Multivariable Control Systemsariable Lec5

Chapter 5

Observable canonical form realization of proper rational transfer functions

02

21

1ˆ......)( ββββ

++++

=−−

nnn sssg n

nn sssg βββ +++=

−− ......)(ˆ2

21

1

01

1 ˆ......)(

ααα+

+++= −

nnn ss

sgn

nn sssg

αα +++= − ......

)( 11

xxx nn 111 0...00 βα⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡⎥⎤

⎢⎡ −

⎥⎤

⎢⎡ &

[ ] uxx

yuxx

xx

n

n

n

n

0

03

2

2

1

3

2

2

1

3

2

ˆˆ

.10...00ˆ

.........0...100...01

.αββ

βαα

+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−

=

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

&

&

xxx nnn 11

...1...00

........βα ⎥

⎥⎦⎢

⎢⎣⎥

⎥⎦⎢

⎢⎣⎥

⎥⎦⎢

⎢⎣⎥⎥⎦⎢

⎢⎣ −⎥

⎥⎦⎢

⎢⎣ &

Th d i d d i l ti i b bl E i 1 Wh ?

The derived dynamical equation controllable as well if numerator and

The derived dynamical equation is observable. Exersise 1: Why?

Ali Karimpour June 2012

34

denominator of g(s) are coprime. Exersise 2: Why?

Page 35: Multivariable Control Systemsariable Lec5

Chapter 5

Controllable canonical form realization of proper rational transfer functions

nnn sssNsg

βββ +++==

−− ......)()( 1

22

11)0

1

22

11

ˆ

ˆ......)(

ββββ+

+++= −

−−

nnn

nn sssg

Let us introduce a new variable)()()()()()(

svsNsysusvsD

==

)

nnn sssD

gαα +++ − ......)(

)( 110

11 ...... ααα +++ n

nn ss

)()()( svsNsy =

We may define the state variable as: ⎥⎥⎥⎤

⎢⎢⎢⎡

=⎥⎥⎥⎤

⎢⎢⎢⎡

=)(

)()()(

)(

)1(2

1

tvtv

txtx

txWe may define the state variable as:

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

− )(....

)(....)(

)1( tvtx

tx

nn

nn xxxxxx === −13221 ,.....,, &&&Clearly

)()()()()( )1()1()( tvtvtvtutvx nn ααα −−−−== −&

Ali Karimpour June 2012

35)(...)()()(

)(...)()()()(

1211

11

txtxtxtutvtvtvtutvx

nnn

nnn

αααααα

−−−−===

Page 36: Multivariable Control Systemsariable Lec5

Chapter 5

Controllable canonical form realization of proper rational transfer functions

02

21

1 ......)(

ββββ)

+++ −−n

nn ss nnn sssN βββ +++ −− ......)()(

22

11)

0

01

1

21

............

)(αβ

ααβββ

)++++

= −n

nnn

sssg

nnn

n

sssDsNsg

ααβββ

+++== − ......)(

)()( 11

21)

nn xxxxxx === −13221 ,.....,, &&&

)(...)()()()(...)()()()(

1211

)1(1

)1(1

)(

txtxtxtutvtvtvtutvx

nnn

nnn

nn

αααααα

−−−−=−−−−==

−−&

[ ] ⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

xx

xx

xx

00

0...1000...010

2

1

2

1

2

1

ββββ&

&

[ ]

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−−−

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

−−

−− n

nnn

nnnnn x

xyu

x

x

x

x.

...

1.0

....

1...000.......

.31213

121

3 ββββ

αααα&

&

Ali Karimpour June 2012

36

Page 37: Multivariable Control Systemsariable Lec5

Chapter 5

Controllable canonical form realization of proper rational transfer functions

nnn

nnn

ssss

sDsNsg

ααβββ

++++++

== −

−−

............

)()()( 1

1

22

11)

⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡

[ ]⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

−− nnn xxx

yuxxx

xxx

...000

.......0...1000...010

3

2

1

1213

2

1

3

2

1

ββββ&

&

&

⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−⎥⎥⎥

⎦⎢⎢⎢

⎣ −− nnnnnn xxx.

1..

...1...000.

121 αααα&

0

01

1

22

11

ˆˆ

............)(

αβ

ααβββ

+++++++

= −

−−

nnn

nnn

sssssg

xxx 00010 ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡ &

[ ] uxxx

yuxxx

xxx

nnn0

03

2

1

1213

2

1

3

2

1

ˆˆ

...000

1000.......0...1000...010

αβββββ +

⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

=

⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

+

⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

=

⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

−−&

&

Ali Karimpour June 2012

37xxx nnnnnn

0

121

.1..

...1...000.αααα ⎥

⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−⎥⎥⎥

⎦⎢⎢⎢

⎣ −−&

Page 38: Multivariable Control Systemsariable Lec5

Chapter 5

Controllable canonical form realization of proper rational transfer functions

0

01

1

22

11

ˆˆ

............)(

αβ

ααβββ

+++++++

= −

−−

nnn

nnn

sssssg nn

nnn

ssss

sDsNsg

ααβββ

++++++

== −

−−

............

)()()( 1

1

22

11)

01 ...... ααα +++ nss nsss αα +++ ......)( 1

xx

xx

xx 111

00

01000...010

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡&

&

[ ] uxx

yuxx

xx

nnn0

03

2

1213

2

3

2

ˆˆ

....

1.00

.1...000.......0...100

.αβββββ +

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

⎣⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

−−

&

&

Th d i d d i l ti i t ll bl E i 3 Wh ?

xxx nnnnnn 121 1... αααα ⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣ −−−−⎥⎦⎢⎣ −−

The derived dynamical equation observable as well if numerator and

The derived dynamical equation is controllable . Exersise 3: Why?

Ali Karimpour June 2012

38

denominator of g(s) are coprime. Exersise 4: Why?

Page 39: Multivariable Control Systemsariable Lec5

Chapter 5

Controllable and observable canonical form realization of proper rational transfer functions

Example 5-2 Derive controllable and observable canonical realization for following system.

3248182 23 +++ sss

2202663248182)(223

++++++ ssssssg

61163248182)( 23 +++

+++=

sssssssg

261166116

)( 2323 ++++

=+++

=ssssss

sg

Observable canonical form realization is:

20600 ⎤⎡⎤⎡⎤⎡⎤⎡ &Controllable canonical form realization is:

0010 ⎤⎡⎤⎡⎤⎡⎤⎡ &

uxxx

xxx

62620

6101101600

3

2

1

3

2

1

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

−−−

=⎥⎥⎥

⎢⎢⎢

&

&

&

uxxx

xxx

100

6116100010

3

2

1

3

2

1

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

⎥⎥⎥

⎢⎢⎢

−−−=

⎥⎥⎥

⎢⎢⎢

&

&

[ ] uxxx

y 2100 2

1

+⎥⎥⎥

⎢⎢⎢

⎡= [ ] u

xxx

y 262620 2

1

+⎥⎥⎥

⎢⎢⎢

⎡=

Ali Karimpour June 2012

39

x3 ⎥⎦⎢⎣ x3 ⎥⎦⎢⎣It is not controllable. It is not observable.Why? Why?

Page 40: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions

Example 5-3 Derive irreducible realization for following transfer function.

3248182 23 +++ sss

2202663248182)(223

++++++ ssssssg

61163248182)( 23 +++

+++=

sssssssg

2206+

+=

s2

61166116)( 2323 +

+++=

+++=

sssssssg

Observable canonical form realization is: Controllable canonical form realization is:

2652 +

++=

ss

uxx

xx

620

5160

2

1

2

1

⎤⎡

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−

=⎥⎦

⎤⎢⎣

⎡&

&u

xx

xx

10

5610

2

1

2

1

⎤⎡

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡−−

=⎥⎦

⎤⎢⎣

⎡&

&

[ ] uxx

y 2102

1 +⎥⎦

⎤⎢⎣

⎡= [ ] u

xx

y 26202

1 +⎥⎦

⎤⎢⎣

⎡=

Ali Karimpour June 2012

40

It is controllable too. It is observable too.Why? Why?

Page 41: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions

Realization from the Hankel matrix

nn βββ −1

nnn

nnn

sssssg

ααβββ

++++++

= − ............)( 1

1

110 ......)3()2()1()0()( 321 ++++= −−− shshshhsg

The coefficients h(i) will be called Markov parameters.

⎥⎥⎤

⎢⎢⎡

+ )1(...)4()3()2()(...)3()2()1(

ββ

hhhhhhhh

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

+=

.......

.......)2(...)5()4()3(

),(β

βαhhhh

H

⎥⎥⎦⎢

⎢⎣ −+++ )1(...)2()1()(

.......βαααα hhhh

Ali Karimpour June 2012

41

Page 42: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions

Realization from the Hankel matrix

Theorem 5-11 Consider the proper transfer function g(s) as

nnn

nnnn

sssss

sgαα

ββββ+++

++++= −

−−

............

)( 11

22

110

( ) ( ) ....,3,2,1,everyfor),(),( =++= lklmkmHmmH ρρ

then g(s) has degree m if and only if

Ali Karimpour June 2012

42

Page 43: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions Realization from the Hankel matrixRealization from the Hankel matrix

buAxx +=&

Now consider the dynamical equation

ebAsIcsebAsIcsg +−=+−= −−−− 1111 )()()(eucxy +=

g )()()(

.....3221 ++++= −−− bscAcAbscbse......,3,2,1)( 1 == − ibcAih i)(

⎥⎥⎥⎤

⎢⎢⎢⎡

+ )1(.....)2()(.....)2()1(

nhhnhhh

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−+

=+

)12(.....)1()(................

),1(

nhnhnh

nnH

⎥⎥⎦⎢

⎢⎣ ++ )2(.....)2()1( nhnhnh

Let the first σ rows be linearly independent and the (σ+1) th row of H(n+1,n) be linearly dependent on its previous rows. So

Ali Karimpour June 2012

43

y p p

0),1(]0.....01.....[ 21 =+ nnHaaa σ

Page 44: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions Realization from the Hankel matrixRealization from the Hankel matrix

0),1(]0.....01.....[ 21 =+ nnHaaa σ

We claim that the σ-dimensional dynamical equationWe claim that the σ dimensional dynamical equation

hhh

)3()2()1(

0000000.....10000.....010

⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

uh

xx..

)3(

..........

..........00.....000

.

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=& (I)

[ ] uhxyh

haaaaa

)0(00.....001)(

)1(.....

10.....000

1321

+=

⎥⎥⎥

⎦⎢⎢⎢

−⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−−− − σσ

σσ

is a controllable and observable (irreducible realization).

[ ]

Exercise 5: Show that (I) is a controllable and observable (irreducible realization) of

Ali Karimpour June 2012

44

Exercise 5: Show that (I) is a controllable and observable (irreducible realization) of

eucxybuAxx

+=+=&

Page 45: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible realization of proper rational transfer functions

Example 5-4 Derive irreducible realization for following transfer function.3248182)(

23 +++ ssssg6116

)( 23 +++=

ssssg

.....2303410141062)( 654321 ++−−+−+= −−−−−− sssssssg

⎤⎡

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

−−−−

=341014101410

14106

)3,4(H

⎥⎦

⎢⎣ −− 2303410

We can show that the rank of H(4,3) is 2. So [ ] 0)3,4(0156 =H

Hence an irreducible realization of g(s) is610⎥⎤

⎢⎡

+⎥⎤

⎢⎡

&

Ali Karimpour June 2012

45[ ] uxy

uxx

2011056

+=

⎥⎦

⎢⎣−

+⎥⎦

⎢⎣ −−

=

Page 46: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Transfer Function Vectors

⎤⎡ )(

Consider the rational function vector

⎤⎡⎤⎡ )()

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

= .)()(

)(2

1

sgsg

sG⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

= .)()(

.)(2

1

2

1

sgsg

ee

sG

)

)

⎥⎥⎥

⎦⎢⎢⎢

⎣ )(.sgq ⎥

⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ )(..sge qq

)

⎥⎥⎤

⎢⎢⎡

++++++

⎥⎥⎤

⎢⎢⎡

−−

−−

nnn

nnn

ssss

ee

ββββββ

....

....

1 22

221

21

12

121

11

2

1

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

++++

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

= −

n

nnn ss

sGαα

.

......

1

.

.)(

21

11

Ali Karimpour June 2012

46

⎥⎦

⎢⎣ +++⎥⎦⎢⎣

−−qn

nq

nqq sse βββ ....2

21

1

Page 47: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Transfer Function Vectors

⎥⎥⎥⎤

⎢⎢⎢⎡

++++++

⎥⎥⎥⎤

⎢⎢⎢⎡

−−

−−

nnn

nnn

ssss

ee

ββββββ

....

....

1 22

221

21

12

121

11

2

1

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ +++

++++

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

−−

qnn

qn

q

nnn

q ss

ss

e

sG

βββ

αα

......

.....1

.

.)(

22

11

11

ee

yy

nnn

nnn

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

−−

−−

...

...00

0...1000...010

2

1

21)2(2)1(22

11)2(1)1(11

2

1

ββββββββ

u

e

x

y

yuxx

nnn

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

=

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

⎣⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=..

.................

.

.

0..

1...000.............. 2

1)2()1(

21)2(2)1(222

ββββ

ββββ&

ey qqnqnqqnqnnn

⎦⎣⎦⎣⎦⎣⎥⎥⎦⎢

⎢⎣⎥

⎥⎦⎢

⎢⎣ −−−− −−

−−

...1... 1)2()1(

121

ββββαααα

This is a controllable form realization of G(s).

Ali Karimpour June 2012

47We see that the transfer function from

u to yi is equal to n

nnin

ni

ni

i ssss

eααβββ

++++++

+ −

−−

.........

11

22

11

Page 48: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Transfer Function Vectors

Example 5-5 Derive a realization for following transfer function vector.

⎤⎡ + 3s

⎥⎥⎥⎥

⎢⎢⎢⎢

++

++=

34

)2)(1(3

)(

ss

sss

sG

⎥⎦

⎤⎢⎣

+++

++++⎥

⎤⎢⎣

⎡=

⎥⎥⎥⎥

⎢⎢⎢⎢

++

+++

=)2)(1(

)3()3)(2)(1(

110

34

)2)(1(3

)(2

sss

ssssss

s

sG

⎥⎦

⎤⎢⎣

++++

++++⎥

⎤⎢⎣

⎡=

⎥⎦⎢⎣ +

2396

61161

10

3

2

2

23 ssss

sss

s

H i i l di i l li i f G( ) i i bHence a minimal dimensional realization of G(s) is given by

⎥⎤

⎢⎡

+⎥⎤

⎢⎡⎥

⎤⎢⎡

+⎥⎤

⎢⎡

016900

100010

&

Ali Karimpour June 2012

48

uxyuxx ⎥⎦

⎢⎣

+⎥⎦

⎢⎣

=⎥⎥⎥

⎦⎢⎢⎢

+⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−=

113210

6116100

Page 49: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

There are many approaches to find irreducible realizations for proper i l irational matrices.

1. One approach is to first find a reducible realization and then applypp pp ythe reduction procedure to reduce it to an irreducible one.

Method I, Method II, Method III, Method IV and Method V

2. In the second approach irreducible realization will yield directly.pp y y

Ali Karimpour June 2012

49

Page 50: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Method I: Given a proper rational matrix G(s), if we first find

an irreducible realization for every element gij(s) of G(s) as jijjiijij

jijijijij

uexcy

ubxAx

+=

+=&

an irreducible realization for every element gij(s) of G(s) as jijjiijijy

⎥⎤

⎢⎡⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

112

11

12

11

12

11

12

11

00

000000

ubb

xx

AA

xx&

&

⎤⎡

⎥⎦

⎤⎢⎣

⎥⎥⎥

⎦⎢⎢⎢

+

⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

=

⎥⎥⎥

⎦⎢⎢⎢

⎣2

1

22

21

12

22

21

12

22

21

12

22

21

12

00

000000 u

bb

xx

AA

xx&

&

yyy +

12111 yyy +=

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡+

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

2

1

2221

1211

21

12

11

2221

1211

2

1

0000

uu

eeee

xxx

cccc

yy

22222 yyy +=

⎥⎦

⎢⎣ 22x

Clearly this equation is generally not controllable and not observable.

Ali Karimpour June 2012

50

To reduce this realization to irreducible one requires the application of the reductionprocedure twice (theorems 5-4 and 5-5).

Page 51: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

⎥⎤

⎢⎡⎥⎥⎤

⎢⎢⎡

+⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

=⎥⎥⎥⎤

⎢⎢⎢⎡

112

11

12

11

12

11

12

11

00

000000

ubb

xx

AA

xx&

&

⎤⎡

⎥⎦

⎢⎣⎥⎥⎥

⎦⎢⎢⎢

+

⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

=

⎥⎥⎥

⎦⎢⎢⎢

11

2

22

21

22

21

22

21

22

21

00

000000

x

ub

bxx

AA

xx&

&

⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡+

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

2

1

2221

1211

21

12

11

2221

1211

2

1

0000

uu

eeee

xxx

cccc

yy

⎥⎦

⎢⎣ 22x

00000)(

0011

1

111

bbAsI

⎤⎡⎥⎤

⎢⎡⎥⎤

⎢⎡ −⎤⎡

Proof:

00

0

)(0000)(0000)(0

0000

2221

1211

22

21

12

122

121

112

2221

1211

eeee

bb

b

AsIAsI

AsIcc

cc⎥⎦

⎤⎢⎣

⎡+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

⎣ −−

−⎥⎦

⎤⎢⎣

Ali Karimpour June 2012

51)(

)()()()(

)()()()(

2221

1211

22221

222221211

2121

12121

121211111

1111 sGsgsgsgsg

ebAsIcebAsIcebAsIcebAsIc

=⎥⎦

⎤⎢⎣

⎡=⎥

⎤⎢⎣

+−+−+−+−

=−−

−−

Page 52: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Method II: Given a proper rational matrix G(s), if we find the controllable canonical-form realization for the ith column, Gi(s), of G(s) say,

iiiii ubxAx +=&

iiiii

iiiii

uexCy +=

uu

bb

xx

AA

xx

0...00...0

0....00....0

2

1

2

1

2

1

2

1

2

1

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡

⎥⎥⎤

⎢⎢⎡&

&

This realization is always

[ ] [ ]ueeexCCCy

ubxAx ppppp

....00

............00

...........22222

+=⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣⎥⎥⎥⎥

⎦⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ &

This realization is alwayscontrollable. It is however generally not observable.

[ ] [ ]ueeexCCCy pp ........ 2121 +=Proof:

[ ] [ ]....0...00...0

0...)(00...0)(

.... 212

11

2

11

21 eeeb

bAsI

AsI

CCC +⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

−−

[ ] [ ]

)()()()(...)()(

....

...00......

)(...00......

....

11211

21

1

21

sgsgsg

eee

bAsI

CCC

p

p

pp

p

⎥⎤

⎢⎡

+

⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ − −

Ali Karimpour June 2012

52

[ ] )(

)(...)()(......

)(...)()()(.....)(

21

22221111

111 sG

sgsgsg

sgsgsgebAsICebAsIC

qpqq

ppppp =

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

=+−+−= −−

Page 53: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Method III: Let a proper rational matrix G(s), where consider )()()( ∞+= GsGsG)

mmm)( 21the monic least common denominator of G(s) as mmmm ssss αααψ ++++= −− ...)( 2

21

1

Then we can write G(s) as [ ] )(...)(

1)( 22

11 ∞++++= −− GRsRsR

ssG m

mm

ψ )(sψ

Then the following dynamic equation is a realization of G(s).

I 0000 ⎤⎡⎤⎡

uxI

I

xp

p

pppp

pppp

..00

.......0...000...00

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=&

[ ] uGxRRRRy

IIIIII

p

p

ppmpmpm

pppp

)(

0......000

121

∞+=

⎥⎥⎥

⎦⎢⎢⎢

⎣⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−− −− αααα

Ali Karimpour June 2012

53

[ ] uGxRRRRy mmm )(... 121 ∞+= −−

Exercise 6: Show that the above dynamical equation is a controllable realization of G(s)

Page 54: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Method IV: Gilbert diagonal representation.

S di ti t l i lSuppose distinct real eigenvalues.

Reminders

qisBpisCBCG kkkkkkk ××= ρρ

{ }IIdiA λλ{ }r

IIdiagA r ρρ λλ ,...,11=

[ ] ⎥⎤

⎢⎡B1

Ali Karimpour June 2012

54

[ ]rCCC ...1=⎥⎥⎥

⎦⎢⎢⎢

=

rBB M

Page 55: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation.

⎥⎤

⎢⎡ 121

⎥⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢⎢

⎣ ++++

+

++

+++

=

0)3)(2)(1(

)3(21

14

12

10411

)(

sss

ssssG

[ ]02101

⎥⎥⎤

⎢⎢⎡

[ ]01010

⎥⎥⎤

⎢⎢⎡

[ ]32100⎥⎤

⎢⎡

[ ]10011

⎥⎥⎤

⎢⎢⎡

⎥⎦

⎢⎣ ++++ )3)(2)(1(1 ssss

⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡

⎥⎤

⎢⎡

100100

1000000

1010000

1000021

1)(G

[ ]02110⎥⎥⎦⎢

⎢⎣

[ ]0102

1⎥⎥⎦⎢

⎢⎣−

[ ]32100⎥⎥⎥

⎦⎢⎢⎢

[ ]10001⎥⎥⎦⎢

⎢⎣

⎥⎥⎥

⎦⎢⎢⎢

⎣+

+⎥⎥⎥

⎦⎢⎢⎢

⎣+

+⎥⎥⎥

⎦⎢⎢⎢

⎣ −+

+⎥⎥⎥

⎦⎢⎢⎢

⎣+

=000100

4000000

3020010

2021000

1)(

sssssG

⎥⎤

⎢⎡

⎥⎤

⎢⎡− 0210001 ⎤⎡⎤⎡− 021001

uxx

⎤⎡

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−

−=

100321010

400003000020

& uxx

⎥⎤

⎢⎡

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

−−=

101

100010021

400020001

&

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒nrealizatio minimal

Ali Karimpour June 2012

55xy⎥⎥⎥

⎢⎢⎢

−=

002110101001 xy

⎥⎥⎥

⎢⎢⎢

−=

021110

Page 56: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation.

( ) ⎤⎡ + 421 s( )( )( )

( )( ) ⎥⎥⎥⎥

⎢⎢⎢⎢

+++−

+++

+=

21

211

4142

11

)(

sss

sss

ssG

⎥⎤

⎢⎡⎥⎤

⎢⎡ 0121 [ ]11

0⎥⎤

⎢⎡ [ ]11

0⎥⎤

⎢⎡

⎥⎦

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡+⎥

⎤⎢⎣

⎡=

001001211)(sG

⎥⎦

⎢⎣⎥⎦

⎢⎣− 1001

[ ]111⎥⎦⎢⎣

[ ]110⎥⎦⎢⎣

⎥⎦

⎢⎣+⎥

⎦⎢⎣+⎥

⎦⎢⎣−+ 004112011

)(sss

⎥⎤

⎢⎡

⎥⎤

⎢⎡− 010001

⎤⎡⎤⎡uxx

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−

−=

111110

400002000010

& uxx

⎤⎡

⎥⎥⎥

⎢⎢⎢

⎡+

⎥⎥⎥

⎢⎢⎢

−−

−=

021

111001

200010001

&

⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒nrealizatio minimal

Ali Karimpour June 2012

56xy ⎥⎦

⎤⎢⎣

⎡−

=01010021 xy ⎥

⎤⎢⎣

⎡−

=101021

Page 57: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation.

⎥⎤

⎢⎡

⎥⎤

⎢⎡− 0000012

( ) ( ) ( ) ⎥⎤

⎢⎡ 1111

kd

uxx

⎤⎡

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

+

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−

−=

321000000

200012000120

& ( ) ( ) ( )

( ) ( )

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

+++

++++

⎥⎥⎥

⎢⎢⎢

⎡=

000000000

1100

21

21

210

2222

)(32

432

sss

ssss

iflhebkgda

sG

xmifclhebkgda

y⎥⎥⎥

⎢⎢⎢

⎡=

( ) ⎥⎦

⎢⎣

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ +

++⎥⎦⎢⎣ 321

21000

2200 2

s

ssmifc

⎤⎡⎤⎡⎤⎡⎤⎡ kgda

( )[ ]

( )[ ]

( )[ ] [ ]321

21321

21321

21321

21)( 234

⎥⎥⎥

⎢⎢⎢

++

⎥⎥⎥

⎢⎢⎢

++

⎥⎥⎥

⎢⎢⎢

++

⎥⎥⎥

⎢⎢⎢

+=

mlk

sihg

sfed

scba

ssG

Ali Karimpour June 2012

57

Page 58: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Method IV: Gilbert diagonal representation.

R titi l i lRepetitive real eigenvalues.

r1 Jordan block of order 3r1 Jordan block of order 3

r2 - r1 Jordan block of order 2

r3 – r2 Jordan block of order 1

Ali Karimpour June 2012

58

Page 59: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation. Repetitive real eigenvalues.

2 Jordan block of order 2

0 J d bl k f d 10 Jordan block of order 1

Ali Karimpour June 2012

59

Page 60: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation. Repetitive real eigenvalues.

Ali Karimpour June 2012

60

Page 61: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation. Repetitive real eigenvalues.

:),4(B)1(:,C

:),4(B

:),4(B)2(:,C )5(:,C

Ali Karimpour June 2012

61

),(

:),7(B

Page 62: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation. Repetitive real eigenvalues.

⎤⎡⎤⎡ 211100:),4(B)3(:,C )5(:,C

⎥⎥⎥

⎢⎢⎢

−−−−

⎥⎥⎥

⎢⎢⎢

−=

101101211

351000100

3M :),7(B

:),9(B)8(:,C ),()8(:,C

:)4(B)4(:,C )7(:,C

⎥⎥⎥

⎢⎢⎢

−−−−

⎥⎥⎥

⎢⎢⎢

−=

101101211

010000100

4M

:),4(B)(

:),7(B

)(

)9(B)9(C

Ali Karimpour June 2012

62

:),9(B)9(:,C

Page 63: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Gilbert diagonal representation. Repetitive real eigenvalues.

Ali Karimpour June 2012

63

Page 64: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Method V: It is possible to obtain observable realization of a proper G(s). Let

)2()1()0()( 21 HHHG ...........)2()1()0()( 21 +++= −− sHsHHsG

Consider the monic least common denominator of G(s) as

mmmm ssss αααψ ++++= −− ...)( 2

21

1

Then after deriving H(i) one can simply show

Exercise 7: Proof equation (I)

)(1)(...)2()1()( 21 IiiHimHimHimH m ≥−−−+−−+−=+ ααα

)()( 32211 BCACABCBEBAICEG

Let {A, B, C and E} be a realization of G(s) then we have

Ali Karimpour June 2012

64

...........)()( 32211 ++++=−+= −−−− BsCACABsCBsEBAsICEsG

Page 65: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Then {A, B, C and D} be a realization of G(s) if and only if

210)1()0( iBCAiHdHE i ,....2,1,0)1()0( ==+= iBCAiHandHE i

Now we claim that the following dynamical equation is a realization of G(s).

HI )1(000 ⎤⎡⎤⎡

uHH

xI

I

xqqqq

qqqq

..)2()1(

.......0...000...00

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

=&

[ ] uHxIy

mHmH

IIIII

q

qqmqmqm

qqqq

)0(0...00

)()1(

...

...000

121

+=

⎥⎥⎥

⎦⎢⎢⎢

−⎥⎥⎥

⎦⎢⎢⎢

⎣ −−−− −− αααα

[ ]y q )(We can readily verify that

⎥⎤

⎢⎡

++

⎥⎤

⎢⎡

⎥⎤

⎢⎡

)2()1(

)4()3(

)3()2(

iHiH

HH

HH

)1(iHBCAi

Ali Karimpour June 2012

65⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ +

+=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ +

=

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ +

=

)(...

)2(,...,

)2(...

)4(,

)1(...

)3( 2

imH

iHBA

mH

HBA

mH

HAB i )1( += iHBCAi

)0(HE =

Page 66: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

Now we shall discuss in the following a method which will yield directly irreducible

realizations. This method is based on the Hankel matrices.

...........)2()1()0()( 21 +++= −− sHsHHsGLet G(s) be pq ×

Consider the monic least common denominator of G(s) as

mmmm ssss αααψ ++++= −− ...)( 2

21

1Define

⎥⎥⎥⎤

⎢⎢⎢⎡

qqqq

qqqq

II

0...000...00

⎥⎥⎥⎤

⎢⎢⎢⎡

−−

− pmppp

pmppp

IIII

I

1

000...00...00

αα

⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−−−

=

−− qqmqmqm

qqqq

IIIII

M

121 ......000

.......

αααα⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −

−= −

pppp

pmppp

II

IIN

1

2

...00.........

.0.....0

α

α

Ali Karimpour June 2012

66

Page 67: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

mmmm ssss αααψ ++++= −− ...)( 2

21

1

⎥⎤

⎢⎡ qqqq I 0...00

⎥⎤

⎢⎡ − pmppp I0...00 α

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

=

qqqq

qqqq

I

IM

...000.......

0...00

⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢

−−

= −

pmppp

pmppp

pppp

IIII

N 2

1

..........0.....0

0...0αα

⎥⎥⎦⎢

⎢⎣ −−−− −− qqmqmqm

qqqq

IIII 121 ... αααα⎥⎥⎦⎢

⎢⎣ − pppp II 1...00 α

We also define the two following Hankel matrices

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

+=

...)1()3()2(

)()2()1(mHHH

mHHH

T

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

++

=...

)2()4()3()1()3()2(

~ mHHHmHHH

T

⎥⎦

⎢⎣ −+ )12()1()( mHmHmH ⎥

⎦⎢⎣ ++ )2()2()1( mHmHmH

It can be readily verified that

Ali Karimpour June 2012

67TNMTT ==~ ,.....2,1,0== iTNTM ii

Page 68: Multivariable Control Systemsariable Lec5

Chapter 5

Realization of Proper Rational Matrices

It can be readily verified that

TNMTT ==~ ,.....2,1,0== iTNTM iiTNMTT == ,.....2,1,0iTNTM

[ ]0II =

lkI , )( kllk >×Let be as the form

[ ]0, klk II =

Note that the left-upper-corner of M iT = TN i is H(i+1) so:

TT ....,2,1,0)1( ,,,, ===+ iITNITIMIiH Tpmp

iqmq

Tpmp

iqmq

It can be readily verified that

Ali Karimpour June 2012

68But we want Irreducible Realization of Proper Rational Matrices

Page 69: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible Realization of Proper Rational Matrices

Ali Karimpour June 2012

69

Page 70: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible Realization of Proper Rational Matrices

Example 5-6 Derive an irreducible realization for the following proper rational function.

⎤⎡ −−− 1232 2 ss

⎥⎥⎥⎥

⎢⎢⎢⎢

+−−

+++=

153

154

1)1(

232

)(2

ss

ss

ssss

sG

⎦⎣ ++ 11 ss

2)1()( += sssψLeast common denominator of G(s), is

06050403021102 ⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡.....

2106

2105

.2104

2103

2102

2111

3402

)( 654321 −−−−−−⎥⎦

⎤⎢⎣

⎡−−

+⎥⎦

⎤⎢⎣

⎡−

+⎥⎦

⎤⎢⎣

⎡−−

+⎥⎦

⎤⎢⎣

⎡−

+⎥⎦

⎤⎢⎣

⎡−−

+⎥⎦

⎤⎢⎣

⎡−

+⎥⎦

⎤⎢⎣

⎡−

−= sssssssG

⎤⎡ 030211 Non-zero singular values of T

⎥⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎢⎡

−−−−−

−−−−

=⎥⎥⎥⎤

⎢⎢⎢⎡

=212121040302212121

030211

)4()3()2()3()2()1(

HHHHHH

T

gare 10.23, 5.79, 0.90 and 0.23.

So, r = 4.

Ali Karimpour June 2012

70⎥⎥⎥⎥

⎦⎢⎢⎢⎢

⎣ −−−−

⎥⎦⎢⎣

212121050403212121

)5()4()3( HHH,

Page 71: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible Realization of Proper Rational Matrices

⎥⎥⎥⎤

⎢⎢⎢⎡

⎥⎥⎥⎤

⎢⎢⎢⎡

0 10260 09780 10570 54960.5306-0.6022- 0.58720.10490.6574- 0.4905 0.0196-0.4003-

0 82640 10540 20780 51270.0071-0.0581-0.5238-0.2357-0.1621-0.8902-0.25450.3413-

⎥⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢⎢

−=

⎥⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢⎢

⎣ −−−

=

0.18880.38750.5432 0.13820.4522 0.2949-0.23110.6989- 0.1888-3875.00.5432-0.1382-

0.10260.0978-0.1057-0.5496

0071.00581.00.5238-0.2357-5392.04316.00.26270.6738-

0071.00581.0052380.23570.8264-0.1054-0.2078-0.5127

rr UY

⎥⎦⎢⎣⎥⎦⎢⎣

⎥⎥⎤

⎢⎢⎡

0.0034- 0.0551- 1.2598- 0.7539- 0.0770- 0.8443- 0.6121 1.0915-

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

==

0.2560- 0.4093 0.6317 2.1553- 0.0034 0.0551 1.2598 0.7539

0.3923- 0.1000- 0.4999- 1.6398 ˆ 2/1r SYY

⎥⎥⎥⎤

⎢⎢⎢⎡

==

⎥⎥⎦⎢

⎢⎣

1.3066 0.5557 1.3066- 0.2543- 1.4124 0.0471- 0.4421 2.2356- 0.4421- 1.7579 0.3355 1.2803-

ˆ

0.0034- 0.0551- 1.2598- 0.7539-

2/1 HUSU

Ali Karimpour June 2012

71⎥⎥

⎦⎢⎢

⎣ 0.0896 0.2147 0.0896- 0.0487 0.2519- 0.3121- 0.3675 0.2797- 0.3675- 0.0927- 0.5711- 0.4652 rUSU

Page 72: Multivariable Control Systemsariable Lec5

Chapter 5

Irreducible Realization of Proper Rational Matrices

⎤⎡ 0 07370 21070 07370 16030 07370 1067

⎥⎥⎥⎥

⎢⎢⎢⎢

== −

0.0149- 1.1356- 0.0149 1.7406- 0.0149- 0.3415- 0.0613- 0.4551 0.0613 0.1112- 0.0613- 0.9386- 0.2178- 0.1092 0.2178 0.0864- 0.2178- 0.1058 0.0737- 0.2107- 0.0737 0.1603 0.0737- 0.1067-

ˆ 2/1† HrYSY

⎦⎣

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

== − 0.2161 0.1031- 0.0440- 0.1718 1.1176- 0.6349- 0.2441 0.0328 1.3847- 0.5171 0.0081- 0.1251-

ˆ 2/1† SUU

⎥⎥⎥⎥⎥

⎦⎢⎢⎢⎢⎢

⎣ 0.3976 0.4086 0.2259 0.0432 0.9525 0.3109- 0.0961 0.2185-

0.3976- 0.4086- 0.2259- 0.0432- SUU r

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

==0.8076 0.2888- 0.1800- 0.2227-

0.0772 0.1604- 1.0139- 0.1588 0.1904- 0.2155 0.0369 1.2497-

ˆ~ˆ †† UTYA

⎥⎥⎥⎥⎤

⎢⎢⎢⎢⎡

==0.5711- 0.4652 1.4124 0.0471- 0.3355 1.2803-

ˆ,

TpmpIUB

⎥⎦

⎢⎣ 0.4476- 0.1354 0.1181- 0.1246 ⎥

⎦⎢⎣ 0.2519- 0.3121-

⎥⎤

⎢⎡

==0.0770- 0.8443- 0.6121 1.0915-

YIC ⎥⎤

⎢⎡−

==02

)0(HE

Ali Karimpour June 2012

72

⎥⎦

⎢⎣

==0.0034- 0.0551- 1.2598- 0.7539- , YIC qmq ⎥

⎦⎢⎣ −

==34

)0(HE

Page 73: Multivariable Control Systemsariable Lec5

Chapter 5

Exercises

Ali Karimpour June 2012

73