multiscale waveform tomography c. boonyasiriwat, p. valasek, p. routh, b. macy, w. cao, and g. t....

51
Multiscale Waveform Multiscale Waveform Tomography Tomography onyasiriwat, P. Valasek, P. Routh, B. onyasiriwat, P. Valasek, P. Routh, B. W. Cao, and G. T. Schuster W. Cao, and G. T. Schuster * ConocoPhillips ConocoPhillips * * *

Upload: beryl-logan

Post on 19-Jan-2018

216 views

Category:

Documents


0 download

DESCRIPTION

Goal 2

TRANSCRIPT

Page 1: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Multiscale Waveform TomographyMultiscale Waveform Tomography

C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy,C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy,W. Cao, and G. T. SchusterW. Cao, and G. T. Schuster

** ConocoPhillips ConocoPhillips

* * *

Page 2: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

1

• GoalGoal

Page 3: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

GoalGoal

2

Page 4: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

3

• Goal and MotivationGoal and Motivation

Page 5: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

?

IntroductionIntroduction

4

X (km)

Tim

e (s

)

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

Page 6: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Introduction: Traveltime TomographyIntroduction: Traveltime Tomography

5

Page 7: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

IntroductionIntroduction

6

X (km)

Tim

e (s

)

0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

Page 8: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Introduction: Waveform TomographyIntroduction: Waveform Tomography

7

Page 9: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Introduction: Waveform TomographyIntroduction: Waveform Tomography

8

Page 10: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Introduction: Waveform TomographyIntroduction: Waveform Tomography

9

• Pratt and Brenders (2004) and Sheng et al. (2006) Pratt and Brenders (2004) and Sheng et al. (2006) used early-arrival wavefields.used early-arrival wavefields.

• Frequency domain: Pratt et al. (1998), etc.Frequency domain: Pratt et al. (1998), etc.

• No high frequency approximation.No high frequency approximation.

• Time domain: Zhou et al. (1995), Sheng et al. Time domain: Zhou et al. (1995), Sheng et al. (2006), etc.(2006), etc.

• Bunks et al. (1995) and Pratt et al. (1998) used Bunks et al. (1995) and Pratt et al. (1998) used multiscale approaches.multiscale approaches.

Page 11: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

10

• GoalGoal

Page 12: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Why Acoustic?Why Acoustic?

• Waveform inversion is also expensive.Waveform inversion is also expensive.

• Previous research shows acoustics is adequate.Previous research shows acoustics is adequate.

11

• Elastic wave equation is expensive.Elastic wave equation is expensive.

• Use acoustics and mute unpredicted wavefields.Use acoustics and mute unpredicted wavefields.

Page 13: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Theory of Waveform TomographyTheory of Waveform Tomography

An acoustic wave equation:An acoustic wave equation:

),()',';,()',';,()(

1 22

2

2 tsttPt

ttPc

rrrrrr

The waveform misfit function isThe waveform misfit function is

s g

sg tPdtf );,(21 2 rr

12

Page 14: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Theory of Waveform TomographyTheory of Waveform Tomography

The waveform residual is defined byThe waveform residual is defined by

calcsgobssgsg tPtPtP );,();,();,( rrrrrr

The steepest descent method can be used to The steepest descent method can be used to minimize the misfit function:minimize the misfit function:

)()()(1 rrr kkkk gcc

13

Page 15: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Theory of Waveform TomographyTheory of Waveform Tomography

The gradient is calculated byThe gradient is calculated by

s

ss tPtPdtc

g );,(');,( )(

2)( rrrrr

r

wherewhere

);,'(),';0,(');,(' ss tstGdtP rrrrrrr

);,()();,( sggg

s tPts rrrrrr

14

Page 16: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

15

• GoalGoal

Page 17: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Why Use Multiscale?Why Use Multiscale?

Low Frequency

High Frequency

Coarse Scale

Fine Scale

Image from Bunks et al. (1995)Model parameter (m)

Mis

fit fu

nctio

n ( f

)

16

Page 18: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Our Multiscale ApproachOur Multiscale Approach

• Use a Wiener filter for low-pass filtering the data.Use a Wiener filter for low-pass filtering the data.

• Combine Early-arrival Waveform Tomography Combine Early-arrival Waveform Tomography (Sheng et al., 2006) and a time-domain multiscale (Sheng et al., 2006) and a time-domain multiscale approach (Bunks et al., 1995).approach (Bunks et al., 1995).

17

• Use a window function to mute all energy except Use a window function to mute all energy except early arrivals.early arrivals.

• Use multiscale V-cycles.Use multiscale V-cycles.

Page 19: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Why a Wiener Filter?Why a Wiener Filter?

18

Original Wavelet Target Wavelet

Wavelet: Hamming Window Wavelet: Wiener Filter

Page 20: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

High Frequency Fine GridHigh Frequency Fine Grid

Low Frequency Coarse GridLow Frequency Coarse Grid

Multiscale V-CycleMultiscale V-Cycle

19

Page 21: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

20

• GoalGoal

Page 22: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Synthetic SSP Data ResultsSynthetic SSP Data Results

• SEG Salt ModelSEG Salt Model

• Layered Model with ScatterersLayered Model with Scatterers

• Mapleton ModelMapleton Model

21

Page 23: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Layered Model with ScatterersLayered Model with Scatterers

22

Page 24: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Initial Velocity ModelInitial Velocity Model

23

Page 25: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

TRT TomogramTRT TomogramGradient

24

Page 26: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

EWT Tomogram using 15-Hz DataEWT Tomogram using 15-Hz DataGradient

25

Page 27: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

MWT Tomogram using 2.5-Hz DataMWT Tomogram using 2.5-Hz DataGradient

26

Page 28: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

MWT Tomogram using 5-Hz DataMWT Tomogram using 5-Hz Data2.5-Hz

27

Page 29: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

MWT Tomogram using 10-Hz DataMWT Tomogram using 10-Hz Data5 Hz

28

Page 30: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

MWT Tomogram using 15-Hz DataMWT Tomogram using 15-Hz Data10 Hz

29

Page 31: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Layered Model with ScatterersLayered Model with Scatterers

30

Page 32: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Comparison of Misfit FunctionComparison of Misfit Function

15 Hz

10 Hz5 Hz

2.5 Hz

15 Hz

31

Page 33: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

SEG Salt Velocity ModelSEG Salt Velocity Model

32

Page 34: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

TRT TomogramTRT TomogramGradient

33

Page 35: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

MWT Tomogram (2.5,5 Hz)MWT Tomogram (2.5,5 Hz)TRT

34

Page 36: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

SEG Salt Velocity ModelSEG Salt Velocity Model

35

Page 37: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Mapleton ModelMapleton Model

36

Page 38: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

TRT TomogramTRT Tomogram

37

Page 39: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

MWT Tomogram MWT Tomogram (30, 50, 70 HZ)(30, 50, 70 HZ)

38

Page 40: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Mapleton ModelMapleton Model

39

Page 41: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Marine Data ResultsMarine Data Results

40

Page 42: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Marine Data

515 Shots480 Hydrophones

12.5 mdt = 2 msTmax = 10 s

1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

Offset (km)

Tim

e (s

)

b) Original CSG 1

1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

Offset (km)

Tim

e (s

)

a) Virtual CSG 1

41

Page 43: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Low-pass FilteringLow-pass Filtering

42

Offset (km)

Tim

e (s

)

(a) Original CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s

)

(b) 5-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)Ti

me

(s)

(c) 10-Hz CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Page 44: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Reconstructed VelocityReconstructed Velocity

43

X (km)

Z (k

m)

(a) Initial Velocity Modelm/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

X (m)

Z (m

)

(b) MWT Tomogram m/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

X (km)

Z (k

m)

(a) Initial Velocity Modelm/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

X (m)

Z (m

)

(b) MWT Tomogram m/s

0 2 4 6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1600

1700

1800

1900

2000

2100

2200

2300

Page 45: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Observed Data vs Predicted DataObserved Data vs Predicted Data

44

Offset (km)

Tim

e (s

)

(a) Observed Windowed CSG

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)

Tim

e (s

)

(b) Predicted CSG using Initial Model

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Offset (km)Ti

me

(s)

(c) Predicted CSG using MWT Tomogram

0 2 4

0

0.5

1

1.5

2

2.5

3

3.5

4

Page 46: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

0 50 100 150 200 250 300450

500

550

600

650

700

Iteration Number

RMS

Wav

efor

m R

esid

ual

Waveform Residual versus Iteration

Waveform Residual vs Iteration NumberWaveform Residual vs Iteration Number

45

1 s2 s

5 Hz

10 Hz

5 Hz

5 Hz

10 Hz 10 Hz5 Hz

Page 47: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Common Image GatherCommon Image Gather

46

5 Hz

10 Hz

Shot Number

Z (k

m)

(a) CIG using Initial Tomogram

20 40 60 80

0

0.5

1

1.5

2

Shot Number

Z (k

m)

(b) CIG using MWT Tomogram

20 40 60 80

0

0.5

1

1.5

2

Page 48: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

OutlineOutline

• IntroductionIntroduction

• ResultsResults

• Multiscale Waveform TomographyMultiscale Waveform Tomography

• ConclusionsConclusions

• Theory of Acoustic Waveform TomographyTheory of Acoustic Waveform Tomography

47

• GoalGoal

Page 49: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

ConclusionsConclusions• MWT partly overcomes the local minima problem.MWT partly overcomes the local minima problem.

• MWT provides more accurate and highly resolved than MWT provides more accurate and highly resolved than TRT and EWT.TRT and EWT.

• MWT is much more expensive than TRT.MWT is much more expensive than TRT.

48

• Accuracy is more important than the cost.Accuracy is more important than the cost.

• MWT provides very accurate tomograms for synthetic MWT provides very accurate tomograms for synthetic data and shows encouraging results for the marine data.data and shows encouraging results for the marine data.

Page 50: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

Future WorkFuture Work

• Apply MWT to land data.Apply MWT to land data.

49

• Use wider-window data and finally use all the Use wider-window data and finally use all the data to obtain more accurate velocity data to obtain more accurate velocity distributions.distributions.

• Take into account the source radiation pattern.Take into account the source radiation pattern.

Page 51: Multiscale Waveform Tomography C. Boonyasiriwat, P. Valasek, P. Routh, B. Macy, W. Cao, and G. T. Schuster * ConocoPhillips * **

AcknowledgmentAcknowledgment

• We are grateful for the support from the We are grateful for the support from the sponsors of UTAM consortium.sponsors of UTAM consortium.

• Chaiwoot personally thanks ConocoPhillips Chaiwoot personally thanks ConocoPhillips for an internship and also appreciates the help for an internship and also appreciates the help from Seismic Technology Group at from Seismic Technology Group at ConocoPhillips.ConocoPhillips.

50