multiscale analysis anddesign of industrialand ... · vapor mass transfer flow = ... 15 eindhoven...

57
Laboratory for Chemical Technology, Ghent University http://www.lct.UGent.be Multiscale analysis and design of industrial and emerging thermal processes involving solids Guy B. Marin 1 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Upload: others

Post on 19-Aug-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Laboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be

Multiscale analysis and design of industrial andemerging thermal processes involving solids

Guy B. Marin

1

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 2: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

2

Outline

• Introduction

• Steam cracking

• Vortex reactor

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 3: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Multiscale: from molecule to process

3

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Molecular level

Process level

Page 4: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

4

Outline

• Introduction

• Steam cracking

• Vortex reactor

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 5: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Steam cracking: from fossil to renewables

5

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

atozforex.com; pnnl.org; districtenergy.org; scade.fr; schmidt-clemens.de; Linde Group

Crude oil

Natural gas

Bio-based feeds

Steam cracking Consumer goods fromchemical industry

Naphtha

Light gasoil

crude oil

Natural gas liquids

Gas-condensates

Hydrode-oxygenated

FAME

Ethene

Propene

Butadiene

Aromatics

Page 6: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Thermochemical conversion of biomass

6

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

LIGNOCELLULOSIC BIOMASS

BIO-OIL CHAR

CO

CO2

H2OCH4

H2

GAS

NH3

HCNC2H4

5wt% Torrefaction35wt% Slow pyrolysis13wt% Fast pyrolysis85wt% Gasfication

20wt%30wt%75wt%5wt%

75wt%35wt%12wt%10wt%

Toraman, H.E.et al.,Bioresource Technology, 207, 229-236, 2016

Page 7: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

COILSIM1D

Pilot plant

Simulation andOptimization

Industry

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

http://www.avgi.be/

Page 8: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Steam cracker: hot section

8

D

A

C

A: Radiation sectionB: TLEC: Steam drumD: Convection section

Endothermic process 1050–1150 K

Preheat feed and other utility streams

Rapidly quenching of reactor effluent

B

45%

50% 800K

700K

1050–1150 K

5%

1450 K

FPH

Saturated steam

BFWECO

Feed

Dilution steam

SSH

HTC

Steam

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 9: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Coke formation

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Optimization by- Feed additives- Metallurgy & surface technology- 3D reactor technology

Deposition of a carbon layer on the reactor surface

Thermal efficiency

Product selectivity

Decoking procedures

Estimated annual cost to industry: $ 2 billion

9

Page 10: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

10

Steam cracker convection section

EvaporatorEvaporator

Steam

Feed

Nozzle

Steam

Feed

Nozzle Feed-steam mixture overheater-1

Feed-steam mixture overheater-1

Feed Evaporator

Steam super heater

Mixture over-heater-1

Mixture over-heater-2

Flue gas out ~ 700K

Flue gas in~ 1400 K

Mixing nozzle

To radiation section

Schematic of convection section

Heavy feed

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Mahulkar, A.V. et al., Chemical Engineering Science, 110, 31-43, 2014

Page 11: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Droplet trajectories

11

Inlet bend

Inlet

Inlet bend

Inlet

Inlet bend

Inlet

100 micron inlet diameter

Dro

plet

Dia

met

er (m

)

Inlet bend

Inlet

50 micron inlet diameter

10 micron inlet diameter

1 micron inlet diameter

• Large droplets (50 & 100 µm) impinge the inlet bend due to inertial separation from flow.• Large (50 & 100 µm) droplets reduce in size due to splashing while the smaller droplets (1 & 10

µm) reduce in size by evaporation

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 12: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

12

Gas condensate: regime map

• Wider stick regime as compared to that in single componentdroplet regime map

• For splash and limited splash, the no. of daughter droplets formedis greater than predicted by correlations available in literature

Rebound

StickSplash

Limited Splash

0

200

400

600

800

1000

1200

480 530 580 630 680 730 780

No

rma

l W

eb

er

nu

mb

er

Wall temperature (K)

Stick

Rebound

Splash

Limited Splash

820TLF

critNormWe

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Mahulkar, A.V. et al., Chemical Engineering Science, 130, 275-289, 2015

Page 13: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Wall film model

• Droplet collection as mass source for film• Film velocity based on interfacial shear and gravity• Energy balance over the film• Film has one pseudo species (physical property of which changes as

evaporation proceeds)

13

Wall

Liquid film

Impinging droplet

Heat transfer from wall

Evaporative heat and mass transferVapor

flow

�� =����ℎ

2��� =

��ℎ�

3���Shear

componentGravitational component

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 14: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

14

Outline

• Introduction

• Steam cracking

• Vortex reactor

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 15: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Gas/Solid Fluidization Reactors

15

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

gravitational technologies centrifugal technologies

ConventionalFluidized Bed 1

Riser/Circulating Fluidized Bed 2

Conventional Rotating Fluidized Bed 3

Gas/Solid Vortex Reactor

1. van Hoef et al., Ann. Rev. Fluid Mech. 40 (2008) 47-702. http://www.fluidcodes.co.uk/fbed.html3. adapted from Watano et al., Powder Tech.131 (2003) 250-255

Page 16: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Real-time Video

16

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

0.9 mm polyvinylidene fluoride particles (ρ = 1800 kg/m3) ~1 kg/s air flow~5 kg bed mass

Page 17: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Gas/Solid Vortex Reactor (GSVR)

17

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

GSVR Characteristics:• Gas injection forces bed rotation

& induces fluidization• Centrifugal forces resist drag

� Dense bed � High radial slip velocity

gas flow path solid velocity

Tangential gasinjection

Rotating solidparticles

Page 18: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

18

Outline

• Introduction

• Steam cracking

• Vortex reactor: cold flow

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 19: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Experimental GSVR Set-ups: cold flow

19

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 20: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

High-Speed Video

20

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

70 micron particles (5000 FPS)

~1.6 mm particles (10000 FPS)

Page 21: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

CFD Example Movies

21

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

2D (with gravity), 0.74 kg/s air, 3250 g bed

Page 22: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Optimization of design

22

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

�8 inlet slots�10° with respect to the tangent�1 mm width�Gas inlet velocity 60-140 m/s

Side view ↓Top view ↑

Page 23: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Gas-only simulation

23

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

� N2 mass flow: 6.67 g s-1

� Inlet temperature: 842K� Turbulence model: RSM� 2.8 million cells mesh� 3rd order discretization

outlet

� Backflow is minimized and displaced upwards towards the outlet

[m/s]

Page 24: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Gas-only simulation

Geometry simplification for speedup of calculation

24

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Actual inlet Circular inlet Pie-shape

� Same inner geometry and shape of inlet slots.� In all cases the same amount of gas is fed.

In theory, the flow pattern in the inner part of the reactor should not be affected.

Page 25: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

25

Outline

• Introduction

• Steam cracking

• Vortex reactor: hot flow

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 26: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Gas-solid simulation procedure

• STEP 1: Gas-only simulation until steady-state– Hot gas (N2) enters via the outer ring

• STEP 2: Feeding of solid particles– Ring-shaped feeding zone right after the slits– Via UDF: add mass source term in the solid

phase continuity equationOR: “patch” a volume fraction of solids

– Particles at room temperature (no sourceterm in energy equation)

– Final goal: 15 g of solids in reactor

• STEP 3: Stabilization– Stop particle feed and monitor bed stabilization– Heating of particles by the hot gas

26

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

N2

Particles are fed in this ring

Page 27: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Some results

Unstable bed (a lot of bubbles) – Total mass of solids: 16 g

Stable, thin bed – Total mass of solids: 5.5 g

27

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Sol

ids

volu

me

frac

tion

Sol

ids

volu

me

frac

tion

Iso-surface of solids volume fraction = 0.2

Iso-surface of solids volume fraction = 0.2

Page 28: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Some results

Gas enters at 1023 K, solids are introduced at 300 K (8 g/s)

Solid temperature evolution :

28

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Time = 1 s(during solid feed step)

Time = 2 s(during solid feed step)

Time = 3 s(after solid feed step)

Page 29: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

29

Outline

• Introduction

• Steam cracking

• Vortex: flow model

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 30: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Flow model: Euler/Euler

Conservation equations� Mass (� = �, �)

� Momentum

� Energy (� = �, �)

30

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

������ + � ⋅ ������� = ��

��������� + � ⋅ ���������� =−���! − �!� + � ⋅ ��" + ������ + #$% ��& − ��� + '�(),�

���&�&��& + � ⋅ �&�&��&��& =−�&�! + � ⋅ �& + �&�&�� + #$% ��� − ��& + '�(),&

������ℎ� + � ⋅ �������ℎ� = ��

�!

��+ �̿�: �,� − � ⋅ -�� + .�/

�̿� = ��(�+0,�) ���� + ����0 + �� 1� −

2

3(�+0,�) � ⋅ ��� 2�Wherein, stress tensor:

Momentum transfer(Gidaspow?)

Turbulent dispersion(Simonin-et-al)

Heat transfer(Gunn)

Page 31: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Flow Model based on experimental program

31

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Pressure Profile

Solids VelocityBed Thickness

(Bulk Solids Fraction)

Gas flow rate

GSVU geometry

Wall

Bed mass

Particle

CFD model parameters

Gas

Observable(dependent)

variables

Set (independent)

variables

Page 32: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Experimental Data

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

32

32

� Static Pressure profilePressure probes at wall

-0.5

0.5

1.5

2.5

3.5

0 0.09 0.18 0.27

Pre

ssur

e [k

Pa]

Radius [m]

∆4

∆4

012345

0.18 0.21 0.24 0.27Par

ticle

vel

ocity

[m

/s]

Radius [m]

� Bed Height: Visual observation, Pressure profile

∆4

PIV

� Solids VelocityParticle Image Velocimetry of solid phase near wall

56,7

56,8

� Particle azimuthal velocity: � Pressure drop over bed:

Pressure

probes

� Void fraction: 9:;<=

:;<=

:;<=

M.N.Pantzali et al., AIChEJ, 4114-4125 (2015)

32

Page 33: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Stereo PIV: single phase (seed particles)

z

r

Instantaneous 3D velocity fields

Average vector field

F=0.394 Nm3/s, vinj=55m/s

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

33

Page 34: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Single phase flow: model validation

34

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Fields of velocity magnitudeExperimental

Radial profiles of azimuthal velocity

Numerical Simulations

Axial profiles of azimuthal velocity

0

20

40

60

80

100

120

140

0 0.1 0.2

(m/s

)

r (m)

Niyogi K. et al, AIChE J., in press

Page 35: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

35

Outline

• Introduction

• Steam cracking

• Vortex: drag model

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 36: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Radial Momentum Balance

Three main equations (simplified) :

1. Gas momentum balance

2. Solids momentum balance

3. Gas-solid combination

36

'> negligible ?

FS : Force exerted on the bed by the wall (N)

∆!

ℎ?@)='A�?@)

�� 1 − CD�,E�

F

F

ℎGH

F

F − ℎ='A�?@)

+'>�?@)

∆!

ℎ?@)= �� 1 − C

D�,E�

F

F

ℎGH

F

F − ℎ−'>�?@)

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 37: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Radial Momentum Balance

37

Bed pressure drop

• Particles

DiameterDensity

‘1 mm’ ‘1.5 mm’ ‘2 mm’

HDPE 950 kg/m 3 0.9 1.4 1.8

PC 1240 kg/m 3 - - 1.9

Dependent variables studied:

• Air flow rate: Gf 0.4-0.8 Nm3/s

• Solids loading: 2 kg – Maximum Capacity

∆!

ℎ?@)= �� 1 − C

D�,E�

F

F

ℎGH

F

F − ℎ

Experimental validation of balance simplification

Gas-solid momentum balance:

Weight of the bed in centrifugal field

=

'> negligible !

∆�

IJKL[kPa/m]

�� 1 − CMN,OP

Q

Q

IGH

Q

QRI[kPa/m]

0

50

100

150

200

0 50 100 150 200

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 38: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Drag Force – Modelling

Drag Coefficient definition (single particle)

- Drag force in GSVU:

- Model for SA,T>UM:

FV�,W ≔D&,W�&Y�&

� =2ZF

[,\]V^_`�G_�� ∗ �G_��ℎ�bcHV��b_��

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

'A = H�SAZY�

4

�&D&,WC

2

Ff,%g: = Cf,%gi)j

P

k

lmnmP

SA = oFV�,W? Cp Sr

Swirl ratio at inlet� ≔D&,7

D&,W

5t,u

5t,E

vw,E

5t

α

Where:

12

D&,W =y

2ZFz

D&,7 =y ∗ b_��

H,\]V^_`�G_�� ∗ �G_��ℎ�bcHV�� ∗ z

G : Gas mass flow rate (Nm3/s) L : Unit Length (m)

{

(azimuthalvelocityatslots)

(radialvelocityfrommassconservation)

Geometrical Factor

38

Page 39: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Regression of “measured” drag force FDCalculated: Proposed

Drag Model

Estimation of model parameters a,b,c,d by minimization of sum of squares of residuals

between experimental and calculated drag

forces

14

Experimental: Solids Radial Momentum Balance

FV�,W ≔D&,W�&Y�&

� =2ZF

[,\]V^_`�G_�� ∗ �G_��ℎ�bcHV��b_��

Dependentvariables:

CHp�?@)

Independent Variables:

ℎ?@)

��, yY� ��

D�,ED&,W =

y�

2ZFz

��:solids load (kg), G:gas mass flow rate (Nm3/s)

(�2�)(���,oG)

D&,W

F

ℎGH

F

F − ℎ�?@)�� 1 − C

D�,E�

F= 'A '�� = H���,{6�5

Z

4Y��1

2�&

D&,WC

��,{6�5 = �FV�,W; C�S�

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 40: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Model performance

40

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

SA,T>UM = (15.00 ± 4.65)C�.� ±¡.¡¢FV�,W

(R¡.�¢±¡.¡£)S(¡.¤¥±¡.¡ )

0

10

20

30

40

50

60

70

0 200 400 600 800 1000 1200 1400

c D,G

SV

-1.9

3

Rep,r

Friedle M. et al., submitted

Page 41: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Flow Model

41

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Pressure Profile

Solids VelocityBed Thickness

(Bulk Solids Fraction)

Gas flow rate

GSVU geometry

Wall

Bed mass

Particle

CFD model parameters

Gas

Observable(dependent)

variables

Set (independent)

variables

Page 42: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Model validation: radial pressure drop

42

Gas momentum balance:∆!

ℎ?@)='A�?@)

Including the model

Leads for c=2 and hbed~0 to:∆!

12�&D&,W

�=15

8H�FV�,W

R¡.�¢S¡.¤¥Y��

Fz

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

'A = H�SA,T>UMZ

4Y��1

2�&

D&,WC

SA,T>UM = 15C�.� FV�,W

R¡.�¢S¡.¤¥

Page 43: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Model validation: parity plot

43

0

200

400

600

800

1000

1200

1400

1600

0 200 400 600 800 1000 1200 1400 1600

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

∆!

12 �&D&,W

Page 44: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

44

Outline

• Introduction

• Steam cracking

• Vortex reactor: pyrolysis

• Conclusions

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 45: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Cold Flow Test with Pinewood

45

Ghent, 12/12/2016

� Pinewood particles� Irregular shapes maximum dimension 2

mm� Gas inlet velocity 90 m s-1

� Continuous feeding for approx. 10 s using a drill to drive a provisional injection screw

� Average bed height 15 mm

� Solids holdup 9-11 g (voidage 0.5-0.6)

Page 46: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Cold Flow Test with Pinewood

46

Ghent, 12/12/2016

8 inlet slots, 10° with respect to the tangent, 0.94 mm width

� Pinewood particles� Irregular shapes max. dimension 2 mm� Gas inlet velocity 90 m s-1

� Continuous feeding for approx. 10 s using a drill to drive a provisional injection screw

� Average bed height 15 mm� Average solids azimuthal velocity 4.5 m s-1

� Solids holdup 9-11 g (voidage 0.5-0.6)

Particle image velocimetry

Page 47: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Biomass Pyrolysis Process: flow diagram

47

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

http://www.pyne.co.uk

BIOMASS

BIO-OIL (TAR)

Flue gas

Sand + Char

Hot Sand

Air

Gas recycle

Pyrolysis Gas

Combustor

Pyrolyser

Page 48: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Pyrolysis Modeling in a GSVR

481. Xue, Heindel, and Fox, Chem. Eng. Sci. 66 (2011) 2440

• 2D periodic GSVR simulations

• Heterogeneous reactions (solid � gas + char):

• 10-reaction network with pseudo-components 1

• Continuous feeding of biomass

• Cellulose, hemicellulose, and lignin

• Different rates for each biomass component

• 4-phase Eulerian multiphase simulation (3 granular)

• Gas, biomass, char, and sand

• Sand and biomass retained in reactor

• Char leaves with gas flow due to lower density

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

VirginBiomass

ActiveBiomass

Tar (g)PyrolysisGases

Char (s) + Pyrolysis Gases

biomass

char

sand

Volume fraction

Page 49: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Volume Fraction and Temperature

49

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

biomass char sand0.030 0.065 0.55

Page 50: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

50

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

BiomassChar

Total solids(biomass, char, sand)

Volume Fraction Animation0.08 0.15

0.63

Ashcraft, R.W. et al.,Chemical Engineering Journal, 207-208, 195-208, 2012

Page 51: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

GSVR Process Intensification

51

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

1.Z.Y. Zhou, A.B. Yu, P. Zulli, Particle scale study of heat transfer in … fluidized beds, AIChE J. 55 (2009) 868–8842.Y. Ma, J.X. Zhu, Experimental study of heat transfer in a co-current downflow fluidized bed, Chem. Eng. Sci. 54 (1999) 41–50

Typical range1,2 static fluidized beds and risers/CFBs: ~100 – 200 W/(m2 K)

Page 52: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Gas/Solid Fluidization Reactors

52

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Gas

/Sol

id S

lip V

eloc

ity

Solid Volume Fraction

Terminal velocity

Fluidized

Beds

Risers &

Circulating

Fluidized Beds

GSVR &

Rotating

Fluidized

Bed

Reactors

Improved gas/solid mass transferPotential for intensification

Images from: Watano et al., Powder Tech.131 (2003) 250-255

Gravitational technologiesLonger gas/solid contact time

Centrifugal technologiesShorter gas/solid contact time

Page 53: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Conclusions“ standard “ CFD models and codes • allow to describe and assess “new” reactor technologies involving multiple

scales

PIV data combined with visual observation and pressure me asurement• provide correlation for drag coefficient in GSVR flow model

GSVRs have the potential to intensify processes• High intrinsic mass/heat transfer can yield improved overall rates• High solid volume fractions can reduce equipment size

Biomass Pyrolysis • Stratification of solid phases to retain unreacted biomass: multifunctional reactor• Comparison to a static gravitational fluidized bed

– Order of magnitude larger heat and mass transfer coefficients

53

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 54: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

CRE in the 21st century

54

design

experimenttheory

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 55: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

Acknowledgments

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

The Long Term Structural Methusalem Funding

55

Page 56: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

56

Acknowledgments

• Profs. Geraldine Heyndericks, Kevin Van Geem

• Drs. Marita Torregrosa, Vladimir Shtern, Amit Mahulkar, Ruben Debruycker, Maria Pantzali, Jelena Kovacevic, Robert Ashcraft

• PhD students Pieter Reyniers, Laurien Vandewalle, Kaustav Nyogi, Maximilian Friedl, Arturo Gonzalez-Quiroga

Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase Flows” December 14 2016

Page 57: Multiscale analysis anddesign of industrialand ... · Vapor mass transfer flow = ... 15 Eindhoven Multiscale Institute (EMI) Annual Symposium “Multiscale Challenge of Multiphase

People

•Assistant professors: 4

•Visiting/senior scientists: 4

•Post-docs: 8

•PhD students: 60

•Technical staff: 10

•Administrative staff: 3

57