multidimensional functions - fitzkee lab• second partial derivative ... • this is a mathematical...

13
Multidimensional Functions http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/ 1 Simple “3D” Function: What’s “the derivative?” Does our 2D definition even make sense?

Upload: others

Post on 28-Mar-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Multidimensional Functions

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/ 1

• Simple “3D” Function:

• What’s “the derivative?”

• Does our 2D definition even make sense?

Page 2: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Partial Derivative Example #1

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/ 2

• Looking at small slices along y, the slope in the x‐z plane is the same

• Key result: Partial derivatives tell us the slope in a specified plane!

y = ‐1.05  to  ‐0.95x =  ‐1 to 1

y =  ‐0.8  to ‐0.7x =  ‐1 to 1

y = ‐0.55  to  ‐0.45x =  ‐1 to 1

y = ‐0.05  to  0.05x =  ‐1 to 1

,  

Page 3: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Partial Derivative Example #2

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/ 3

Page 4: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

,  

Partial Derivative Example #2

http://www.math.uri.edu/~bkaskosz/flashmo/graph3d/ 4

• Partial derivative depends on y, so slope in x‐z plane will depend on which x‐z plane

• Just because y was constant while taking the derivative, doesn’t mean it has to be constant afterward!

y = ‐1.05  to  ‐0.95x =  ‐1 to 1

y =  ‐0.55 to ‐0.45x =  ‐1 to 1

y = ‐0.05  to  0.05x =  ‐1 to 1

y =  0.95  to  1.05x =  ‐1 to 1

Page 5: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Partial Derivative Example #2

5

• First partial derivative with respect to x (y constant): 

2

• Second partial derivative with respect to y (x constant):

2 2

• First partial derivative with respect to y (x constant): 

2

• Second partial derivative with respect to x (y constant):

2 2

Page 6: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Partial Derivative Example #2

6

• First partial derivative with respect to x (y constant): 

2

• Second partial derivative with respect to y (x constant):

2 2

• First partial derivative with respect to y (x constant): 

2

• Second partial derivative with respect to x (y constant):

2 2

• It’s true in general that:

Page 7: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Self Test: Ideal Gas Law

7

• Consider the ideal gas law:

• Calculate the following:

,and 

,

Page 8: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Differentials

8

• If we know y0 = f(x0) what’s the change in y0 if x0 is changed a little (dx)?

• Therefore:

• What’s the corresponding result for N‐dimensions?

Differentials relate a small change in one variable (dy) to a small  change in other variable(s) (dx)

Page 9: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Differentials Example

9

• If h(x) = f(x)g(x), can we find dh? 

• Thus, it’s true that:· ·

• Remember your homework?  

Page 10: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Multidimensional Differentials

10

• If f = f(x, y, z), we can write the exact differentialof f as:

, , ,

• This is a mathematical fact, not a thermodynamic one (shown without proof), but it must apply to all functions in thermodynamics

Page 11: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

But I Don’t Like Calculus…

11

• Last class, we determined that (for reversibleprocesses, only PV work):

• For smaller changes:

• Combine the math with the science: Presto!

and 

In other words, E is a “natural function” of S and V.

Page 12: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Summary: Gibbs Energy Changes

12

• To calculate changes in Gibbs energy at constant P use:– All our tricks for entropy, enthalpy apply– Useful for calculating standard state reactions

• As a last resort use 

– Where ΔX = Xproducts ‐ Xreactants

Page 13: Multidimensional Functions - Fitzkee Lab• Second partial derivative ... • This is a mathematical fact, not a thermodynamic one (shown without proof), but it mustapply to all functions

Summary: Gibbs Energy Changes

13

• If ΔS, ΔH constant vs. T:

∆ ∆

• Phase transitions: • Chemical reactions behave like enthalpy, entropy (why?)

• Pressure changes– Solids, liquids: ∆ ∆ ∆– Ideal gasses: ∆ ∆ ∆ ln