molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

7
J Mol Evol (1991) 33:267-273 Journal of Molecular Evolution Molecular Evidence for the Origin of Plastids from a Cyanobacterium-like Ancestor Susan E. Douglas ~ and Sefin Turner 2 t Institute of Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada 2 Department of Biology and Institute for Molecular and Cellular Biology, Indiana University, Bloomington, IN 47405, USA Summary. The origin ofplastids by either a single or multiple endosymbiotic event(s) and the nature of the progenitor(s) of plastids have been the sub- jects of much controversy. The sequence of the small subunit rRNA (Ssu rRNA) from the plastid of the chlorophyll c-containing alga Cryptomonas ~ is pre- sented, allowing for the first time a comparison of this molecule from all of the major land plant and algal lineages. Using a distance matrix method, the phylogenetic relationships among representatives of these lineages have been inferred and the results indicate a common origin of plastids from a cyano- bacterium-like ancestor. Within the plastid line of descent, there is a deep dichotomy between the chlo- rophyte/land plant lineage and the rhodophyte/ chromophyte lineage, with the cyanelle of Cyano- phora paradoxa forming the deepest branch in the latter group. Interestingly, Euglena gracilis and its colorless relative Astasia longa are more related to the chromophytes than to the chlorophytes, raising once again the question of the origin of the euglenoid plastids. Key words: Molecular phylogeny -- Plastid -- Al- gae -- Plant -- Small subunit RNA Introduction Although the endosymbiotic origin ofplastids is now widely accepted (Gray 1989), the number of endo- symbiotic events necessary to explain the diversity of modern plastid types remains unresolved. Based on differences in accessory light-harvesting pig- Offprint requests to: S.E. Douglas ments exhibited by the three major lineages of pho- tosynthetic eukaryotes (Chlorophyta, Rhodophyta, and Chromophyta), multiple events involving hy- pothetical prokaryotes containing those distinct pig- ment complements (chlorophyll b, phycobilipro- teins, and chlorophyll c, respectively) were proposed to give rise to extant plastids (Raven 1970). Sub- sequent events involving eukaryotic endosymbionts were proposed to give rise to those plastids sur- rounded by more than two membranes (Gibbs 1978; Whatley et al. 1979). An alternative hypothesis, ex- tended by Cavalier-Smith (1982), suggested that only two endosymbiotic events were necessary--the first between a cyanobacterium and a nonphotosynthetic phagotrophic eukaryote, and the second between the resulting photosynthetic eukaryote and a different nonphotosynthetic phagotroph. In this latter hy- pothesis, the diversity of plastid types is proposed to have arisen by modification of the original en- dosymbiont as it was converted into the different types of plastids found in the three main lineages. All plastids surrounded by only two membranes arose from the first association and those surround- ed by three or four membranes from the second association. The discovery of the prochlorophyte Prochloron didemnL a prokaryote containing both chlorophylls a and b (Lewin 1975), led to the proposal that it could be related to the putative ancestor of the plas- tids of the chlorophyll a/b-containing plants. Sim- ilarly, it was postulated that the brownish photo- heterotroph Heliobacterium chlorum could be a representative of the lineage that gave rise to the putative ancestor of the.~hlorophyll a/c-containing algal plastids (Margulis and Obar 1985). However, these hypotheses are gainsayed by the results of mo- lecular phylogenetic analyses. Inspection of small

Upload: susan-e-douglas

Post on 10-Jul-2016

215 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

J Mol Evol (1991) 33:267-273

Journal of Molecular Evolution

Molecular Evidence for the Origin of Plastids from a Cyanobacterium-like Ancestor

Susan E. Douglas ~ and Sefin Turner 2

t Institute of Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, Nova Scotia B3H 3Z1, Canada 2 Department of Biology and Institute for Molecular and Cellular Biology, Indiana University, Bloomington, IN 47405, USA

Summary. The origin ofplastids by either a single or multiple endosymbiotic event(s) and the nature of the progenitor(s) of plastids have been the sub- jects of much controversy. The sequence of the small subunit rRNA (Ssu rRNA) from the plastid of the chlorophyll c-containing alga Cryptomonas ~ is pre- sented, allowing for the first time a comparison of this molecule from all of the major land plant and algal lineages. Using a distance matrix method, the phylogenetic relationships among representatives of these lineages have been inferred and the results indicate a common origin of plastids from a cyano- bacterium-like ancestor. Within the plastid line of descent, there is a deep dichotomy between the chlo- rophyte/land plant lineage and the rhodophyte/ chromophyte lineage, with the cyanelle of Cyano- phora paradoxa forming the deepest branch in the latter group. Interestingly, Euglena gracilis and its colorless relative Astasia longa are more related to the chromophytes than to the chlorophytes, raising once again the question of the origin of the euglenoid plastids.

Key words: Molecular phylogeny -- Plastid -- Al- gae -- Plant -- Small subunit RNA

Introduction

Although the endosymbiotic origin ofplastids is now widely accepted (Gray 1989), the number of endo- symbiotic events necessary to explain the diversity of modern plastid types remains unresolved. Based on differences in accessory light-harvesting pig-

Offprint requests to: S.E. Douglas

ments exhibited by the three major lineages of pho- tosynthetic eukaryotes (Chlorophyta, Rhodophyta, and Chromophyta), multiple events involving hy- pothetical prokaryotes containing those distinct pig- ment complements (chlorophyll b, phycobilipro- teins, and chlorophyll c, respectively) were proposed to give rise to extant plastids (Raven 1970). Sub- sequent events involving eukaryotic endosymbionts were proposed to give rise to those plastids sur- rounded by more than two membranes (Gibbs 1978; Whatley et al. 1979). An alternative hypothesis, ex- tended by Cavalier-Smith (1982), suggested that only two endosymbiotic events were necessary--the first between a cyanobacterium and a nonphotosynthetic phagotrophic eukaryote, and the second between the resulting photosynthetic eukaryote and a different nonphotosynthetic phagotroph. In this latter hy- pothesis, the diversity of plastid types is proposed to have arisen by modification of the original en- dosymbiont as it was converted into the different types of plastids found in the three main lineages. All plastids surrounded by only two membranes arose from the first association and those surround- ed by three or four membranes from the second association.

The discovery of the prochlorophyte Prochloron didemnL a prokaryote containing both chlorophylls a and b (Lewin 1975), led to the proposal that it could be related to the putative ancestor of the plas- tids of the chlorophyll a/b-containing plants. Sim- ilarly, it was postulated that the brownish photo- heterotroph Heliobacterium chlorum could be a representative of the lineage that gave rise to the putative ancestor of the.~hlorophyll a/c-containing algal plastids (Margulis and Obar 1985). However, these hypotheses are gainsayed by the results of mo- lecular phylogenetic analyses. Inspection of small

Page 2: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

268

s u b u n i t r R N A s (Ssu r R N A s ) s h o w e d H. chlorum to be a m e m b e r o f the F i r m i c u t e s ( G r a m - p o s i t i v e b a c - t e r i a s ensu W o e s e ) ( W o e s e et at. 1985; W o e s e 1987) a n d to b e a r n o c lose r e l a t i o n s h i p w i t h c h r y s o p h y t e p l a s t i d s ( W i t t a n d S t a c k e b r a n d t 1988).

S i m i l a r s tud i e s i n d i c a t e d t ha t e u g l e n o i d a n d c h l o - r o p h y t e / l a n d p l a n t p l a s t i d s as wel l as the c y a n e l l e o f Cyanophora paradoxa fel l w i t h i n t he c y a n o b a c - t e r i a l l i ne o f d e s c e n t ( G i o v a n n o n i e t al. 1988; T u r n e r e t al . 1989). A l t h o u g h p h y l o g e n e t i c s t ud i e s u s ing psbA g e n e - e n c o d e d p r o t e i n s e q u e n c e s y i e l d e d con - f l ic t ing resu l t s b e t w e e n t h e m s e l v e s c o n c e r n i n g the r e l a t i o n s h i p o f p r o c h l o r o p h y t e s to t he p l a s t i d s o f c h l o r o p h y l l a/b-containing e u k a r y o t e s ( M o r d e n a n d G o l d e n 1989a ,b ; K i s h i n o et al. 1990), Ssu r R N A c o m p a r i s o n s h a v e s h o w n tha t p r o c h l o r o p h y t e s , whi le fa l l ing w i t h i n t he c y a n o b a c t e r i a l p h y l u m , a r e un -

l i ke ly to be c lose ly r e l a t e d to t hese o rgane l l e s (See- w a l d t a n d S t a c k e b r a n d t 1982; T u r n e r et at. 1989). H o w e v e r , p h y l o g e n e t i c r e c o n s t r u c t i o n us ing rbcL ( D o u g l a s et at. 1990; M o r d e n a n d G o l d e n 1991) a n d rbcS ( M o r d e n a n d G o l d e n 199 i ) g e n e - e n c o d e d p r o - t e in sequences i nd i ca t e a p o l y p h y l e t i c or ig in for s o m e p l a s t i d s f r o m the b e t a a n d g a m m a g r o u p s o f P r o - t e o b a c t e r i a (pu rp l e b a c t e r i a sensu Woese ) , w h i c h b e a r n o c lose r e l a t i o n to t he c y a n o b a c t e r i a , b a s e d o n Ssu r R N A a n a l y s i s ( W o e s e 1987).

A n a l y s e s o f S s u r R N A s e q u e n c e s o f p l a s t i d s f r o m r e p r e s e n t a t i v e s o f t he v a r i o u s p h o t o s y n t h e t i c eu- k a r y o t i c l ineages m a y a l l o w r e s o l u t i o n o f th i s con - t r o v e r s y . S m a l l s u b u n i t r R N A s e q u e n c e s a r e g o o d m o l e c u l e s fo r p h y l o g e n e t i c i n f e r ence as t h e y a r e p r e s e n t in a l l o r g a n i s m s , a la rge d a t a b a s e exis ts , t h e y c o n t a i n a large n u m b e r o f n u c l e o t i d e p o s i t i o n s for c o m p a r i s o n , a n d s e q u e n c e a l i g n m e n t is r e l a t i v e l y s t r a i g h t f o r w a r d ( G r a y et at. 1984). H e r e we r e p o r t t he s e q u e n c e o f t he Ssu r R N A o f t he Cryptomonas

p l a s t i d , in fe r p h y l o g e n e t i c t rees u s ing th i s se- q u e n c e a n d t h o s e o f o t h e r a lga l g r o u p s a n d c y a n o - b a c t e r i a , a n d d i s c u s s t he resu l t s in r e l a t i o n to t he m o n o p h y l e t i c / p o l y p h y l e t i c o r ig in o f m o d e r n p l a s - r ids a n d the p o s s i b l e n u m b e r o f e n d o s y m b i o t i c e v e n t s g i v i n g r i se to t h e m .

Materials and Methods

Sequence Determination. Plastid DNA preparation, construction of a clone bank from Cryptomonas ~, and localization of the rRNA genes on a small (5.5-kb) inverted repeat have been de- scribed (Douglas 1988). The location of one of the rRNA cistrons on a 15.5-kb BamH I/Sac I fragment and the sequence 3' to the Sma I site have been published separately (Douglas and Durnford 1990b). The remaining sequence was obtained from a 1.2-kb Sac I/Sma I fragment containing most of the 16S rRNA gene, which was subcloned from the 15.5-kb BamH [/Sac I fragment, and the adjoining Sac I fragment. Both strands were sequenced com- pletely by the dideoxynucleotide chain termination method (Sanger et al. 1977). The 5' and 3' termini of the Ssu rRNA gene were

tentatively identified by alignment with corresponding regions from published Ssu rRNA sequences.

PhylogeneticAnalysis. Small ribosomal subunit sequences were aligned by eye and the alignment verified by secondary structure analysis (Gutell et al. 1985). Only positions that are clearly ho- mologous and for which sequence data are available for all or- ganisms (indicated in Fig. 1) were used in the phylogenetic anal- yses. Accounting for gaps introduced in the alignment process, a total of 862 positions were used in the analysis for the tree pre- sented in Fig. 2 and 1118 for that in Fig. 3.

The least squares, distance matrix program of Olsen was used to infer phylogenetic trees (Olsen 1988). Briefly, similarity values for each pair of sequences were calculated b y the formula S =

M/[M + U + (G/2)], where S is similarity, M is the number of matching nucleotides, U is the number of nonmatching nucle- otides, and G is the number of nonmatching gaps introduced in the alignment process. In the analysis presented here, gaps greater than a single nucleotide were treated as a single gap. Similarity values were converted to estimated evolutionary distances using the formula of Jukes and Cantor (1969), and the resulting dis- tances were used to infer a phylogenetic tree by means of a least squares, distance matrix method (Fitch and Margoliash 1967; Olsen 1988). Confidence values for individual branches of the tree were determined by a bootstrap analysis in which 100 or 200 bootstrap trees were generated from resampled data (Felsen- stein 1985).

The possibility of an artifactual tree topology due to variable mutation rates between sequences was investigated by the meth- od of Olsen (Olsen 1987). In brief, a site-to-site variability is assumed whereby 95% of the sequence positions vary in mutation rate around a median value in a manner described by a log- normal distribution. The assumed rate variation ranges from a value of alpha to the reciprocal of alpha (1/alpha), the particular value of alpha being an arbitrary positive number. In this anal- ysis, values of alpha employed were 2, 4, 8, 16, 32, 64, and 99 (the last being the limit of the program).

All analyses were run on a Digital Equipment Company MicroVax II computer. The use of computer programs and hard- ware was provided by N.R. Pace of Indiana University.

Results and Discussion

T h e c o d i n g s e q u e n c e o f t he 16S r R N A gene f r o m Cryptomonas �9 is 1492 n u c l e o t i d e s in l eng th (Fig. 1). T h e s e d a t a h a v e b e e n d e p o s i t e d w i t h t he E M B L D a t a L i b r a r y u n d e r a c c e s s i o n n u m b e r X 5 6 8 0 6 . T h e 3' t e r m i n a l s e q u e n c e c o n t a i n s a c lass ica l S h i n e - D a l - g a r n o s e q u e n c e ( 5 ' - C C T C C T T - 3 ' ) t h a t is c o m p l e - m e n t a r y to u p s t r e a m s e q u e n c e s o f s e v e r a l p r o t e i n c o d i n g genes f r o m Cryptomonas �9 ( D o u g l a s a n d D u r n f o r d 1989, 1990a; D o u g l a s et al . 1990; R e i t h a n d D o u g l a s 1990). T w o p u t a t i v e p r o m o t e r ele- m e n t s , b o t h sha r i ng e x t e n s i v e s e q u e n c e s i m i l a r i t y w i t h t he c a n o n i c a l - 3 5 ( T T G A C A ) a n d - 1 0 ( T A - T A A T ) s equences ( P r i b n o w 1975), a re f o u n d u p - s t r e a m o f t he 5' e n d o f the 16S r R N A c o d i n g se- q u e n c e (P1, P2; Fig . 1). T h e r e is n o e v i d e n c e o f a gene fo r t R N A va~, such as is f o u n d in t h e r e g ions u p s t r e a m o f l a n d p l a n t p l a s t i d r R N A c i s t rons . T h e 16S r R N A m o l e c u l e can b e f o l d e d a c c o r d i n g to t he gene ra l s e c o n d a r y s t r u c t u r e o f G u t e l l e t al. (1985)

Page 3: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

Pl agaaaaattgtaatttttatca~tatttatactcattttatttcctacaatatttaaatatttagggtt~a~aatattggttgaaacqataa~ttgtatt

P2 caggatataaaaagtttgtttacatttcgtaaacaaaatttaattctaag•ataaagtattattaaatattggAAATCATGGAGAGTTTGATCCTGGCTC

AGGATGAACGCTGGCGGTATGCTTAACACATGCAAGTCGTACGAAAGTTTTTAACTTTAGTGGCGGACGGGTGAGTAACACGTGAGAATCTACCCTTAGG um|ii1voluu I U | V | | W I | I | W | U W | I | I | | I W t 0 1 | | I U V I | W g f I | I | I V

269

100

200

300

AGGA~GATAACAGC TGGAAACGC~ TGCTAATACTCCATATGCTGAAGAGTGAAAGGGAAACCACCTAAGGAAGAGCTCGCGTCTGATTAGC TAGTTG 400 I I I I I I I I I I I I I I ! I ! I l I I | f I I | I ! I I I i l 1 1 1 1 1 1 . 1 1 1 1 " 1 1 I I I I I I I | I | I I I I I I | I | I I I I I I I I I I N I I I I I f f I ~ I I ~ N I I I I I | I I I I I I I I I I I I I l I I I I I I P I I !

GTAGGGTAAC-GGCCTACC`~GG~GACGATCAGTAGCTGGTTTGAGAGGACGATCAG~ACA~TGGGACTGAGACACG~-~CAGA~T~CTACGGGAG~-CAG 500 I I I , I I . I I , I , l n I I I I U I I I I I I I I l l n n 11 l l n I I n I I I I i i i i , l I I I f I I n n m 1, 11 , l i ,1 ,1 , l I I le i i n l l I I I I l l , I 11 I . l l . I I I I 11 1, l l l , l , I I U I I I I I I I I l l , I I I U n I I I I I I I I I I n 1, , i I I I I i i i i i I I I I i i I i I I I I n I I I I u I I I i I I I i

CAGTGGGGAATTTTCCGCAATC-GGCGcAAG•CTGACGGAGCAATAC•GCGTGAGGGATGAAGGCCTGTGGGTTGTAAACCTCTTTTCTCAAGGAAGAAGT 600 II I111 II l l II II II II II II U II l l II II II N U II II I I II II II II U II II | I II II II n II II II II n II II I | II l | u i i . | I II II II I! l l m | I II II II l ! II II I I . II II II l l II n II II II II II II II II II II II II I I l . II n n II II II II 11 II II II II

TC TGACGGTACTTGAGGAATAAGCATCGGC TAAC TC TGTGCCAGCAGCCGCGGTAATACAGAGGATGCAAGCGTTATCCGGAATTAC TGGC4:ATAAAGCG 700 11111111111111111111111111111111111111111111111111111111111 I I I I I I | I I

TCTGTAGGTTGTTTAGTAAGTCTGCTGTTAAAGACTAGC~:~TTAACCCTAGAAAAGCAGTGGAAACTGCTAGACTTGAGTGTGGTAGAGGTAGAGGGAAT 800 I I ! I I I l I I ) I I I I I I I t } I ~ 0 I I t I I I I I I I I I I I l l II I P l l ~ , l l l l l I t f l l l l l l l l l II II I l l l II U , l l l , l l l I111 I I I I I l l l l l l l U I l l l l l l l n II i i i i i i r I l l l | l | l l l I ; t l l l n l l l l l l U t l II II I I I I II II II l [ II l1

TCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAAGAACA•CAATGGCGAAAGCACTTTACTGGGCCATAA•TGACACTGAGAGACGACAGCTAGGGGA 900 n i i i i 11 II II I i l111 II 11 l , II II n i i o 11 11 11 l l n I i II II n ~ 11 11 II 11111111 , I II n . 1111 11 11 II II 11 I i u u l l l , 1111 II ~ II 11 , l l , n n II 11 II i i l l II II II I i l l II n 11 i i I i i i . u I i 11 i i l l I i i i n i i 11 I i i i n i i i i 11 i i u u i i i i i i 11

GCAAATGGGATTAGATACC~CAGTAGTCCTAGCCGTAAACTATGGATACTAGATGTTGTACGTATTAACCCGTACAGTATCGTAGCTAAGC~GTTAAGTA i000 n i i i i i i i i . I I l l I I n N I I U I I n H u u i i i i l l f l U I | " I I I I I I I ! 11 l l n I I 0 I I I I I I h | l I I I I I I I I I 1 1 1 1 1 . l l l | I I I I | l l l I I I I IS l l I I f l 11 | l M I I f i l l | l l l . l l I I I l I I , I I I I I n , l i i , l I I I I I I I I I | l l

TCCCGCCTGGGAAGTACGCTCGCAAGAGTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGTATGTGGTTTAATTCGATGCAACGCGAAG 1100 U l l n i I I I I l l l l I I f l l I I U I r 1 1 l I I I | l w ,

AACCTTACCAGGGTTTGACATGTCACAAATTTTCTTGAAAAAGAAAAGTC4~CTTC~AATGTGAA~ACAGGTGGTGcATGC4~TGTCGTCAGCT~GTGTC 1200 I I I I I I I I I I I I I I I I I I l , I I I I I I I I I I I I I I I I I l l l l l l l l l , l l l l l l n l l l l . l l l l l l l l n n l l l l l l l l l l l l l T n l l U l l l T

GTGAGATGTTGGGTTAAGTCCCGCAA~GAGCGTAACCCTTGTTTTTAGTTGCCATCATTAAGTT~ACTTTAA~kAGACTGCCGGTGATAAACCGGAG 1300 I I I I l l I I l l I I I I I I I I I I U I I I I I I I I I I I I I I I I l l I I I I I I l l l l l l I I I I I I n i i i i i ! I I l l I I I I | l I I I I , I I I H I I I I I I ,e n I I I t I I I I I I I I I I 11 , l u I I I I I , I I I I l ! l , l ! I , l l H I I I ! l ! I I I I I I I I I I I I I I I I I I Ir I ! I I U I I I I

GAAGGTGAGGACGACGT~AAGTCAGCATGCCCCTTACACTCTGC4?~TACACACGTACTACAATGGTCGAGA~AAAAAGTCGCAAACTTGTGAAAGTAAGC 1400 n l l lu Ul no n i Ul U i i i i 11 l l n u l . iv u , l i , . ol i i i i . n . i i . n ,1 , I l , i i lO Ol i I . i i i i i I lW m OO I I l a . i i I I I I Ul lO l l I I al In i i i i I i I I lq i I In I I I I I I al al l l lO n I I . no I t M Ol Ol I I n lU Wl I I no I I Ul l l no l l I I In I I no n el I I I I I I I I I I

TAATCTTATAAACT~GATCTCAGTTCGGATTGCAGC~TGCAACTCGCCTGCATGAAGTTGGAATCGCTAGTAATCGCCGGTCAGCTATACGGCGGTGAAT 1500 I I I I I I I I I I ~ l l I I I I I I I I I I I I , I I I I I I I I I I I l , M I I I I I I I ! I I . I I I I I I I I I I I I I I I I I I I I . , I , I 1! I I I I I I I I I I I ! I I 11 I I I I I I I I n I I I ! I I I 1 ,1 i , , I l l l | I I I I I I I I I I I I I I I I I I I I U I I ,1 I I I I I I I I U 11 I I m I I l l I I I I I I I I I I n I I I | I I U , I I , , I i

CCGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGAAGCTAGTCATACCCAAAGTCGTTACCTTAACCATTCGGAC~GCGCCTAAGGTAGGG 1600 I 1 1 1 1 I I | 1 1 I I | | 1 1 | l ) | I I I I I | | | I l l I I I I I I | | | l | l l I I I 1 | I I I I I | 1 1 I I I | 1 | | I

TTAGTGACTGGGGTGAAGTCGTAACAAGGTAGCCGTACTGGAAGGTGCGGCTGGATCACCTCCTTAaagggagatttaaatcttctaag~ttatataaat 1700 atuiivo OlilOii|n

Fig. 1. Nucleotide sequence of the noncoding (RNA-like) strand of the 16S rRNA gene (uppercase letters) and flanking regions (lowercase letters) from the Cryptomonas ,b plastid. Putative promoter regions, P1 and P2, are underlined. Positions used in the phylogenetic analysis shown in Fig. 2 are indicated by ("); those additional positions used in the phylogenctic analysis shown in Fig. 3 are indicated by (').

with conserved stems maintained by compensatory base changes (data not shown).

Phylogenetic analysis of Ssu rRNAs from cyano- bacteria and the plastids of the chlorophyll c-con- mining alga Cryptomonas ,b and other algal and land plant lineages shows that plastids arose from a cy- anobacterium-like ancestor (Fig. 2). In a bootstrap analysis the plastids formed a monophyletic group in 99% of the bootstrap trees (Fig. 2). Furthermore, this group fell within the cyanobacterial line of de- scent in 92% of the cases. Figure 3 represents an augmented analysis of the plastid cluster in Fig. 2. Additional plastid rRNA sequences have been in- cluded and the number of sequence positions used in the analysis has been increased.

Following the branching of the plastid cluster

within the phylogenetic trees, there is a dichotomy between the chlorophyte/land plant and rhodo- phyte/chromophyte plastid lineages (Figs. 2 and 3). The deeper branchings in the latter group are com- prised of the phycobilin-containing cyanelle of the glaucophyte C. paradoxa and plastids of the mac- rophyte red alga Palrnaria palmata, the cryptomo- nad Cryptomonas @, and the unicellular rhodophyte Cyanidium caldarium. The close branching order among this set supports the proposal that the tax- onomic separation between glaucophytes and rho- dophytes may be artificialr particularly if C. caldar- ium is considered to~'be a m e m b e r o f the Glaucophyceae (Cavalier-Smith 1987).

The placement of the Cryptomonas �9 plastid is indicative of its cyanobacterial ancestry (Figs. 2 and

Page 4: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

270

A W

100

60

Gloeobacter 7412 R ~ . . . ~ p A n . nidulans

Phorm. 7375 r. hollandica

2_[ Ps. galeata Plect. 73110

a3 C. p_aradoxa cyanelle C r y p t o m o n a s 4, c h p

E. - I , , i py. Ch. reinhardtii

' I ~ Z. mays chp too N. tabacum chp

M. polymorpha chp Syn. 6308

Myxo. 7312 Gloeo. 6501

Osc. 7515 Osc. 6304

Lyn. 7419 I . , Ose. limnetica

~ ' - I Micro. 10 mfx Cyl. 7417

gracilis chp littoralis chp

chp

I I I I > 0.0 0 . 05 0 .10 0 .15

Fixed point mutations per sequence position

Fig. 2. An inferred phylogenetic tree depicting the evolutionary relationships among various cyanobacteria, the prochlorophyte Procholorothrix hollandica, and plastids. The tree was produced by a least squares, distance matrix analysis of 862 aligned 16S rRNA sequence positions. The bracket to the right of the tree denotes the cyanelle/plastid cluster. Distances between terminal nodes are equal to the sum of the horizontal segment lengths joining them. Numerical values associated with each internal branch represent the percentage of instances in which that branch occurred in a set of 100 trees generated from a bootstrap resam- pling of the original data. The 16S rRNA sequences of Bacillus subtilis and Agrobacterium tumefaciens, whose own relative branch point is represented by 0, were used as outgroups to determine

the root of the tree. Cyanophora paradoxa, P. hollandica, and eyanobaeterial sequence data are from the cyanobacterial 16S rRNA database of N.R. Pace, Indiana Univesity. The references for the other sequences are given in Neefs et al. (1990) with the exception of Pylaiella littoralis (Markowicz et al. 1988). Abbre- viations are as follows: An., Anacystis; C., Cyanophora; Ch., Chlamydomonas; chp., plastid; Cyl., Cylindrospermum; E., Eu- glena; Gloeo., Gloeothece; Lyn., Lyngbya; M., Marchantia; Mi- cro., Microcoleus; Myxo., Myxosarcina; N., Nicotiana; Osc., Os- cillatoria; Phorm., Phormidium; Pr., Prochlorothrix; Ps., Pseudanabaena; Py., Pylaiella; Syn.. Synechocystis; Z., Zea. Ex- cept for Microcoleus 10 mfx, strain designation numbers refer to the Pasteur Culture Collection.

3). This contrasts with the results f rom an analysis o f rbcL gene-encoded protein sequences in which there was an apparent affiliation between this plastid and the /3 group o f Proteobacter ia (Douglas et al. 1990). There are several possible explanat ions for this discrepancy including physical phenomena, such as lateral transfer o f the rbcL gene, and method- ological reasons, such as the relatively l imited num- ber o f rbcL data and the inherent l imitat ions o f m a x i m u m pars imony methods used to analyze them (Sourdis and Nei 1988; Kishino et al. 1990).

The plastids o f bo th Euglena gracilis and its col- orless relat ive Astasia longa cluster with those o f the ch romophy te algae Ochromonas danica and Pylaiel- la littoralis, and not with the o ther chlorophyll a/b- containing plastids. A similar association between

ch romophy te and euglenoid plastids was found by others (Markowicz et al. 1988; Wit t and Stacke- brandt 1988) and is suppor ted by the boots t rap anal- yses. These plastids form a monophyle t i c goup in 87.5% of the boots t rap trees (Fig. 3). Moreover , an analysis that directly addresses the possibility o f to- pological artifacts being produced by differences in evolut ionary clock speeds (Olsen 1987) also sup- ports this result. All phylogenetic trees so inferred had topologies identical to that in Fig. 3, even for assumed variat ions ranging over nearly four orders o f magni tude (data not shown). Both euglenoids and ch romophy te algae store reserve carbohydra te as /~-l,3-glucans in the cytoplasm, unlike land plants and chlorophyte algae, which store a-1,4-glucans in the plastid (Whatley and What ley 1981). Cavalier-

Page 5: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

99

75.5 "'J~L~ 58

J 68.5 J

87.5 J

83.5

An.

I00

A. tumefaciens

B. subtilis nidulans

Ch. reinhardtii chp

Ch. moewusii Chl. ellipsoidea chp Chl. vulgaris chp

loon~M, polymorpha chp Z. mays chp

N. tabacum chp C. paradoxa cyanelle

P. palmata chp C r y p t o m o n a s �9 c h p

Cy. caldarium chp 100 m

chp

Oo

Py.

U OUTGROUPS

- - CYANOBACTERIUM

I CHLOROPHYTF_~

~ LAND PLANTS

- - GLAUCOPHYTE

- - RHODOPHYTE - - CRYPTOPHYTE ~ RHODOPHYTE

As. longa chp EUGLENOPHYTES E. gracilis chp

danica chp 7 CHROMOPHYTES d littoralis ehp

271

Fig. 3. An inferred phylogenetic tree depicting the evolutionary relationships among various plastids. The tree was produced from an analysis of 1118 aligned 16S rRNA sequence positions as described in Fig. 2. Numerical values associated with each in- ternal branch represent the percentage of instances in which that branch occurred in a set of 200 trees generated from a bootstrap resampling of the original data. The references for the sequences

i , ) 0.10 0.20

Fixed point mutations per sequence position

used are given in Fig. 2 with the exception of Astasia longa (Siemeister and Hachtel 1990), P. palmata (Singh, personal com- munication), and Cyanidium caldarium (Maid and Zetsehe 1990). Abbreviations are as in Fig. 2 with the inclusion ofA., Agrobac- terium; As., Astasia; B., Bacillus; ChL, Chlorella; Cy., Cyanidium; 0., Ochromonas; P., Palrnaria.

Smith (1987) has argued that the euglenoid plastid is not related to those of the chlorophyte lineage, based on lipid composition and plastid DNA or- ganization, particularly the tandemly repeated rRNA genes that resemble prokaryotic rRNA cistrons.

The phylogenetic trees depicting plastid relation- ships (Figs. 2 and 3) do not by themselves address the issue of the number of endosymbiotic events that gave rise to modem plastids. This can be done only by comparing plastid phylogeny with that of the eukaryodc hosts. A number ofphylogenetic trees containing members of the major photosynthetic eukaryotic groups have been inferred from analyses ofSsu rRNAs (Bhattacharya et al. 1990; Douglas et al. 1991; Eschbach et al. 1991; Hendriks et al. 1991), large subunit rRNAs (Lsu rRNAs) (Perasso et al. 1989; Lenaers et al. 1991) and 5S rRNAs (Hori and Osawa 1987; van den Eyende et al. 1988). Among these trees, the relative branching orders of the algal groups differ. This is perhaps not surprising because they are derived from analyses of different gene products from different sets of organisms and are inferred by different methods. However, those de- rived from Ssu and Lsu rRNA sequence analyses have several features in common that can be used

as a framework for comparison with the results re- ported here. Specifically, (1) the rhodophyte, chro- mophyte, and chlorophyte/land plant groups arise as three distinct lineages within a general eukaryotic radiation, and (2) the euglenoids comprise a very deep branching group with no direct relation to any of the other algal groups.

In Fig. 3, the chlorophyte/land plant plastids branch as a monophyletic group as do the host or- ganisms in the eukaryotic trees. This is consistent with the hypothesis that green algae and land plants arose from a single chloroplast-bearing ancestor. The Cryptomonas �9 plastid arises from within the phy- cobiliprotein-containing algae (Fig. 3), supporting the hypothesis that cryptophytes arose by a second- ary endosymbiosis of a primitive red alga that con- tained chlorophyll c (Whatley et al. 1979). Recent studies of the nucleomorph and nuclear Ssu rRNA genes from Cryptomonas �9 has confirmed that two separate endosymbiotic events indeed contributed to the formation of cryptpmonad algae (Douglas et al. 1991). J

The chromophyte plastids appear to have a red algal ancestry whereas in eukaryotic trees, the chromophytes and rhodophytes form distinct lines

Page 6: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

272

o f descen t . T h i s i m p l i e s t h a t these p l a s t i d s a re t he r e su l t o f o n e o r m o r e e n d o s y m b i o s e s o f a r e d a lga o r i ts p l a s t i d w i t h a e u k a r y o t i c c h r o m o p h y t e ances - tor(s) . T h e m u l t i p l e m e m b r a n e s y s t e m s u r r o u n d i n g m o d e r n c h r o m o p h y t e p l a s t i d s is c o n s i s t e n t w i t h th i s m o d e l . T h e p r o p o s a l t h a t r h o d o p h y t e a n d c h l o r o - p h y t e / l a n d p l a n t l i neages a re s i s t e r g r o u p s o f t h e K i n g d o m P l a n t a e a n d s e p a r a t e f r o m the K i n g d o m C h r o m i s t a , w h i c h i n c l u d e s c h r o m o p h y t e s a n d c r y p - t o p h y t e s ( C a v a l i e r - S m i t h 1986) is n o t s u p p o r t e d b y o u r r e su l t s o r b y the e u k a r y o t i c Ssu a n d L s u r R N A s t u d i e s c i t e d a b o v e .

F u r t h e r m o r e , t he r e l a t i v e l y s h a l l o w p l a c e m e n t o f t h e e u g l e n o i d p l a s t i d s c o u p l e d w i t h t he d e e p p l ace -

m e n t o f E. graci l is in t he e u k a r y o t i c t rees d o e s n o t s u p p o r t t he h y p o t h e s i s t h a t t he c o m m o n a n c e s t o r s h a r e d b y e u g l e n o i d s a n d o t h e r p h o t o s y n t h e t i c eu- k a r y o t e s c o n t a i n e d a p l a s t i d ( C a v a l i e r - S m i t h 1982, 1987). I t d o e s s u p p o r t t he m o d e l w h e r e i n the eu- g l e n o i d p l a s t i d s a r o s e f r o m an e n d o s y m b i o s i s o f an a lga o r a lgal p l a s t i d w i th a n a n c e s t r a l e u g l e n o i d hos t , a l b e i t t he a lga l s y m b i o n t d o e s n o t a p p e a r to h a v e b e e n a c h l o r o p h y t e as o t h e r s h a v e p r o p o s e d ( G i b b s 1978; W h a t l e y e t al . 1979). H o w e v e r , G i b b s (1970) has n o t e d t h a t t he p l a s t i d s o f e u g l e n o i d s r e s e m b l e t h o s e o f b o t h t he C h l o r o p h y c e a e a n d the m o r e p r i m - i t i ve P r a s i n o p h y c e a e ( M i c r o m o n a d o p h y c e a e ) . T h e d i s c o v e r y o f a p r a s i n o p h y t e t h a t c o n t a i n s b o t h c h l o - r o p h y l l s b a n d c ( W i l h e l m 1987) ra i ses t h e pos s i - b i l i t y t h a t e u g l e n o i d p l a s t i d s a r o s e b y u p t a k e o f a p r a s i n o p h y t e a lga o r i ts p l a s t i d b y a e u g l e n o i d a n - ces tor .

T h e s e c o m p a r i s o n s a re n e c e s s a r i l y cu r so ry . A m o r e c o m p l e t e a n a l y s i s m u s t a w a i t t h e a c q u i s i t i o n o f m o r e d a t a a n d a r e s o l u t i o n to the p r o b l e m o f d i f fe r ing t o p o l o g i e s a m o n g b o t h p l a s t i d a n d e u k a r y - o t i c p h y l o g e n e t i c t rees .

Acknowledgments. The authors thank Colleen Murphy for ex- cellent technical assistance with sequencing, Rama Singh for the use of the P. palmata 16S rRNA sequence prior to publication, and Norman Pace for the use of computer facilities. This is NRCC publication number 31966.

References

Bhattacharya D, Elwood HJ, GoffLJ, Sogin ML (1990) Phy- logeny of Gracilaria lemaneiformis (Rhodophyta) based on sequence analysis of its small subunit ribosomal RNA coding region. J Phycol 26:181-186

Cavalier-Smith T (1982) The origins of plastids. Biol J Linn Soc 17:289-306

Cavalier-Smith T (1986) The Kingdom Chromista: origin and systematics. Prog Phycol Res 4:309-347

Cavalier-SmithT (1987) Glaueophyceaeandtheoriglnofplants. Evol Trends Plants 1(2):75-78

Douglas SE (1988) Physical mapping of the plastid genome from the chlorophyll c-containing alga, Cryptomonas ~. Curr Genet 14:591-598

Douglas SE, Durnford DG (1989) The small subunit ofribu- lose-l,5-bisphosphate carboxylase/oxygenase is plastid en- coded in the chlorophyll c-containing alga Cryptomonas ~. Plant Mol Biol 13:13-20

Douglas SE, Durnford DG (1990a) Nucleotide sequence of the genes for ribosomal protein $4 and tRNA Ar8 from the chlo- rophyll c-containing alga Cryptomonas r Nucleic Acids Res 18:1903

Douglas SE, Durnford DG (1990b) Sequence analysis of the plastid rDNA spacer region of the chlorophyll c-containing alga Cryptomonas ,I~. DNA Sequence. J DNA Sequencing Mapping 1:55-62

Douglas SE, Durnford DG, Morden CW (1990) Nucleotide sequence of the gene for the large subunit of ribulose-l,5- bisphosphate carboxylase/oxygenase from Cryptomonas ~: evidence supporting the polyphyletic origin ofplastids. J Phy- col 26:500-508

Douglas SE, Murphy CA, Spencer DF, Gray MW (199 I) Cryp- tomonad algae are evolutionary chimeras of two phylogenet- ically distinct unicellular eukaryotes. Nature 350:148-151

Eschbach S, Wolters J, Sitte P (1991) Primary and secondary structure of the nuclear small subunit ribosomal RNA of the eryptomonad Pyrenomonas salina as inferred from the gene sequence: evolutionary implications. J Mol Evol 32:247-252

Felsenstein J (1985) Confidence limits on phylogenies: an ap- proach using the bootstrap. Evolution 39:783-791

Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279-284

Gibbs SP (1970) The comparative ultrastructure of the algal chloroplast. Ann NY Acad Sci 175:454--473

Gibbs SP (1978) The chloroplasts of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883-2889

Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584-3592

Gray MW (1989) The evolutionary origins oforganelles. Trends Genet 5:294-299

Gray MW, SankoffD, Cedergren RJ (1984) On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved core in small subunit ribosomal RNA. Nucleic Acids Res 12:5837-5852

Gutell RG, Weiser B, Woese CR, Noller HF (1985) Compar- ative anatomy of 16S-like ribosomal RNA. Prog Nucleic Acid Res Mol Biol 32:155-216

Hendriks L, de Baere R, van de Peer Y, Gorin A, de Wachter R (1991) The evolutionary position of the rhodophyte Porphyra umbilicalis and the basidiomycete Leucosporidium scottii among other eukaryotes as deduced from complete sequences of small ribosomal subunit RNA. J Mol Evol 32:167-177

Hori H, Osawa S (1987) Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. Mol Biol Evol 4:445-472

Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro I-IN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, pp 21-132

Kishino H, Miyata T, Hasegawa M (1990) Maximum likeli- hood inference of protein phylogeny and the origin of chlo- roplasts. J Mol Evol 31:151-160

Lenaers G, Scholi C, Bhaud Y, Saint-Hilaire D, Hcrzog M (1991) A molecular phylogeny of dinoflagellate protists (Pyrophyta) inferred from the sequence of 24S rRNA divergent domains D1 and D8. J Mol Evol 32:53-63

Lewin RA (1975) Extraordinary pigment composition of a pro- karyotic alga. Nature 256:735-737

Maid U, Zetsche K (1990) Nucleotide sequence of the plastid 16S rRNA gene of the red alga Cyanidium caldarium. Nucleic Acids Res 18(13):3996

Page 7: Molecular evidence for the origin of plastids from a cyanobacterium-like ancestor

273

MargulisL, ObarR (1985) Heliobacterium and origin of chryso- plasts. BioSystems 17:317-325

Markowicz Y, Loiseaux-de GiSer S, Mache R (1988) Presence ofa 16S rRNA pseudogene in the bi-molecular plastid genome of the primitive brown alga Pylaiella littoralis. Evolutionary implications. Curt Genet 14:599-608

Morden CW, Golden SS (1989a) psbA genes indicate common ancestry of prochlorophyles and chloroplasts. Nature 337: 382-385

Morden CW, Golden SS (1989b) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Corrigendum. Nature 339:400

Morden CW, Golden SS (1991) Sequence analysis and phylo- genetic reconstruction of the genes encoding the large and small subunits of ribulose-1,5-bisphosphate carboxylase/ox- ygenase from the chlorophyll b containing prokaryote Pro- chlorothrix hollandica. J Mol Evol 32:379-395

Neefs J-M, Van de Peer Y, Henriks L, De Wachter R (1990) Compilation of small ribosomal RNA sequences. Nucleic Ac- ids Res 18 [Suppl]:2237-2247

Olsen GJ (1987) Earliest phylogenetic branchings: comparing rRNA-based evolutionary trees inferred with various tech- niques. Cold Spring Harbor Symp Quant Biol 52:829-837

Olsen GJ (1988) Phylogenetic analysis using ribosomal RNA. Methods Enzymol 164:793-812

Perasso R, Baroin A, Liang HQ, Bachellerie JP, Adoutte A (1989) Origin of the algae. Nature 339:142-144

Pribnow D (1975) Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci USA 72:784-788

Raven PH (1970) A multiple origin for plastids and mitochon- dria. Science 169:641-646

Reith M, Douglas SE (1990) Localization of~-phycoerythrin to the thyiakoid lumen of Cryptomonas �9 does not require a transit peptide. Plant Mol Biol 15:585-592

Sanger F, Nicklen S, Coulsen AR (1977) Sequencing by chain termination with dideoxynucleotides. Proc Natl Acad Sci USA 74:5463-5467

Seewaldt E, Stackebrandt E (1982) Partial sequence of 16S ri- bosomal RNA and the phylogeny of Prochloron. Nature 295: 618--620

Siemeister G, HachteI W (1990) Organization and nucleotide sequence of ribosomal RNA genes on a circular 73 kbp DNA from the colourless flagellate Astasia longa. Curr Genet 17: 433-438

Sourdis J, Nei M (1988) Relative efflciencies of the maximum parsimony and distance matrix methods in obtaining the cor- rect phylogenetic tree. Mol Biol Evol 5:298-311

Turner S, Burger-Wiersma T, Giovannoni S, Mur LR, Pace NR (1989) The relationship of a prochlorophyte Prochorothrix hollandica to green chloroplasts. Nature 337:380-382

van den Eyende H, de Baere R, de Roeck E, van de Peer Y, Vandenberghe A, Willikens P, de Wachter R (1988) The 5S ribosomal RNA sequences of a red algal rhodoplast and a gymnosperm chloroplast. Implications for the evolution of plastids and cyanobacteria. J Mol Evol 27:126-132

Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87:233-247

Whatley JM, John P, Whatley FR (1979) From extracellular to intracellular: the establishment of mitochondria and chloro- plasts. Proc R Soc Lond B 204:165-187

Wilhelm C (1987) The existence of chlorophyll c in the chl b-containing, light-harvesting complex of the green alga Man- tionella squamata (Prasinophyceae). Bot Acta 101:7-10

Wilt D, Stackebrandt E (1988) Disproving the hypothesis of a common ancestry for the Ochromonas danica chrysoplast and Heliobacterium chlorum. Arch Microbiol 150:244-248

Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221- 271

Woese CR, Debrunner-Vossbrinck B, Oyaizu H, Stackebrandt E, Ludwig W (1985) Gram-positive bacteria: possible pho- tosynthetic ancestry. Science 229:762-765

Received November 26 1990/Revised March 28, 1991